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Abstract

Fusion functions are important data integration
tools that map a multiset of objects (i.e., the
sources) onto a single object (i.e., the solution).
Traditionally, it is assumed that the objects of in-
terest are single-valued. In this paper, it will be
assumed that each object has a multi-valued data
structure, leading to a framework of second order fu-
sion functions. An important class of such functions
is called preservative and is characterized by the fact
that one of the input objects is returned. A disad-
vantage of these functions is the a-priori limitation
of the output space to the input objects. It is inves-
tigated here how this disadvantage can be mitigated
by studying the principle of weak-preservation. The
main idea is hereby that, instead of preserving one
of the sources, a characteristic feature of one of the
sources is preserved. Three such features will be
studied: cardinality, k-cut and multiplicity distribu-
tion. It will then be shown how weak-preservation
can be utilized in the design of second order fusion
functions.
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1. Introduction

A challenging problem in many modern data man-
agement systems is how to deal with duplicate data.
Informally, the problem of duplicate data adheres to
the fact that there can exist multiple descriptions
of the same real world entity within one (or more)
database(s). Usually, relieving a database from its
duplicate data requires two distinct steps: match
and fuse. In the ‘match’ step [1, 2, 3, 4], the ba-
sic problem is to compare two pieces of data (e.g.,
database records) and to decide whether they are
duplicate or not. The goal of the ‘match’ step is
thus to find all duplicate data in a database. In the
‘fuse’ step [5, 6, 7, 8, 9], data that have been identi-
fied as being duplicate, must be fused into one piece
of data that is considered as an optimal real-world
description. At the formal level, a collection (usu-
ally a multiset) of sources is given, where each of
the sources describes the same real-world entity in
one specific way. A fusion function is applied to
these sources, resulting in a solution to the fusion
problem.
Within the scope of this paper, we are interested

in the specific case where the sources (and thus
also the solution) have a multi-valued data struc-
ture. More specifically, it is assumed here that a

Figure 1: Multi-valued fusion in relational databases

source S is a multiset rather than a single-valued
object. Although this assumption is rather uncom-
mon in literature on fusion (see [7, 9] for overview
papers), fusion of multi-valued sources occurs quite
naturally in many modern database systems due to
the existence of relationships:

• In relational database systems, a 1 − n rela-
tionship implies that a tuple in a table can be
linked to a set of tuples in another table as il-
lustrated in Figure 1. As such, when duplicate
tuples are fused in the leftmost table, the cor-
responding sets of tuples in the rightmost table
should also be fused properly.
• In hierarchical database systems such as XML-
databases, a similar reasoning holds. In Fig-
ure 2, two hierarchical data structures are
shown that must be fused. This requires that
the root nodes are fused first, followed by a
proper fusion of the sets of child nodes of these
roots.

Figure 2: Multi-valued fusion in hierarchical databases

When designing fusion functions in general, an
important role is played by preservative fusion func-
tions (see [7, 10]). These functions are characterized
by the fact that they select one of the input sources
as the solution. Despite their advantages, a critique
often attributed to these functions is that they are
too restrictive in the sense that the a-priori solution
space is limited to the sources. In order to miti-
gate this restrictiveness in the case of multi-valued
data structures, the concept of weak preservation
is introduced in this paper. Basically, this prin-
ciple characterizes fusion functions for multi-valued
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data structures that preserve features of the sources,
rather than the sources themselves. A simple ex-
ample of such a feature is the cardinality. Indeed,
when given three sources that all have cardinality
3, it seems reasonable to constrain the solution to a
(multi)set with cardinality 3.
The remainder of this paper is structured as fol-

lows. In Section 2, the relevant related work regard-
ing data fusion is discussed. In Section 3, some pre-
liminary concepts involving multisets are presented.
In Section 4, a simple framework of fusion functions
is presented in which a distinction between first
order and second order fusion functions is made.
The concept of weak-preservation is studied in this
framework and it is shown how this leads to a weak
notion of idempotence. In Section 5, it is shown
how weak-preservative fusion functions can be de-
signed. Finally, in Section 6, the most important
contributions of this paper are summarized.

2. Related work

In the past decades, many valuable contributions
have been made to the field of data fusion. On the
more formal level, Baral [11], Lin [12] and Konieczny
[13] have investigated how fusion functions can be
designed in the context of propositional belief bases
modeled as a first-order theory. In this setting, in-
formation of different belief bases must be combined
in a belief base that represents a maximal first-
order theory. On a more practical level, Bleiholder
[14] has proposed an extension of the standard SQL
syntax to support redundancy removal operations,
leading to the fuse by-operator. Bilke [6] and
Naumann [7] have proposed the HumMer system,
which is an integrated system that allows the semi-
automatic integration of several heterogeneous data
sources. Benjelloun [15] investigated the properties
of match functions and fusion functions simultane-
ously and showed that whenever the match and fu-
sion functions satisfy certain properties, very effi-
cient fusion algorithms can be constructed. Another
interesting approach is that of Motro [8], who mod-
els a fusion function as a multi-dimensional opti-
mization problem. It is noted and emphasized that
all of these approaches deal with the single-valued
case. The multi-valued case has been studied to
much lesser extent [16, 17], thus leaving an oppor-
tunity for further research. For additional readings
on data fusion, the authors refer to [9] for a good
and complete overview.

3. Preliminaries

A well known extension of Cantorian sets is that of
multisets (also called bags) [18]. For many decades,
these data structures have been of particular inter-
est within the broad field of informatics. Within
the scope of this paper, the notations of Yager are
adopted [18].

Definition 1 (Multiset)
A multiset A over a universe U is defined by a func-
tion:

A : U → N.

For each u ∈ U , A(u) denotes the multiplicity of u
in A. The set of all multisets drawn from a universe
U is denotedM(U).

The j-cut of a multiset A is a regular set, denoted
as Aj and is given by:

Aj = {u|u ∈ U ∧A(u) ≥ j}.

Whenever we wish to assign an index i ∈ N to a
multiset A, we use the notation A(i), while the nota-
tion Aj is reserved for the j-cut of A. The following
operators on multisets are considered:

∀u ∈ U : (A ∪B) (u) = max (A(u), B(u))
∀u ∈ U : (A ∩B) (u) = min (A(u), B(u))
∀u ∈ U : (A⊕B) (u) = A(u) +B(u).

The relation ⊆ is extended as follows:

A ⊆ B ⇔ (∀u ∈ U : A(u) ≤ B(u))

Similarly, the relation ⊂ is extended as:

A ⊂ B ⇔ (A ⊆ B) ∧ (∃u ∈ U : A(u) < B(u)) .

The cardinality of a multiset A is calculated as the
sum of all multiplicities:

|A| =
∑
u∈U

A(u).

Finally, the relation ∈ is extended as follows:

∀A ∈M(U) : ∀u ∈ U : u ∈ A⇔ A(u) 6= 0.

4. Fusion and Weak-Preservation

At the basis of this paper lies a simple framework
of fusion in which distinction is made between first
and second order fusion functions.

Definition 2 (First Order Fusion Function)
A first order fusion function over a universe U is
defined by:

F :M(U)→ U.

Basically, a first order fusion function maps a multi-
set of elements from U onto an element in U . Hence,
the sources and the solution are elements in U . Usu-
ally, it is assumed that elements in U have a single-
valued data structure. For example, if U = N, then
min and max are two first order fusion functions
over U . Many first order fusion functions described
in literature satisfy a property called preservation.

Definition 3 (Preservation of F)
A first order fusion function F over a universe U is
preservative if:

∀M ∈M(U) : F(M) ∈M.
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In the scope of this paper, the framework of fusion
functions is extended to second order fusion func-
tions, defined as follows.

Definition 4 (Second Order Fusion Function)
A second order fusion function over a universe U is
defined by:

F∗ :M
(
M(U)

)
→M(U).

In the case of second order fusion functions, the
sources and the solution are now multisets of ele-
ments in U , rather than elements in U . If U = N,
then ⊕ (i.e., the multiset sum) is an example of a
second order fusion function over U . For the sake
of simplicity, second order fusion functions will be
called ‘fusion functions’ for short in the remainder of
this paper. An interesting class of fusion functions
relies on the principle of boundedness.

Definition 5 (Boundedness)
A second order fusion function F∗ over U is bounded
if:

∀M ∈M
(
M (U)

)
: F∗ (M) ⊆ F∗ (M) ⊆ F∗ (M)

where:

F∗
(
M
) 4=

⋂
S∈M

S

F∗
(
M
) 4=

⋃
S∈M

S.

Boundedness implies that a solution consists of ele-
ments that occur in at least one of the sources. For
that reason, it is usual a mandatory constraint for a
second order fusion function in a practical setting.
In the remainder of this paper, we shall assume that
F∗ is bounded, unless explicitly stated otherwise.
Similar to the case of first order fusion functions,
preservative fusion functions are defined as follows.

Definition 6 (Preservation of F∗)
A second order fusion function F∗ over a universe
U is preservative if:

∀M ∈M
(
M(U)

)
: F∗(M) ∈M.

Preservative fusion functions are characterized by
the fact that they select one of the input sources
(i.e., they preserve one of the sources as the solu-
tion). It can be shown easily that preservative func-
tions are always bounded, which makes the class
of preservative functions a subclass of the class of
bounded functions. Preservative fusion functions
are a popular class of fusion functions (also in the
first order case) because of their simplicity in def-
inition. However, a critique is that they are too
restrictive, because F∗ (M) has only |M1| possible
outcomes. Moreover, in the first order case, preser-
vative fusion functions are typically based on some
order relation over U (e.g., min and max). Finding

such an order relation in the multi-valued case is
much more difficult. In this paper it is proposed to
weaken the principle of preservation. More specifi-
cally, instead of providing a solution that is equal to
a source, it is proposed to provide a solution that in-
herits some important features of a source. As such,
a class of fusion functions is obtained that does not
preserve one of the sources, but rather preserves
some features of one of the sources. This idea is
formalized by introducing θ-preservation.

Definition 7 (θ-Preservation)
A second order fusion function F∗ over a universe
U is θ-preservative if:

∀M ∈M
(
M(U)

)
: ∃S ∈M : θ (F∗(M)) = θ (S)

where θ is a mapping defined by θ : M (U) → X
and X is a feature space.

It can be seen that θ-preservation is a weaker vari-
ant of preservation. Indeed, if θ is the identity func-
tion, then θ-preservation is equivalent to preserva-
tion. This result shows that θ-preservation is a more
general notion than preservation. An interesting
observation regarding θ-preservation is that it pro-
vides a weakened notion of idempotence. Recall that

M = {S, ..., S} - S

idempotence

F∗

M = {S1, ..., Sn} - F∗(M)

θ-idempotence

F∗

? ?

θ(S1) = ... = θ(Sn) = C

θ θ

θ(F∗(M)) = C

Figure 3: Idempotence (upper panel) and weak
idempotence (lower panel)

idempotence of F∗ means that if all sources inM are
equal, then F∗(M) must be equal to this one source
(Figure 3). It can be easily verified that preservative
functions are always idempotent. In the case of θ-
preservation, idempotence is weakened in the sense
that, if sources in M are equivalent w.r.t. θ (i.e.,
they are not equal, but their image of θ is equal),
then the result of F∗ (M) must be equivalent with
the sources. This is illustrated schematically in Fig-
ure 3. The notion of weak-idempotence justifies to
a large extent why the concept of θ-preservation is a
useful generalization of preservation. Indeed, if all
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the sources are equivalent with respect to a certain
feature, it can be strongly advocated that the solu-
tion must also satisfy this feature. In the following,
three variants of θ-preservation will be studied: car-
dinality preservation, k-cut preservation and multi-
plicity preservation.

4.1. Cardinality Preservation

Perhaps the most obvious feature that qualifies
for θ-preservation is cardinality. This type of θ-
preservation is characterized by:

θ (.) 4= |.|

and implies that the solution of fusion should be a
multiset with cardinality equal to the cardinality of
one of the sources. The feature space is given by
X = N. Weak idempotence dictates in this case
that if all sources have the same cardinality, the
solution should be a multiset with this specific car-
dinality. Despite its intuitive acceptability, cardi-
nality preservation is not a trivial property. It can
for example be seen that F∗ (intersection) and F∗

(union) are not cardinality preservative.

Example 1
Let us consider U = {a, b, c, d} and let M =
{S(1), S(2), S(3)} with:

S(1) = {a, a, a}
S(2) = {a, a, b}
S(3) = {d, c}

then cardinality preservation of F∗ implies that
|F∗(M)| is either 2 or 3.

With respect to the possessed properties, it can be
seen that cardinality preservative fusion functions
are not bounded, not idempotent and not preserva-
tive. It immediately follows that cardinality preser-
vation is a very broad concept and is best paired
with additional requirements on the definition of
F∗. This principle will be elaborated further in Sec-
tion 5.

4.2. k-Cut Preservation

A second interesting feature to preserve is the k-cut
of one of the sources. In this case, θ-preservation is
characterized by:

θ (.) 4= .k

Weak idempotence dictates in this case that if all
sources have the same k-cut, then the solution
should be a multiset with the same k-cut. A par-
ticularity in this case is that θ-preservation in fact
adheres to a set of constraints on the solution (i.e.,
one constraint for each value of k). The size of this
set is equal to the number of cuts that must be pre-
served. At the extremes there are two interesting
cases:

• In one extreme, only one cut must be preserved.
For example, if it is required that a fusion func-
tion must be 1-cut preservative, then the so-
lution must contain the same elements as one
of the sources. This constraint is of particular
interest if the actual multiplicities of elements
have no relevance. In the remainder, the case
where only 1-cut preservation is required, will
be referred to as single-cut preservation.
• In the other extreme, all cuts must be pre-
served. This means that the fusion function
must be 1-cut preservative, 2-cut preserva-
tive,... In the remainder, the case where k-cut
preservation is required for all values of k, will
be referred to as full-cut preservation.

Note that if a fusion function must be k-cut
preservative for multiple values of k, the correspond-
ing rules are evaluated independently. To clarify
this, consider M = {S(1), S(2)} and assume that
F∗(M)1 =

(
S(1)

)
1 and F∗(M)2 =

(
S(2)

)
2, then F∗

is both 1-cut and 2-cut preservative, even though
the preserved cuts correspond to different sources.
This is of course only possible if

(
S(2)

)
2 ⊆

(
S(1)

)
1.

Example 2
Let us reconsider the sources from Example 1 and
consider the following two fusion functions:

F∗1(M) = {d, d, c}
F∗2(M) = {a, a, a, b}.

Both of these fusion functions are 1-cut preserva-
tive, because the 1-cut of F∗1(M) equals the 1-cut
of S(3), while the 1-cut of F∗2(M) the 1-cut of S(2).
While F∗2(M) is 2-cut preservative (see S(2)), F∗1(M)
is clearly not 2-cut preservative because there is no
source with 2-cut equal to {d}. Finally, both fusion
functions are 3-cut preservative. Fusion function F∗1
is an illustration of the fact that k-cut preservation
is not a monotone feature in terms of k.

It can be seen that the class of k-cut preservative
fusion functions is in general not idempotent, not
bounded and not preservative. However, the fol-
lowing result can be shown.

Theorem 1
Let F∗ be a full-cut preservative second order fusion
function over U , then F∗ is bounded.

Proof 1
A second order fusion function F∗ is bounded if
F∗(M) ⊆ F∗(M) ⊆ F∗(M).

(a) Proof of F∗(M) ⊆ F∗(M). Suppose that
u ∈ F∗(M)k, for some k ∈ N and for some M ∈
M(M(U)). Taking into account the definition of
multiset intersection (Section 3), it follows that all
sources inM must have u in their k-cut. This means
that:

∀S ∈M : u ∈ Sk.
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Now suppose that u /∈ F∗(M)k, then we have that:

∀S ∈M : Sk 6= F∗(M)k

which is in contradiction with the fact that F∗ is
full-cut preservative and thus also k-cut preserva-
tive. In other words, full-cut preservation of F∗ im-
plies that:

u ∈ F∗(M)k ⇒ u ∈ F∗(M)k

for any k. This means that:

∀k ∈ N : F∗(M)k ⊆ F∗(M)k

which concludes the proof of the first part.

(b) Proof of F∗(M) ⊆ F∗(M). Suppose that
F∗(M) would not be a subset of F∗(M), then there
exists an element u ∈ U such that:

F∗(M)(u) > F∗(M)(u) = max
S∈M

S(u).

Now let k = F∗(M)(u), then we have that:

u ∈ F∗(M)k

and
∀S ∈M : u /∈ Sk.

As a consequence, the k-cut of F∗(M) can not be
equal to the k-cut of any of the sources, which is in
contrast with the fact that F∗ is full-cut preserva-
tive. It thus follows that F∗(M) ⊆ F∗(M). �

Due to the fact that full-cut preservation implies
boundedness, it also implies idempotence. It can
be seen that F∗ and F∗ are not k-cut preservative.

4.3. Multiplicity Preservation

A third feature that is taken into account here is the
multiplicity distribution of a multiset. Informally,
given a multiset A, the multiplicity distribution is
a multiset of natural numbers that indicates how
many elements occur in A with a given multiplic-
ity. The multiplicity distribution of a multiset is
formalized as follows.

Definition 8 (Multiplicity Distribution)
Given a universe U , the multiplicity distribution of
multisets over U is defined by:

δ :M(U)→M(N0)

such that for any A ∈M(U):

∀n ∈ N : δ(A)(n) =
∣∣An 	An+1

∣∣
where 	 is the set difference operator.

Example 3
Let us consider source S(2) = {a, a, b} from Exam-
ple 1, then we have that:

δ
(
S(2)

)
(1) =

∣∣{a, b} 	 {a}∣∣ = 1
δ
(
S(2)

)
(2) =

∣∣{a} 	 ∅∣∣ = 1.

As such, the multiplicity distribution of multiset
S(2) is a multiset δ

(
S(2)

)
= {1, 2} which reflects

that S(2) has one element with multiplicity 1 (i.e.,
b) and one element with multiplicity 2 (i.e., a).

Multiplicity preservation can now be characterized
by:

θ (.) 4= δ (.)

where the feature space is given by X = M(N0).
Weak idempotence dictates here that if all sources
have an identical multiplicity distribution, then the
solution should be a multiset with this same mul-
tiplicity distribution. It can be seen that the func-
tions F∗ and F∗ are not multiplicity preservative.
With respect to the basic properties, the class of
multiplicity preservative functions is not bounded,
not idempotent and not preservative. Again, this
class of fusion functions is a very broad one that
typically needs to be narrowed down with additional
constraints on the definition of F∗ (Section 5).

5. Construction of θ-preservative F∗

In the previous section, the concept of θ-
preservation has been introduced and three instan-
tiations of θ have been discussed. It was pointed
out that the corresponding classes of θ-preservative
fusion functions are very broad and, in their gen-
erality, fail to possess some interesting properties
like boundedness and idempotence (see Table 1).
This however does not render the principle of θ-
preservation useless, as will be shown in this sec-
tion. It will be pointed out that the power of θ-
preservation lies in a smart choice of the source for
which θ is preserved, especially when combining sev-
eral types of θ-preservation. Next, a general frame-
work for the design of θ-preservative fusion func-
tions will be provided by modeling fusion as an op-
timization problem.

θ(.) Idempotent Bounded Preservative
|.| - - -
.k Full-cut Full-cut -
δ(.) - - -

Table 1: Summary of properties for θ-preservative
second order fusion functions

5.1. Source selection

When dealing with the case of classical preserva-
tion (Definition 6), an important question is how to
choose the source that is preserved. In the case of
first order fusion, there is usually an order relation
underlying the choice. Indeed, min and max are two
well-known preservative first order fusion functions
that are based on the idea of a total ordering over U
(e.g., recency, reliability...). However, in the case of
second order fusion, the presence of a relevant total
order relation over M(U) is far less trivial. This
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gives preservative second order fusion functions an
arbitrary nature, especially in the case when the
principle of majority voting can not be used (i.e.,
because each source is unique). At this point, (com-
binations of) θ-preservation rules can lead to a use-
ful and relevant solution by relying on a majority
rule in the feature space X . More specifically, in-
stead of requiring that F∗(M) preserves the feature
θ of an arbitrary source, it is possible to require that
this feature must be possessed by as many sources
as possible. This leads us to the principle of an
X -majority.

Definition 9 (X -majority)
Let F∗ be a second order fusion function over a uni-
verse U that is θ-preservative with θ :M(U)→ X ,
then F∗(M) has an X -majority if and only if:

θ (F∗ (M)) = arg max
x∈X

∣∣ {S|S ∈M ∧ θ(S) = x}
∣∣.

Informally, F∗(M) has an X -majority if and only
if a majority of the sources shares the feature θ(.)
with F∗(M).

Example 4
Let us consider U = {a, b, c} and let M =
{S(1), S(2), S(3), S(4)} with:

S(1) = {a, a, b}
S(2) = {c, c, b}
S(3) = {b, b, b, b}
S(4) = {c, c, a}.

Assume a fusion function F∗ that is required to be
cardinality preservative. This means that F∗(M)
must have cardinality 3 or 4. However, it can be
seen that a solution with cardinality 3 will have
an X -majority because there are three sources with
cardinality 3. Suppose that we now add multiplicity
preservation with an X -majority to the list of con-
straints, then we find that our solution must have a
multiplicity distribution {2, 1}, meaning that there
should be one element occurring once and one ele-
ment occurring twice.

S S1 S2
S(1) {a, b} {a}
S(2) {b, c} {c}
S(3) {b} {b}
S(4) {a, c} {c}

Table 2: 1-cuts and 2-cuts for Example 4

In order to specify the actual elements, let us also
require 1-cut and 2-cut preservation. Table 2 shows
the 1-cuts and 2-cuts of the considered sources.
With respect to 2-cut preservation, we see that an
X -majority is obtained when the 2-cut equals {c}.
With respect to the 1-cut, there is no X -majority,
but the choice of {c} as 2-cut limits us to 1-cut {b, c}

or {a, c}. At this point, only two solutions still sat-
isfy all the constraints that we have specified, that
is:

F∗(M) = {a, c, c} ∨ F∗(M) = {b, c, c}.

In this case, F∗ chooses one of the sources, mak-
ing it preservative. However, the choice made here
is certainly not arbitrary as our specifications have
excluded two sources.

Example 4 shows us that combining θ-preservation
rules under the demand of X -majority can lead us to
relevant solutions. An important question is how-
ever how the reasoning followed in Example 4 can
be used in the design of fusion functions.

5.2. θ-preservation and optimization

In this section, it is shown how θ-preservative fu-
sion functions can be designed. One way of doing
so, is modeling the problem of fusion as an optimiza-
tion problem. Let us therefore consider an objective
function O defined by:

O :M(U)×M(M(U))→ [0, 1]

such that O(A,M) evaluates the quality of A as
a solution for sources M . Hereby, O(A,M) = 1
means that A is a perfect solution and O(A,M) = 0
means that A is completely rejected as a solution.
We can then design a second order fusion function
as follows:

F∗(M) = arg max
A∈M(U)

O(A,M).

There are several ways in which the objective func-
tion can be chosen. A very simple objective function
is the mean Jaccard similarity:

O(A,M) = 1
|M |

∑
S∈M

J(A,S) (1)

where J is defined by:

J(A,S) = |A ∩ S|
|A ∪ S|

.

More advanced alternatives can be found in [17] and
[8]. Regardless of how the objective function is cho-
sen, the framework of optimal fusion functions al-
lows us to easily design θ-preservative fusion func-
tions by limiting the search space to θ-preservative
solutions as follows:

F∗(M) = arg max
A∈M(U)∧(∃S∈M :θ(A)=θ(S))

O(A,M). (2)

Equation (2) defines a function F∗ that maximizes
the objective function O under the constraint that
the solution must preserve the feature θ. Needless
to say, the principle of preserving the feature with
an X -majority can be easily added to specification
of F∗.
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Example 5
Let us reconsider the sources from Example 4. If
we apply F∗ by using the objective function given in
Equation (1), then we find that F∗1(M) = {b, c, c, a},
which is cardinality preserving, but not with an X -
majority. If we add the constraint of cardinality
preservation with X -majority to the definition of
F∗, we find that F∗2(M) = {b, c, c}. Moreover, if
we calculate the values of the objective function, we
find that:

O
(

F∗1(M),M
)

= 0.51
O
(

F∗2(M),M
)

= 0.47.

This is a rather small difference in average similar-
ity, compensated by the fact that F∗2 offers us a more
intuitive solution w.r.t. its cardinality.

6. Conclusion

In this paper, the concept of θ-preservation of sec-
ond order fusion functions (i.e., fusion functions
that operate on multi-valued sources) has been in-
troduced. Whereas traditional preservative func-
tions choose one of the sources (i.e., one of the
sources is preserved), θ-preservative fusion functions
preserve the feature θ of one of the sources. Three
such features have been proposed: the cardinality,
the k-cut(s) and the multiplicity distribution. It has
been shown how θ-preservation implies a weaker no-
tion of idempotence. More specifically, it has been
shown how θ-preservative fusion functions are idem-
potent in the feature space X . Next, it was pointed
out that θ-preservative fusion functions can be de-
signed by defining fusion as an optimization prob-
lem. In that setting, θ-preservation can be added
as a boundary constraint. Finally, the principle of
majority voting was introduced in the framework of
θ-preservation.
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