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Abstract

The aim of the work is to continue in improvement
of the image compression algorithm based on the
F-transform. The image is decomposed into blocks
and characterized by the F-transform components.
The latter constitutes a simple lossy compression.
For better quality of reconstructed images, we com-
press certain areas (neighborhoods of edges) non-
lossy. The proposed approach is based on estab-
lishing similarity between various blocks and mak-
ing compression of only one representative. Last
but not least, the proposed compression algorithm
is supplied with smart technique of joining adjacent
blocks.

Keywords: Image compression, F-transform, Im-
age similarity

1. Introduction

By image compression we mean a reduction in size
of the image with the purpose to save space and
by this, a transmission time of data. Digital images
are usually identified with their two-dimensional in-
tensity functions which, being measured in the in-
terval [0, 1], can be represented by fuzzy relations.
Therefore, in the literature on fuzzy sets and their
applications, a continuously growing interest to the
problems of image compression was expected. Be-
low, we will give a short overview of main ideas that
influenced a progress in image compression on the
basis of fuzzy sets.

A pioneering publication of Lotfi A. Zadeh dis-
cussed the issue of data summarization and in-
formation granularity. It has been noticed that
a max —min - composition with a fuzzy relation
works as a summarization/compression tool. Then
in a series of papers, the idea to associate image
compression with the theory of fuzzy relation equa-
tions was intensively investigated. The correspon-
dence between a quality of reconstruction and a t-
norm in a generalized max —t - composition with a
fuzzy relation was analyzed. A new idea which influ-
ences a further progress in fuzzy based image com-
pression came with the notion of F-transform [4].
In [8], [5], it has been shown that the F-transform
based image compression is better than the best
possible fuzzy relation based one. However, the for-
mer was still worse than the JPEG technique. A
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certain improvement of the F-transform based im-
age compression was announced in [6].

2. F-transform

The F-transform [4] method was published in 2001.
By the time, F-transform succeed in many various
field such as image compression, image resize, edge
detection, time series, signal filtering and many oth-
ers.

2.1. Used F-transform type

The direct and inverse F-transform of a function of
two (and more) variables is a direct generalization of
the case of one variable. We introduce the discrete
version only, because it is used in our applications
below. Let us refer to [4] for more details.

Suppose that the universe is a rectangle [a, b] x
[e,d] € R x R and that 1 < ... < z, are fixed
nodes of [a,b] and y; < ... < y,, are fixed nodes of
[e,d] such that 1 = a, z, = b, y1 = ¢, Ym = d and
n,m > 2. Assume that Aq,..., A, are basic func-
tions that form a generalized fuzzy partition of [a, b]
and By, ..., B, are basic functions that form a gen-
eralized fuzzy partition of [¢, d]. Then, the rectangle
[a,b] X [c,d] is partitioned into fuzzy sets Ay x B
with the membership functions (A; x Bj)(x,y) =
Ap(z)Bi(y), k=1,...,n,l=1,...,m.

In the discrete case, an original function f is
assumed to be known only at points (p;,q;) €
[a,b] x [e,d], where i =1,...,N and j =1,..., M.
In this case, the (discrete) F-transform of f can be
introduced in a manner analogous to the case of a
function of one variable. This case is important for
applications of the F-transform to image processing.

The discrete F-transform F[f] of f is given by the
following matrix of components:

Fiy Fim
Flfl=1 : : (1)
Fnl an
where forall k =1,...,n,l=1,...,m,

o Y S F(pi ;) Ak (pi) Bilg))
Kl = :

M N
Zj:l >iz1 Ak(pi)Bi(g;)
The inverse F-transform of a discrete function f of
two variables is defined as follows.

Y Sorei > FriAg(pi)Bi(g;)
f(pi, QJ) 2221 Z?il Ak(pi)Bl(Qj)

(2)



3. Image similarity measures

Let image be given by (identified with) an image
function f : Dy .y — {0,1,...,255} where Dy m
is a finite (rectangular) domain given formally by
Dyny={1,2,...,N} x{1,2,...,M}. We say that
N (resp. M) is the width (resp. height) of the
image. The set of images on Dy ps will be denoted
Zn,m, and the set of all images on finite rectangular
domains will be denoted by Z.

Image similarity is an important notion that is
used in the below proposed compression algorithm.
Informally speaking, an image similarity measures
how the image functions are close to each other.
In the image processing, the following measures are
often used for the estimation of closeness: MSE,
PEN, SSIM|[2]. Let us remark that the first two are
based on the Euclidean distance.

We assume that an image similarity can be char-
acterized with respect to the following unary oper-
ations over images f in Zy as:

e Rotation r of f over the origin by a.

e Resizing t of f by a ratio p: if p < 1 then ¢
is called reduction, and if 1 < p < oo then ¢ is
called enlargement (magnification) .

e Negation — of f where (Vx,y) : —f(z,y) =
255 — f(x,vy).

Let us formally introduce the image (*)-similarity
s : I xZI — [0,1] (where * is a t-norm) as a
mapping which characterizes closeness of two im-
ages (not necessarily on the same domain) in such
a way that the following properties are fulfilled for

all fi1, fo, f3 € 1:
S1. s fl,f1) =1,
S2. s(f1,f2) = s(f2, 1),

S3. s(f1, f2) * s(f2, f3) < s(f1, f3),
S4.

S5.

)
)

s(fi,7(f1)) #0.

The first three properties are standard. The prop-
erty S4 expresses that the similarity can be mea-
sured even if images fi and t(f;) have different
sizes. The following proposition [1] shows a rela-
tionship between an arbitrary pseudo-metrics and a
(*)-similarity in the case when the t-norm * has a
continuous additive generator.

Proposition 1 Let X be a universe of discourse
and * a continuous Archemedean t-norm with the
continuous additive generator t. Let moreover, d
be a pseudometric on X. Then the mapping Eq :
X x X — [0,1], given by Eq = t"Y od is a (*)-
similarity on X.

It is clear that if a pseudometric and similarity are
connected as described in Proposition 1, they can be
interchanged in estimation of closeness. Moreover,
it turned out that a black car is more similar to the
same car in white color than to a table.
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3.1. Proposed image similarity measure

We propose to measure similarity with the help of F-
transform components computed hierarchically on
various levels of discretization of an original im-
age. The lowest (first) level is comprised by the
F-transform components of an original image f and
corresponds to the discretization given by the re-
spective fuzzy partition of the domain. This first
level F(D[f] is given by the F-transform of f so
that

FO[f] = F[f] = (Fi1, e, Fum), (3)

where the vector of the F-transform components
(Fi1,..., Fu) is a linear representation of the ma-
trix (1). This first level of components serves as a
new image for the F-transform components of the
second level and so on. For a higher level ¢ we pro-
pose the following recursive formula:

FOLf) = PIFCD) = (P Y L)

P N(p—1)M(e—1)
(4)
The top (last) level F)[f] consists of only one final
component F7",
The F-transform based similarity S of two image
functions f, g € Z is proposed to be as follows:

S(f,g9) =
[FSim — GIn 4 300 [Fl — Gl
nm + 1

) ()

1 —exp(—

where F/™ G/ are the top F-transform compo-
nents of f and g, and Fy;,Gg, k= 1,...,n, [ =
1,...,m are the first level F-transform components
of f and g, respectively.

Let us justify that the measure S fulfills the above
given properties S1 - S5 where the property S3
is taken with respect to the product t-norm. We
remind that this t-norm has the function exp(—z)
as an additive generator.

At first, we will notice that the following part of
the expression in the right-hand side of (5)

(|[FF™ = GI™ 3 [P = Gial)/(nm + 1)
k=1

represents a distance between two (nm + 1)-
dimensional vectors F[f] = (F/™ Fiy,...,Fun)
and Glg] = (Gf™ Gi1,...,Gpm). At the same
time, it represents a pseudo-distance between re-
spective functions f and g. Therefore, by Proposi-
tion 1, the whole expression in the right-hand side
of (5) represents a (-)-similarity (- is the notation of
product) of functions f and g.

At second, the property S4 follows from the fact
that the measure S requires the same number of
basic functions in partitions of corresponding do-
mains of functions f and g. The domains itself may
be different.



4. Similarity based compression using
F-transform with dynamic area
decomposition

The proposed algorithm is based on the previous
work [6] improved by back-joining partition of im-
ages and by computing similarity of blocks. The
proposed algorithm will be called DSFTR.

Image compression means a reduction in size of
the image. Below, we will refer to f as to an in-
tensity function or to f as an image. By com-
pression we mean a certain transformation of f
which results in a new image function f’ defined
on [1,N'] x [1,M’] where N' < NM' < M. A
compression is characterized by its ratio C R which
is equal to N'M'/NM.

We will be focused on the following two problems:

e reduce size of compressed image,

e obtain decompressed image most similar to

original one.

We propose a compression algorithm which is
based on the discrete F-transform in combination
with memorizing essential details (e.g., edges) and
similarity relationships between blocks. This algo-
rithm consists of the following steps:

C1. Search for essential details and store them non-
lossy.

Evaluate range of intensity over an image block
and make a decision regarding further parti-
tion of this block.

Choose similarity and find similar blocks;
memorize a representative of every group of
similar blocks.

Combining similar and adjoining blocks into
one group.

Apply the F-transform to representatives of
groups of similar blocks and memorize com-
ponents.

Steps C1 - C4 are described detailed in sections
4.1 - 4.4, see them for explanation.

Let us make a short overview of some contempo-
rary technique that are used for compression. The
idea of partition of an image area into blocks accord-
ing to respective ranges of the intensity function is
taken from png graphics format. The decomposi-
tion techniques is called quad-tree [7] - an image
block is recursively divided into four smaller sub-
blocks.

There are methods based on lossy compression.
The lossy compression can be represented by some
type of transform, such as discrete cosine transform,
or Burrows-Wheeler.

In our approach, we combine both lossy and non-
lossy compression - essential areas are stored by
non-lossy format and representative blocks by lossy
F-transform. We propose decompression of an im-
age after compression. A decompression of a com-
pressed by the algorithm DSFTR image is pro-
posed to be performed by the respective inverse F-
transform.

C2.

C3.

C4.

C5.
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4.1. Essential areas for image compression

Inputs: N x M image f, threshold T delimiting
number of essentials pixels
Output: Set of essentials pixels to save nonlossy.

Let g be descriptor of pixel essential. The
g is a two dimensional function such that ¢
[1,N] x [1, M] — R where the essential character-
izes changes in values of intensity of neighborhood
pixels. The neighborhood is determined as a mask
of 3 x 3 pixels centered around a pixel of essential.
The intensity changes can be determined by existing
algorithms, such as Sobel, Prewitt etc. We propose
an algorithm which measures changes as

g(E) = max(w,yeE‘)f(zv y)fmin(w,yeE‘)f(xv y)a (6)

where E is a block (area) of an image. It is called
max-min operator.

The block with high values of g is not a subject
of compression. Due to this fact, a sharpness of a
reconstructed image is as good as in the original
one. The proposed approach is sensitive to noise,
more than if partial derivatives are computed by
e.g., Sobel operators. In order to reduce that kind of
sensitivity, we propose to use a dynamic threshold T’
for selecting high values of the function g. Due to a
space limitation, we will skip a detailed description
of choosing T

4.2. Image decomposition into blocks

Inputs: N x M image f, minimal size of block Z,
maximal intensity change inside blocks D

Output: Quad-tree structure consisting of ¢ level of
blocks

Image compression algorithm is usually applied
to smaller image blocks. The main problem is how
to determine a size of this block. For instance, if we
have a large block of one color, with a small detail
of different intensity, we have two options: we can
compress it as one block, but the detail will be lost.
Or we can divide the block into smaller sub-blocks
in order to keep information about that small detail.
In the second case, we have to store many small sub-
blocks of the same intensity. We propose to solve
this problem by using the F-transform with a non-
uniform partition.

Each block F is characterized by its:

reference to another block r(FE),
width of the block w(E),

height of the block h(FE),
x-position of top left corner z(FE),
y-position of top left corner y(F).

At the beginning of the algorithm we set w(E) =
N;h(E)= M.

One of the decomposition criteria is a range of
changes D. For measure intensity change we can use



max-min operator (6). If g(E) < D, D € [0, 255] we
choose the respective block E as an element of the
partition of the F-transform. Otherwise, we divide
block E into four symmetrical sub-blocks and con-
tinue recursively. Threshold D is determined by a
user and affect compressed image quality. For gen-
eral purpose, the result with the best ratio of quality
and compression ratio is obtained for D = 20.

Figure 1: Left: Example of an original image to
compress. Right: Image divided into quad-tree
structure. Blocks with cross represent decomposed
block.

The second decomposition criterion is choosing a
size of a minimal block size Z. The decomposition
terminates , if w(E) < ZV h(E) < Z. The two
values Z and D are defined by a user, and both
of them influence quality of the compressed image.
The dividing is provided as stacked quad-tree. Fi-
nally, the algorithm performs decomposition on the
actual level of quad-tree and after processing them
continues to decompose the next level (see Fig. 1).

The maximal number of blocks can be estimated

as sz;f .

4.3. Search for similar blocks

Inputs: Step C2 (section 4.2.), threshold delimit-
ing minimal difference between blocks B. Output:
Quad-tree structure with the minimal number of
non-leaf blocks

On every level of decomposition, the correspond-
ing quad-tree (section 4.2.) is available to get all
blocks FE,. For those block we can compute similar-
ity to each other by algoritmh proposed in section
3.1. If the block solve the similarity threshold B,
one of them need to remember reference to the sec-
ond. The second block is not decomposing. In one
moment, every block can hold maximally one refer-
ence to an other block. When is decomposed block
holding reference, blocks on the next level inherit
reference from them. Finally, when decomposition
pass for all blocks, the data are sorted and saved
only blocks without reference.

4.4. Image block composition

Inputs: Quad-tree structure from step C3 (section
4.3.)

Output: Quad-tree structure with the minimal num-
ber of non-leaf blocks
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Figure 2: Left: Quad-tree structure with marked
reference to similar block. Right: Updated quad-
tree without blocks redundant in similarity. The
block with star represent block with reference to
another one.

The block is decomposed, if satisfy conditions de-
scribed in section 4.2. It does not matter, if the
intensity difference points are in the left top cor-
ner, or in the center of the original block. From
these reason, in many cases the decomposition cre-
ate two, or three block with the same component
value and one with different for the next decomposi-
tion. We can boost compress ratio by joining blocks

e

Figure 3: Left: Quad-tree structure with marked
blocks to join. Right: updated Quad-tree structure.

two blocks Ey and FEs, if val(F;) = val(Es) and
R(E1) = R(E») and pass all of (I)-(III) or (IV)-
(VI) of following condition:

ly(E1) — y(E2)| < min(h(E1), h(Es2))
(IV) y(E1) = y(E2)
(V h(El) = h(E2)

When the condition (I)—(III) pass, the new block
En is created as: z(Ey) = z(E1); y(En) =
min(y(E1), y(E2)); w(En) = w(Ey); h(En) =
h(E71) + h(E2). In case of solving conditions (IV)—
(VI) the new block Ey is created as: z(Fyn) =
min(a(Er), 2(Es)); y(Ex) = y(E); w(BEy) —
w(E1) + w(E2); h(Exy) = h(E;). In both cases
value of F-transform component for the block is:
val(Eyx) = val(E4). The back composition is recur-
sively computed from the lowest to the top level of
quad-tree, until some blocks are joined.

5. Decompression

The decompression(reconstruction) is a transform
from M'N’ space back to M N space. We propose



Figure 4: Left: Final quad-tree structure. Right:
the quad-tree structure visualized as an image.

to make the decompression on the basis of the in-
verse F-transform. Because an application of the
direct and inverse F-transform leads to the lossy
decompression, our goal is to minimize data loss.
We propose to minimize the loss by decompression
of the stored essential pixels.

5.1. Decompression of essentials pixels

The block with high values of the function ¢ is
added to the image reconstructed by the inverse F-
transform. We have to put pixels from this block
into their own layer above the currently decom-
pressed layer. After that we can merge layers hi-
erarchically.

6. Benchmarks

The results are measured for gray-scale images with
resolution 512x512px. The resulting table contains
comparison with previous results in [5] and [6].

6.1. Estimation of a quality of
reconstruction

The following criterion is used for estimation of a
quality of a reconstructed image. PSNR (Peak Sig-
nal to Noise Ratio) measures a similarity between an
original image and its reconstruction after. Higher
value of PSN R means better quality of result.

PSNR = 20log (%) [dB]

(7)

M—-1N-1

Ml, N 2 2 () —alr.y)?

r=0 y=0

MSE =

By maz(f) we mean the maximum value of the in-
tensity of the original image f. By ¢ we mean the
intensity value of the decompressed image.

6.2. Resulting tables

For the demonstration of results we chose two well-
known images: Lena (Table 1) and Cameraman
(Table 2). Meanwhile the Lena image is photo-like
image with many details and textures, the Camera-
man image contain big area of sky which is almost
homogeneous. As results show, in both cases a sig-
nificantly improvement compare to the last version
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Figure 5: PSNR estimation of the reconstructed im-
ages compressed by the proposed algorithm. Top
left: original image. Top right: CR = 0.23, PSNR
= 41dB. Bottom left: CR = 0.14, PSNR = 34dB.
Bottom right: CR = 0.02 ,PSNR = 27dB.

CR JPEG FTR DFTR DSFTR
0.03 29 23 24 28
0.06 32 24 27 29
0.14 35 26 30 34
0.25 37 28 33 37
0.44 38 30 39 42

Table 1: PSNR of Lena image

of algorithm without similarity computation and
block rejoining [6]. In comparison with the JPEG
format compression, our algorithm provides better
results, and especially for the image Cameraman.
This shows that our compression is more suitable
to to cartoon-like images.

7. Conclusion

In this paper, we proposed a new image compres-
sion algorithm on the basis of the F-transform. The
main idea is taken from [6] - image is dynamically
partitioned with the quad-tree algorithm and com-
pressed by applying the F-transform. The addi-
tional improvement of previous F-transform-based
algorithms consists in establishing groups of similar

CR JPEG FTR DFTR DSFTR
0.03 25 20 25 27
0.06 28 21 28 30
0.14 33 23 30 34
0.25 38 25 37 41
0.44 45 27 43 48

Table 2: PSNR of cameraman image



blocks and applying compression to single represen-
tatives of groups. The effectiveness of the proposed
algorithm is additionally improved by optimization
of hierarchic topology, when similar parts are joined
and described by only one F-transform component.

Resulting tables contain PSNR estimations of the
reconstructed images Lena and Cameraman com-
pressed by the proposed algorithm. The results
show that the proposed algorithm is comparable
with one of most used algorithm for image com-
pression - JPEG.

The proposed algorithm can be applied for both
type of images (photo like and cartoon like), and it
is more effective for the images of the second type.

The future research will be focused on the reduc-
tion of computation complexity of the proposed al-
gorithm.
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