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Abstract

Fuzzy Linear Programming models are quite
frequent in practice. The dynamic nature of
the real problems often requires reoptimize from
the optimal solutions found, what may mean a
significant consumption of time and funds. In this
paper, in order to efficiently solve this problem,
first the optimality conditions and the duality
results for fully fuzzy linear programming problems
(all parameters and variables are symmetric trape-
zoidal fuzzy numbers) are generalized. Then, one
proposes a fuzzy dual simplex method for solving
these problems without the need of converting them
to conventional linear programming problems. The
resulting algorithm is flexible and easy of applying.
For the sake of illustration, finally, an easy example
is solved.

keywords: Fuzzy linear programming, Duality the-
ory, Dual simplex method, Trapezoidal fuzzy num-
bers.

1. Introduction

Since the addition of new constraints to a certain
problem of optimization may break the feasibility of
the optimal solution previously found, in the case of
linear programing problems the dual simplex algo-
rithm can be used for a rapid reoptimization with-
out the need of finding new primal basic feasible
solutions, that is, it is particularly useful for re-
optimizing the solution of a certain problem after
a constraint has been added or some parameters
have been changed, so that the previously optimal
solution may be no longer feasible. Besides this,
since Linear Programming problems are almost om-
nipresent in all of the engineering fields, it is patent
that the dual simplex algorithm is of upmost im-
portance in a wide variety of applications and real
practical problems where data, constraints or, gen-
erally speaking, parameters defining the problems
may have a dynamic nature, as the algorithm fa-
cilitate to reoptimize without the need of iterating
from the beginning with the consequent saving of
time computation. When the data involved in the
problem at hand are imprecise ones, what is quite
usual in practical application, fuzzy sets are usually
considered for modelling them. But in these cases,

if needed, it is not possible to directly apply the
dual simplex algorithm as it is not so easy like in
the conventional case it is, when conventional Lin-
ear Programming problems are being considered.

As it is evident, in these circumstances there is
a gap, and the main goal of this paper is to bridge
this gap by presenting a dual simplex algorithm use-
ful for the case where (trapezoidal) fuzzy numbers
are involved in the problem. As it is well known,
from a historical point of view, Bellman and Zadeh
[2] first proposed the basic concepts of fuzzy de-
cision making. Based on these concepts, Zimmer-
mann [12], Tanaka and Asai [10] and Verdegay [11]
formulated Fuzzy Linear Programming (FLP) prob-
lems in a fuzzy environment. Mahdavi and Nasseri
[8] proposed a dual simplex algorithm directly us-
ing the primal simplex tableau for solving linear
programming problems with trapezoidal fuzzy vari-
ables. Allahviranloo et al. [1] solved linear pro-
gramming problems with inequality constraints in
a fully fuzzy environment by converting the prob-
lems to their crisp equivalent. Lotfi et al. [5] dis-
cussed the fully fuzzy linear programming problems
such that all parameters and variables are triangu-
lar fuzzy numbers. Kumar et al. [7] proposed a new
algorithm to find the fuzzy optimal solution of same
type of fuzzy linear programming problems. Gane-
san and Veeramani [4] introduced a type of fuzzy
arithmetic for symmetric trapezoidal fuzzy num-
bers and then proposed a primal simplex method for
solving fuzzy linear programming problems without
converting them to crisp linear programming prob-
lems. Nasseri and et al. [9] discussed a concept of
duality for fuzzy linear programming problems in-
troduced by Ganesan and Veeramani, and derived
the weak and strong duality theorems. Recently
Kheirfam and Verdegay [6] have proposed a dual
simplex method for fuzzy linear programming prob-
lems as introduced by Ganesan and Veeramani, and
then the sensitivity analysis for these problems was
discussed.

As said above, our main aim here is the estab-
lishment of duality and complementary slackness
for fully fuzzy linear programming (FFLP) prob-
lems, that is, when all the parameters are symmet-
ric trapezoidal fuzzy numbers. From the results ob-
tained, we develop and present for first time an orig-
inal dual simplex algorithm for solving these prob-1
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lems without to have to transform them to crisp
linear programming problems, that is, not using
any auxiliary intermediate model, and consequently
saving computation time and providing in short a
friendship and straightforward algorithm.

2. Previous results

In this section we present some notations, notions
and results [4] that will be useful in dealing with
the issues addressed in this paper.

Definition 1. A fuzzy number on R(real line) is
said to be a symmetric trapezoidal fuzzy number
if there exist real numbers a1 and a2, a1 ≤ a2 and
α > 0, such that

µã(x) =


x

α
+ α− a1

α
, x ∈ [a1 − α, a1];

1, x ∈ [a1, a2];
−x
α

+ a2 + α

α
, x ∈ [a2, a2 + α];

0, otherwise.

We denote a symmetric trapezoidal fuzzy number
ã by ã = (a1, a2, α, α), where (a1 − α, a2 + α) is
the support of ã and [a1, a2] its core, and the set of
all symmetric trapezoidal fuzzy numbers by F(R).
µã(x) is called a membership function of ã. The
fuzzy number with the above membership function
is shown in Fig. 1.

 
1 

௔෤ߤ  

a1 – α  a1 a2 a2 + α 

Figure 1: A symmetric trapezoidal fuzzy number.

Let ã = (a1, a2, α, α) and b̃ = (b1, b2, β, β) be two
symmetric trapezoidal fuzzy numbers. The arith-
metical operations on ã and b̃ are as follows:

1. x > 0, x ∈ R; xã = (xa1, xa2, xα, xα),
2. x < 0, x ∈ R; xã = (xa2, xa1,−xα,−xα),
3. ã+ b̃ = (a1 + b1, a2 + b2, α+ β, α+ β).
4. ãb̃ = ((a1+a2

2 )( b1+b2
2 ) − w, (a1+a2

2 )( b1+b2
2 ) +

w, |a2β + b2α|, |a2β + b2α|), where
w = h− k

2 , k = min(a1b1, a1b2, a2b1, a2b2),
h = max(a1b1, a1b2, a2b1, a2b2).

Definition 2. Let ã = (a1, a2, α, α) and
b̃ = (b1, b2, β, β) be two symmetric trapezoidal
fuzzy numbers. Define the relation as ã � b̃ if and
only if either
(a1 − α) + (a2 + α)

2 <
(b1 − β) + (b2 + β)

2
that is

a1 + a2

2 <
b1 + b2

2 (in this case, we can also
write ã ≺ b̃)
or

a1 + a2

2 = b1 + b2
2 , b1 < a1 and a2 < b2

or

a1 + a2

2 = b1 + b2
2 , b1 = a1, a2 = b2 and α ≤ β,

(in the last two cases, we can also write ã ≈ b̃ and
say that ã and b̃ are equivalent).

Remark 3. Two symmetric trapezoidal fuzzy num-
bers (a1, a2, α, α), (b1, b2, β, β) are equivalent if and
only if

a1 + a2

2 = b1 + b2
2 .

In this case, we simply write (a1, a2, α, α) ≈
(b1, b2, β, β) and it is to be noted that a1 need not
be equal to b1 or a2 need not be equal to b2, but
(a1, a2, α, α)− (b1, b2, β, β) ≈ (−h, h, α+ β, α+ β),
where h = (b2 − a1) ≥ 0.
Remark 4. For any symmetric trapezoidal fuzzy
number ã, we define ã � 0̃ if there exist c ≥ 0 and
δ ≥ 0 such that ã � (−c, c, δ, δ). We also denote
(−c, c, δ, δ) by 0̃.
In the sequel, we propose a symmetric trapezoidal
fuzzy number and two new types of fuzzy arithmetic
operations.

Definition 5. For any symmetric trapezoidal fuzzy
number ã, we define ã � 1̃ if there exist c ≥ 0
and δ ≥ 0 such that ã � (−c + 1, c + 1, δ, δ). We
also denote (−c+ 1, c+ 1, δ, δ) by 1̃. Note that 1̃ is
equivalent to (1, 1, 0, 0).

Definition 6. Let ã = (a1, a2, α, α) and b̃ =
(b1, b2, β, β) be symmetric trapezoidal fuzzy number
and non-zero symmetric trapezoidal fuzzy number,
respectively. Now, we define two types of arithmeti-
cal operations as follows:

1. Inverse: 1
b̃

= b̃−1 ≈
( 2
b1+b2

−w, 2
b1+b2

+w, β, β
)

where w = h−k
2 , h = max

j=1,2
{ 1
b̄j
}, k = min

j=1,2
{ 1
b̄j
}

and 1
b̄j

=


1
bj
, bj 6= 0

0, bj = 0.

2. Division: ã

b̃
≈

(a1 + a2

b1 + b2
− w,

a1 + a2

b1 + b2
+

w, |a2β + α

b̄2
|, |a2β + α

b̄2
|
)
where w = h−k

2 , h =

max
i,j=1,2

{ai
b̄j
}, k = min

i,j=1,2
{ai
b̄j
}

Lemma 7. [3] Suppose ã, b̃, c̃ ∈ F(R) such that
ã � b̃. We have

1. If c̃ � 0̃, then c̃ã � c̃b̃
2. If c̃ � 0̃, then c̃ã � c̃b̃
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Lemma 8. [4] For any symmetric trapezoidal fuzzy
number ã, b̃ and c̃, we have

c̃(ã+ b̃) ≈ c̃ã+ c̃b̃, c̃(ã− b̃) ≈ c̃ã− c̃b̃

Lemma 9. [3] Suppose ã, b̃, c̃ ∈ F(R). We have

1. ãb̃ � 0̃, if and only if ã � 0̃ and b̃ � 0̃, or
ã � 0̃ and b̃ � 0̃.

2. ãb̃ � 0̃, if and only if ã � 0̃ and b̃ � 0̃, or
ã � 0̃ and b̃ � 0̃.

Lemma 10. Let ã ∈ F(R) and ã � 0̃. Then ã

ã
≈ 1̃

Proof. Let ã ≈ (a1, a2, α, α). We have

ã

ã
≈
(
a1+a2
a1+a2

− w, a1+a2
a1+a2

+ w, |a2β + α
ā2
|, |a2β + α

ā2
|
)

≈
(
1− w, 1 + w, |a2β + α

ā2
|, |a2β + α

ā2
|
)
≈ 1̃.

Definition 11. An n-tuple ã = (ã1, ã2, . . . , ãn),
which ãi is a symmetric trapezoidal fuzzy number
for every i = 1, 2, . . . , n, is called a symmetric trape-
zoidal fuzzy vector. The set of all symmetric trape-
zoidal fuzzy vectors is denoted by F(R)n.

Definition 12. Fuzzy vectors ã(1), ã(2), . . . , ã(n) are
called fuzzy linearly dependent if there is at least
one a fuzzy number λ̃i � 0̃, i = 1, 2, . . . , n such that∑n
i=1 λ̃iã

(i) ≈ 0̃. In other case, we say that these
vectors are fuzzy linearly independent.

Definition 13. A symmetric trapezoidal fuzzy ma-
trix is any rectangular array of symmetric trape-
zoidal fuzzy numbers. We denote by Ã = [ãij ]m×n,
where ãij ∈ F(R), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
The set of all symmetric trapezoidal fuzzy matrices
is denoted by F(R)m×n.

Definition 14. Let Ã ∈ F(R)m×n, and ãj ∈
F(R)n denotes its jth column, for j = 1, 2, . . . , n.
The rank of matrix Ã is the largest number of fuzzy
linearly independent vectors ãj .

Corresponding to any square matrix Ã ∈
F(R)n×n, there is a symmetric trapezoidal fuzzy
number which is called the determinant of Ã and is
denoted by |Ã|. For any values of indices i and
j, the ijth minor of Ã, denoted by Ãij , is the
(n−1)×(n−1) sub-matrix of Ã obtained by deleting
the ith row and the jth column of Ã. We compute
|Ã| as follows:

1. For n = 1, |Ã| = ã11.
2. For n = 2, |Ã| = ã11ã22 − ã21ã12.
3. For n > 2, |Ã| =

∑n
j=1(−1)i+j ãij |Ãij |,

for any value of index i = 1, 2, . . . , n.

For a given square matrix Ã ∈ F(R)n×n, we say
that matrix B̃ ∈ F(R)n×n is inverse of Ã, denoted
by B̃ ≈ Ã−1, if ÃB̃ ≈ B̃Ã ≈ Ĩn, where Ĩn is an
identity matrix. A matrix Ã ∈ F(R)n×n is said to

be singular fuzzy matrix if |Ã| ≈ 0̃. In the other
case, matrix Ã is called non-singular fuzzy matrix.
For a non-singular fuzzy matrix Ã, the inverse fuzzy
matrix Ã−1 is calculated by

Ã−1 ≈ (1, 1, 0, 0)
|Ã|

[
(−1)i+j |Ãij |

]
n×n,

where Ãij is the ijth minor of the matrix Ã.

3. Fully fuzzy linear programming

A fully fuzzy linear programming (FFLP) problem
with symmetric trapezoidal fuzzy numbers is de-
fined as:

max z̃ ≈ c̃x̃
s.t. Ãx̃ � b̃ (FFLP )

x̃ � 0̃,

where b̃ ∈ F(R)m, Ã ∈ F(R)m×n, c̃T ∈ F(R)n are
given and x̃ ∈ F(R)n is to be determined.

Definition 15. A fuzzy vector x̃ = (x̃1, . . . , x̃n)T ∈
(F(R))n, where each x̃i ∈ F(R), is called a fuzzy
feasible solution to (FFLP) if x̃ � 0̃ satisfies the
constraints Ãx̃ � b̃.

Definition 16. Let S be the set of all fuzzy feasible
solutions of (FFLP). A fuzzy feasible solution x̃∗ ∈
S is said to be a fuzzy optimal solution to (FFLP)
if c̃x̃ � c̃x̃∗ for all x̃ ∈ S.

3.1. Fuzzy basic feasible solution

We consider the following standard FFLP problem:

max z̃ ≈ c̃x̃
s.t. Ãx̃ ≈ b̃

x̃ � 0̃,
(1)

where the parameters of the problem are as defined
in (FFLP). Let Ã = [ãij ]m×n and rank(Ã) = m.
Partition Ã as [B̃ Ñ ] where B̃,m × m, is non-
singular fuzzy matrix (it means that |B̃| � 0̃). Let
ỹj be the fuzzy solution to B̃ỹj ≈ ãj , where ãj is
the jth column of the coefficients matrix Ã. It is
apparent that the fuzzy basic solution

x̃B ≈ (x̃B1 , . . . , x̃Bm
) ≈ B̃−1b̃, x̃N ≈ 0̃, (2)

is a fuzzy solution of Ãx̃ ≈ b̃. We call x̃ ≈
(x̃TB , x̃TN )T , a fuzzy basic solution corresponding to
basis B̃. If x̃B � 0̃, then the fuzzy basic solution is
feasible and the corresponding fuzzy objective value
is z̃ ≈ c̃Bx̃B , where c̃B ≈ (c̃B1 , . . . , c̃Bm

). Now, cor-
responding to every j, 1 ≤ j ≤ n, define

z̃j ≈ c̃B ỹj ≈ c̃BB̃−1ãj . (3)

Theorem 17. (Optimality conditions) Assume the
FFLP problem is non-degenerate and B̃ is a fuzzy
feasible basis. A fuzzy basic feasible solution x̃B ≈
B̃−1b̃ � 0̃, x̃N ≈ 0̃ is optimal to (1) if and only if
z̃j ≈ c̃BB̃−1ãj � c̃j for all j, 1 ≤ j ≤ n.
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Proof. Suppose x̃∗ ≈ (x̃TB , x̃TN )T is a fuzzy basic fea-
sible solution to (1) where x̃B ≈ B̃−1b̃, x̃N ≈ 0̃.
Then the corresponding fuzzy objective value is:

z̃∗ ≈ c̃x̃∗ ≈ c̃Bx̃B ≈ c̃BB̃−1b̃. (4)

On the other hand, for any fuzzy basic feasible so-
lution x̃ to (1), we have

x̃B ≈ B̃−1b̃− B̃−1Ñ x̃N .

Then

z̃ ≈ c̃x̃ ≈ c̃Bx̃B + c̃N x̃N

≈ c̃BB̃
−1b̃+

(
c̃N − c̃BB̃−1Ñ

)
x̃
N

≈ c̃BB̃
−1b̃+

∑
j∈N

(
c̃j − c̃BB̃−1ãj

)
x̃j

≈ c̃BB̃
−1b̃+

∑
j∈N

(
c̃j − z̃j

)
x̃j . (5)

Hence, using (4) and (5), we have

z̃ ≈ z̃∗ +
∑
j∈N

(
c̃j − z̃j

)
x̃j .

Now, if for j ∈ N we have c̃j − z̃j � 0̃, then from
feasibility of x̃ we have (c̃j − z̃j)x̃ � 0̃, and then we
obtain

∑
j∈N

(
c̃j − z̃j

)
x̃j � 0̃. Therefore, it follows

that z̃ � z̃∗, and so x̃∗ is optimal.

Remark 18. If Ã and c̃ are crisp numbers, then the
above optimality condition matches the optimality
condition in [8]. Moreover, if the data and variables
are crisp numbers, then the above theorem is con-
sistent with the optimality condition for crisp linear
programming.
In the next section, we develop the duality results

4. Duality

We consider the (FFLP) problem. We define the
dual problem of (FFLP) as follows:

min ũ ≈ w̃b̃
s.t. w̃Ã � c̃ (DFFLP )

w̃ � 0̃,

where w̃T ∈ F(R)m.

Theorem 19. (The weak duality properties) If x̃
and w̃ are fuzzy feasible solutions to (FFLP) and
(DFFLP) problems, respectively, then w̃b̃ � c̃x̃.

Proof. Multiplying Ãx̃ � b̃ on the left by w̃ � 0̃ and
w̃Ã � c̃ on the right by x̃ � 0̃ and using Lemma 7,
we get c̃x̃ � w̃Ãx̃ � w̃b̃.

Corollary 20. If x̃ and w̃ are fuzzy feasible so-
lutions to (FFLP) and (DFFLP) problems, respec-
tively, and w̃b̃ ≈ c̃x̃, then x̃ and w̃ are fuzzy optimal
solutions to their respective problems.

Proof. It is straightforward, using Theorem 19.

Definition 21. We say the (FFLP) problem (or
the (DFFLP) problem) is unbounded if fuzzy feasi-
ble solutions exist that the fuzzy objective value is
increased (or decreased) indefinitely.

The following result relates unboundedness of one
problem to infeasibility of the other.

Corollary 22. If any one of the (FFLP) or (DF-
FLP) problem is unbounded, then the other problem
has no fuzzy feasible solution.

Proof. Suppose that the (FFLP) is unbounded and
that the (DFFLP) problem has a fuzzy feasible so-
lution w̃. By Theorem 19, we have c̃x̃ � w̃b̃ for
every fuzzy feasible solution x̃. This shows that w̃b̃
is an upper bound of c̃x̃. This is impossible and the
dual can not have a fuzzy feasible solution. Thus,
the proof is complete.

Theorem 23. (Strong duality) If any one of the
(FFLP) or (DFFLP) problem has a fuzzy optimal
solution, then both problems have fuzzy optimal so-
lutions and the fuzzy optimal objective values are
equal.

Proof. Assume that the (FFLP) problem has a
fuzzy optimal solution. Let ṽ � 0̃ be the fuzzy slack
variables for the constraints Ãx̃ � b̃. Then, we have

max z̃ ≈ c̃x̃+ 0̃ṽ
s.t. Ãx̃+ ṽ ≈ b̃

x̃, ṽ � 0̃.
(6)

Assume B̃ is the optimal basis matrix and x̃∗ ≈
(x̃TB , 0̃)T ≈

(
(B̃−1b̃)T , 0̃

)T is the fuzzy basic opti-
mal solution corresponding to the (FFLP) problem.
From Theorem 17 we have, the corresponding to
x̃j , j = 1, 2, . . . , n,

z̃j − c̃j ≈ c̃BB̃−1ãj − c̃j � 0̃,

and the corresponding to ṽi, i = 1, 2, . . . ,m,

c̃BB̃
−1ẽi � 0̃,

where ẽi ≈ (0̃, . . . , 1̃, . . . , 0̃)T . Now, let w̃∗ ≈
c̃BB̃

−1. Using the above inequalities, we can write,

w̃∗Ã � c̃,
w̃∗ � 0̃.

Thus, w̃∗ is a fuzzy feasible solution to the (DFFLP)
problem and

w̃∗b̃ ≈ c̃BB̃−1b̃ ≈ c̃Bx̃B ≈ c̃x̃∗.

Therefore, the result follows immediately from
Corollary 20.

Theorem 24. (Complementary slackness) Let x̃∗
and w̃∗ be any fuzzy feasible solutions to (FFLP)
and (DFFLP) problems, respectively. Then x̃∗ and
w̃∗ are fuzzy optimal solutions if and only if

(w̃∗Ã− c̃)x̃∗ ≈ 0̃, w̃∗(b̃− Ãx̃∗) ≈ 0̃.
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Proof. Suppose that x̃∗ and w̃∗ are fuzzy feasible so-
lutions to (FFLP) and (DFFLP) problems, respec-
tively. By Theorem 23, we have

0̃ ≈ c̃x̃∗ − w̃∗b̃ ≈ (c̃x̃∗ − w̃∗Ãx̃∗) + (w̃∗Ãx̃∗ − w̃∗b̃)
≈ (c̃− w̃∗Ã)x̃∗ + w̃∗(Ãx̃∗ − b̃).

On the other hand, we have (c̃ − w̃∗Ã)x̃∗ � 0̃ and
w̃∗(Ãx̃∗ − b̃) � 0̃. Therefore, we obtain

(c̃− w̃∗Ã)x̃∗ ≈ 0̃, and w̃∗(Ãx̃∗ − b̃) ≈ 0̃.

The converse of the theorem follows from the fact
that (c̃− w̃∗Ã)x̃∗ ≈ 0̃, and w̃∗(Ãx̃∗− b̃) ≈ 0̃ imply
that c̃x̃∗ ≈ w̃∗b̃. Therefore, optimality of x̃∗ and w̃∗
follows from Corollary 20.

Remark 25. If Ã and c̃ are crisp numbers, then the
above results reduce to the duality theorems in [8].
Moreover, if the all data and variables are crisp
numbers, then these results are consistent with the
results of linear programming.

5. Dual simplex method

Consider the (FFLP) problem. We may rewrite
(FFLP) as follows:

max z̃ ≈ c̃x̃+ 0̃ṽ
s.t. Ãx̃+ ṽ ≈ b̃

x̃, ṽ � 0̃,
(7)

where ṽ ≈ (ṽ1, . . . , ṽm)T .
Define x̃ ∈ F(R)n+m and c̃ ∈ F(R)n+m as

x̃j =
{
x̃j , j = 1, 2, . . . , n,
ṽj−n, j = n+ 1, . . . , n+m,

c̃j =
{
c̃j , j = 1, 2, . . . , n,
0̃, j = n+ 1, . . . , n+m.

Suppose that a fuzzy basic solution for (FFLP) is
given by x̃B ≈ B̃−1b̃ and x̃N ≈ 0̃, with the basis ma-
trix B̃. Now let z̃j ≈ c̃BB̃

−1ãj , ỹ0 ≈ B̃−1b̃, where
c̃B ≈ (c̃B1 , . . . , c̃Bm) and ãj is the jth column of the
coefficient matrix Ã. Consider Table 1, where x̃Br

is the rth fuzzy basic variable and ỹj ≈ B̃−1ãj .
Suppose that for j = 1, . . . , n+m, we have

z̃j − c̃j ≈ c̃BB̃−1ãj − c̃j � 0̃, (8)

that is, the optimality condition of the (FFLP) at
x̃ holds true. we define w̃ ≈ c̃BB̃

−1, where w̃ ≈
(w̃1, . . . , w̃m). In this way, from (8), we have

w̃Ã � c̃, w̃ � 0̃

that is, w̃ is a dual fuzzy feasible solution. If ỹ0r � 0̃,
for all r = 1, . . . ,m, then we can obtain a fuzzy
feasible solution for the (FFLP) problem. Moreover,
we will have

c̃x̃ ≈ c̃Bx̃B ≈ c̃BB̃−1b̃ ≈ w̃b̃, (9)

and thus, by Corollary 20, establish the optimality
of x̃ and w̃ for the (FFLP) and (DFFLP), respec-
tively. Therefore, we have the following result.

Corollary 26. The optimality criteria z̃j − c̃j � 0̃
for all j, for the (FFLP) problem is equivalent to
the feasibility condition for the (DFFLP) problem.
If, in addition, x̃ corresponding to a basis B̃ is pri-
mal fuzzy feasible then x̃ is optimal for the (FFLP)
problem and w̃ ≈ c̃BB̃−1 is optimal to the (DFFLP)
problem.

Now, assume that the (DFFLP) problem is feasi-
ble and x̃, corresponding to a basis B̃, is dual feasi-
ble but primal infeasible. That is, we have

z̃j − c̃j � 0̃, ∀j,

and there exists at least one r such that ỹ0r ≺ 0̃.
Thus, according to duality theory, the (FFLP) prob-
lem can be either infeasible (in which case, the
(FLD) problem is unbounded), or it has an optimal
solution. Next we will show how to work on row r
of the above tableau corresponding to basis B̃, as
the pivoting row, and either (1) detect the infeasi-
bility of the (FFLP) problem (or unboundedness of
the (DFFLP) problem), or (2) find a column `, as a
pivoting column, to pivot on ỹr` and obtain a new
dual feasible tableau with a non-increasing primal
objective value. We explain these cases below.

Theorem 27. If in a dual feasible simplex tableau
an r exists such that ỹ0r ≺ 0̃ and ỹrj � 0̃, for all j,
then the (FFLP) problem is infeasible.

Proof. Suppose that Tableau 1 is a dual feasible
tableau, and an r exists such that ỹ0r ≺ 0̃ and
ỹrj � 0̃ for all j. Corresponding to the rth row
of the tableau, we have

x̃Br
+
∑
j∈N

ỹrj x̃j ≈ ỹ0r.

Since, by assumption, ỹrj � 0̃, j ∈ N and x̃j � 0̃,
then x̃Br +

∑
j∈N

ỹrj x̃j � 0̃ for any fuzzy basic feasible

solution. However, ỹ0r ≺ 0̃ and this shows that the
(FFLP) problem is infeasible.

Theorem 28. If in a dual feasible simplex tableau,
an r exists such that ỹ0r ≺ 0̃ and there exists a non-
basic index k ∈ N such that ỹrk ≺ 0̃, then pivoting
on ỹrk will yield a dual feasible tableau with a cor-
responding non-increasing objective value.

Proof. Pivoting on the pivot ỹrk will result in the
new objective row as follows:

z̃j − c̃j −
ỹrj
ỹrk

(z̃k − c̃k), j ∈ N. (10)

For the new tableau to be dual feasible we need to
have

z̃j − c̃j −
ỹrj
ỹrk

(z̃k − c̃k) � 0̃, j ∈ N, (11)

which results in
z̃j − c̃j
ỹrj

� z̃k − c̃k
ỹrk

, ỹrj ≺ 0̃. (12)
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Basis . . . x̃k . . . x̃j . . . x̃B1 . . . x̃Br
. . . x̃Bm

R.H.S
z̃ . . . z̃k − c̃k . . . z̃j − c̃j . . . 0̃ . . . 0̃ . . . 0̃ c̃BB̃

−1b̃
x̃B1 . . . ỹ1k . . . ỹ1j . . . 1̃ . . . 0̃ . . . 0̃ ỹ01
...

...
...

...
...

...
...

...
...

...
...

...
x̃Br

. . . ỹrk . . . ỹrj . . . 0̃ . . . 1̃ . . . 0̃ ỹ0r
...

...
...

...
...

...
...

...
...

...
...

...
x̃Bm

. . . ỹmk . . . ỹmj . . . 0̃ . . . 0̃ . . . 1̃ ỹ0m

Table 1: Tableau of the FFLP problem.

Basis x̃1 x̃2 x̃3 x̃4 R.H.S
z̃ (−2, 2, 2, 2) (0, 2, 1, 1) 0̃ 0̃ 0̃
x̃3 (2, 4, 1, 1) (−3,−1, 2, 2) (1, 1, 0, 0) 0̃ (−4,−4, 2, 2)
x̃4 (−2, 0, 1, 1) (−2, 4, 2, 2) 0̃ (1, 1, 0, 0) (−1, 5, 3, 3)

Table 2: First dual feasible simplex tableau.

To satisfy (12), it is sufficient to let

z̃k − c̃k
ỹrk

≈ max
{ z̃j − c̃j

ỹrj
| ỹrj ≺ 0̃

}
. (13)

We note that the new objective value is non-
increasing, since

c̃BB̃
−1b̃− ỹ0r

ỹrk
(z̃k − c̃k) � c̃BB̃−1b̃,

based on the fact that

ỹ0r ≺ 0̃, ỹrk ≺ 0̃ and z̃k − c̃k � 0̃.

Now, using the above results, we introduce a
new dual algorithm to solve the (FFLP) problem
directly, making use of the dual feasible simplex
tableau. Thus, we refer to the new algorithm as a
dual simplex method.

Algorithm: a dual simplex method
(Dual feasibility) Let B̃ be a basis for the (FFLP)
problem such that z̃j − c̃j � 0̃ for all j.
Compute the simplex tableau.
If ỹ0 � 0̃ then Stop (the current solution is opti-
mal)
else select the pivot row r with ỹ0r ≺ 0̃.
If ỹrj � 0̃ for all j then Stop (the primal (FFLP)
is infeasible)
else select the pivot column k by means of the fol-
lowing maximum ratio test:

z̃k − c̃k
ỹrk

≈ max
{ z̃j − c̃j

ỹrj
| ỹrj ≺ 0̃

}
.

Pivot on ỹrk.

Remark 29. If Ã and c̃ are crisp numbers, then our
method reduce to dual simplex method in [8]. If

Ã is a crisp matrix, then the method matches the
proposed method in [6]. Moreover, if the all data
and variables are crisp numbers, then the method
is consistent with the dual simplex method for crisp
linear programming.

For an illustration of the dual simplex method we
consider the following example.

Example 1.

max z̃ ≈ (−2, 2, 2, 2)x̃1 + (−2, 0, 1, 1)x̃2

s.t.

(2, 4, 1, 1)x̃1 − (1, 3, 2, 2)x̃2 + (1, 1, 0, 0)x̃3

≈ (−4,−4, 2, 2),
(−2, 0, 1, 1)x̃1 + (−2, 4, 2, 2)x̃2 + (1, 1, 0, 0)x̃4

≈ (−1, 5, 3, 3),
x̃1, x̃2, x̃3, x̃4 � 0̃.

We may write the first dual feasible simplex
tableau as showed in Table 2.

Since ỹ01 ≺ 0̃, thus x̃3 is a leaving variable and

max
{ z̃j − c̃j

ỹ1j
: ỹ1j ≺ 0̃

}
≈ max

{
(0,2,1,1)

(−3,−1,2,2)

}
,

thus x̃2 is an entering variable. The new tableau is
shown in Table 3.

Therefore, the optimal solution of the (FFLP)
problem obtained by the dual method is x̃1 ≈
0̃, x̃2 ≈ ( 2

3 ,
10
3 , 10, 10), x̃3 ≈ 0̃ and x̃4 ≈

(−13, 13, 269
3 , 269

3 ) with the optimal value

z̃ ≈ (−16
3 ,

4
3 ,

70
3 ,

70
3 ).
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Basis x̃1 x̃2 x̃3 x̃4 R.H.S
z̃ (− 23

6 ,
41
6 ,

97
6 ,

97
6 ) (−2, 2, 10, 10) (− 1

3 ,
4
3 ,

23
6 ,

23
6 ) 0̃ (− 16

3 ,
4
3 ,

70
3 ,

70
3 )

x̃2 (− 19
6 ,

1
6 , 7, 7) (1, 1, 4, 4) (− 5

6 ,−
1
6 , 2, 2) 0̃ ( 2

3 ,
10
3 , 10, 10)

x̃4 (− 29
3 ,

32
3 ,

89
4 ,

89
4 ) (−6, 6, 20, 20) (− 3

2 ,
7
2 ,

23
3 ,

23
3 ) (1, 1, 0, 0) (−13, 13, 269

3 , 269
3 )

Table 3: New tableau obtained when x̃3 leaves and x̃2 enters.
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