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Abstract

Recently, in [1], [2], [3], and [4] we have dis-
cussed the distributivity equation of implications
I(x, T1(y, z)) = T2(I(x, y), I(x, z)) over t-repre-
sentable t-norms, generated from (classical) con-
tinuous Archimedean t-norms, in interval-valued
fuzzy sets theory. In [5] we discussed similar meth-
ods, but for the following distributivity functional
equation I(x,S1(y, z)) = S2(I(x, y), I(x, z)), when
S1, S2 are t-representable t-conorms. In this ar-
ticle we continue investigations presented at pre-
vious EUSFLAT-LFA 2011, i.e., we will show all
solutions for the following distributivity equation
I(T (x, y), z) = S(I(x, z), I(y, z)), where I is an
unknown function, T is a t-representable t-norm on
LI generated from nilpotent t-norms T1, T2 and S
is a t-representable t-conorm on LI generated from
strict t-conorms S1, S2.
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1. Introduction

Distributivity of (classical) fuzzy implications over
different fuzzy logic connectives has been studied in
the recent past by many authors (see [6], [7], [8], [9],
[10], [11],[12]). These equations have a very impor-
tant role to play in efficient inferencing in approxi-
mate reasoning, especially in fuzzy control systems.
Since all the rules of an inference engine are exer-
cised during every inference cycle, the number of
rules directly affects the computational duration of
the overall application. To reduce the complexity of
fuzzy “IF-THEN” rules, Combs and Andrews [13]
required of the following classical tautology

(p ∧ q)→ r = (p→ r) ∨ (q → r).

Subsequently, there were many discussions (see [14],
[15], [16], [17]), most of them pointed out the need
for a theoretical investigation required for employ-
ing such equations. An overview of the most impor-
tant methods that reduce the complexity of different
inference systems can be found in [18, Chapter 8].
Recently, in [1], [2], [3] and [4] we have discussed

the distributivity equation of implications

I(x, T1(y, z)) = T2(I(x, y), I(x, z))

over t-representable t-norms generated from contin-
uous Archimedean t-norms, in interval-valued fuzzy
sets theory. In these articles, as a byproduct, we
have obtained the solutions for each of the follow-
ing functional equations, respectively:

f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1, v2),

g(min(u1 + v1, a),min(u2 + v2, a))
= g(u1, u2) + g(v1, v2),

h(min(u1 + v1, a),min(u2 + v2, a))
= min(h(u1, u2) + h(v1, v2), b),

k(u1 + v1, u2 + v2)
= min(k(u1, u2) + k(v1, v2), b)

where a, b > 0 are fixed real numbers, f : L∞ →
[0,∞], g : La → [0,∞], h : La → [0, b], and
k : L∞ → [0, b] are unknown functions. The above
we use the following notation L∞ = {(u1, u2) ∈
[0,∞]2 | u1 ≥ u2}, La = {(u1, u2) ∈ [0, a]2 | u1 ≥
u2}. In this paper, using solutions of the second
equation above (presented on previous EUSFLAT-
LFA 2011 conference), we continue these investiga-
tions, but for the following functional equation

I(T (x, y), z) = S(I(x, z), I(y, z)), (D-TS)

satisfied for all x, y, z ∈ LI , where I is an un-
known function, T is a t-representable t-norm on
LI generated from nilpotent t-norms T1, T2 and S
is a t-representable t-conorm on LI generated from
strict t-conorms S1, S2.
Please note that such theoretical developments

connected with solutions of different functional
equations can be also useful in other topics like
fuzzy mathematical morphology (see [19]) or sim-
ilarity measures (cf. [20]).

2. Intuitionistic and interval-valued fuzzy
sets theories

Intuitionistic fuzzy sets theory introduced in 1983
by Atanassov [21] assign to each element of the
universe not only a membership degree, but also
a non-membership degree (for the discussion con-
nected with the proposed terminology see [22]).
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Definition 2.1. An intuitionistic fuzzy set A on X
is a set

A = {(x, µA(x), νA(x)) : x ∈ X},

where µA, νA : X → [0, 1] are called, respectively,
the membership function and the non-membership
function. Moreover they satisfy the condition

µA(x) + νA(x) ≤ 1, x ∈ X.

Let us define

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2.

One can easily observe that L∗ = (L∗,≤L∗) is a
complete lattice with units 0L∗ = (0, 1) and 1L∗ =
(1, 0). Moreover, an intuitionistic fuzzy set A on
X can be represented by the L∗-fuzzy set given by
A : X → L∗.
Another extension of fuzzy sets theory is interval-

valued fuzzy sets theory introduced, independently,
by Sambuc [23] and Gorzałczany [24], in which to
each element of the universe a closed subinterval of
the unit interval is assigned – it can be used as an
approximation of the unknown membership degree.
Let us define

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2},
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2.

In the sequel, if x ∈ LI , then we denote it by x =
[x1, x2]. One can easily observe that LI = (LI ,≤LI )
is also a complete lattice with units 0LI = [0, 0] and
1LI = [1, 1].

Definition 2.2. An interval-valued fuzzy set on X
is a mapping A : X → LI .

It is important to notice that in [25] it is shown
that intuitionistic fuzzy sets theory is equivalent,
from the mathematical point of view, to interval-
valued fuzzy sets theory. In fact, we can see the
point (x1, x2) ∈ L∗ as the interval [x1, 1− x2] ∈ LI
(and vice-verse). Since we are limited in number of
pages, in this article we will discuss main results in
the language of interval-valued fuzzy sets, but they
can be easily transformed to the intuitionistic case.

3. Basic fuzzy connectives

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-
tives, but we briefly mention some of the results
employed in the rest of the work.

Definition 3.1. Let L = (L,≤L) be a complete
lattice. An associative, commutative operation
T : L2 → L is called a t-norm if it is increasing and
1L is the neutral element of T . An associative, com-
mutative operation S : L2 → L is called a t-conorm
if it is increasing and 0L is the neutral element of
S.

Definition 3.2. A t-norm T on ([0, 1],≤) is said to
be

(i) strict, if it is continuous and strictly monotone,
i.e., T (x, y) < T (x, z) whenever x > 0 and y <
z.

(ii) nilpotent, if it is continuous and if each x ∈
(0, 1) is a nilpotent element of T , i.e., if there
exists n ∈ N such that x[n]

T = 0, where

x
[n]
T :=

{
x, if n = 1,
T (x, x[n−1]

T ), if n > 1.

Definition 3.3. A t-conorm S on ([0, 1],≤) is said
to be

(i) strict, if S is continuous and strictly monotone,
i.e., S(x, y) < S(x, z) whenever x < 1 and y <
z,

(ii) nilpotent, if S is continuous and if for each x ∈
(0, 1) there exists n ∈ N such that x[n]

S = 1,

where x[n]
S :=

{
x, if n = 1,
S(x, x[n−1]

S ), if n > 1.

The following characterizations of nilpotent and
strict t-norms and t-conorms are well-known in the
literature.

Theorem 3.4 ([26]). A function T : [0, 1]2 → [0, 1]
is a strict t-norm if and only if there exists a contin-
uous, strictly decreasing function t : [0, 1] → [0,∞]
with t(1) = 0 and t(0) =∞, which is uniquely deter-
mined up to a positive multiplicative constant, such
that

T (x, y) = t−1(t(x) + t(y)), x, y ∈ [0, 1].

Theorem 3.5 ([26]). A function T : [0, 1]2 → [0, 1]
is a nilpotent t-norm if and only if there exists a
continuous, strictly decreasing function t : [0, 1] →
[0,∞) with t(1) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].

Theorem 3.6 ([26]). A function S : [0, 1]2 → [0, 1]
is a strict t-conorm if and only if there exists a
continuous, strictly increasing function s : [0, 1] →
[0,∞] with s(0) = 0 and s(1) = ∞, which is
uniquely determined up to a positive multiplicative
constant, such that

S(x, y) = s−1(s(x) + s(y)), x, y ∈ [0, 1].

Theorem 3.7 ([26]). A function S : [0, 1]2 → [0, 1]
is a nilpotent t-conorm if and only if there exists a
continuous, strictly decreasing function s : [0, 1] →
[0,∞) with s(0) = 0, which is uniquely determined
up to a positive multiplicative constant, such that

S(x, y) = s−1(min(s(x)+s(y), s(1))), x, y ∈ [0, 1].

In our article we shall consider the following spe-
cial classes of t-norms and t-conorms.
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Definition 3.8 (see [27]). (i) A t-norm T on LI
is called t-representable if there exist t-norms
T1 and T2 on ([0, 1],≤) such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)],

for all [x1, x2], [y1, y2] ∈ LI .
(ii) A t-conorm S on LI is called t-representable if

there exist t-conorms S1 and S2 on ([0, 1],≤)
such that S1 ≤ S2 and

S([x1, x2], [y1, y2]) = [S1(x1, y1), S2(x2, y2)],

for all [x1, x2], [y1, y2] ∈ LI .

It should be noted that not all t-norms and
t-conorms on LI are t-representable (see [27]).

One possible definition of an implication on LI is
based on the well-accepted notation introduced by
Fodor and Roubens [28] (see also [18], [29] and [30]).

Definition 3.9. Let L = (L,≤L) be a complete
lattice. A function I : L2 → L is called a fuzzy
implication on L if it is decreasing with respect
to the first variable, increasing with respect to
the second variable and fulfills the following con-
ditions: I(0L, 0L) = I(1L, 1L) = I(0L, 1L) = 1L
and I(1L, 0L) = 0L.

4. Some results pertaining to functional
equations

In this section we show two results related to func-
tional equations, which will be crucial in obtaining
main results.

Proposition 4.1 ([12, Proposition 3.6]). Fix real
a > 0. For a function f : [0, a]→ [0,∞] the follow-
ing statements are equivalent:

(i) f satisfies the functional equation

f(min(x+ y, a)) = f(x) + f(y),

for all x, y ∈ [0, a].
(ii) Either f = 0, or f =∞, or

f(x) =
{

0, if x = 0,
∞, if x > 0,

for all x ∈ [0, a].

Proposition 4.2 ([2, Proposition 4.2]). Fix real
a > 0. Let La = {(u1, u2) ∈ [0, a]2 : u1 ≥ u2}. For
a function f : La → [0,∞] the following statements
are equivalent:

(i) f satisfies the functional equation

f(min(u1 + v1, a),min(u2 + v2, a))
= f(u1, u2) + f(v1, v2), (A)

for all (u1, u2), (v1, v2) ∈ La.

(ii) Either
f = 0, (S1)

or
f =∞, (S2)

or

f(u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0,

(S3)

or

f(u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0,

(S4)

for all (u1, u2) ∈ La.

5. Distributive equations for t-representable
t-norms and t-conorms

In this section we will show how we can use solutions
presented in Proposition 4.2 to obtain all solutions
of our main distributivity equations

I(T (x, y), z) = S(I(x, z), I(y, z))

satisfied for all x, y, z ∈ LI , where I is an un-
known function, T is a t-representable t-norm on
LI generated from nilpotent t-norms T1, T2 and S
is a t-representable t-conorm on LI generated from
strict t-conorms S1, S2.
Assume that projection mappings on LI are de-

fined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2,

for [x1, x2] ∈ LI .
At this situation our distributivity equation has

the following form

I([T1(x1, y1), T2(x2, y2)], [z1, z2])
=[S1(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),
S2(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2])))]

for all [x1, x2], [y1, y2], [z1, z2] ∈ LI . As a conse-
quence we obtain the following two equations

pr1(I([T1(x1, y1), T2(x2, y2)], [z1, z2]))
= S1(pr1(I([x1, x2], [z1, z2])), pr1(I([y1, y2], [z1, z2]))),

pr2(I([T1(x1, y1), T2(x2, y2)], [z1, z2]))
= S2(pr2(I([x1, x2], [z1, z2])), pr2(I([y1, y2], [z1, z2]))),

which are satisfied for all [x1, x2], [y1, y2], [z1, z2] ∈
LI . Now, let us fix arbitrarily [z1, z2] ∈ LI and
define two functions g[z1,z2]

1 , g
[z1,z2]
2 : LI → LI by

g
[z1,z2]
1 (·) := pr1 ◦ I(·, [z1, z2]),

g
[z1,z2]
2 (·) := pr2 ◦ I(·, [z1, z2]).

Thus we have shown that if T and S on LI are
t-representable, then

g
[z1,z2]
1 ([T1(x1, y1), T2(x2, y2)])

= S1(g[z1,z2]
1 ([x1, x2]), g[z1,z2]

1 ([y1, y2])),

g
[z1,z2]
2 ([T1(x1, y1), T2(x2, y2)])

= S2(g[z1,z2]
2 ([x1, x2]), g[z1,z2]

2 ([y1, y2])),
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Let us assume that T1 = T2 is a nilpotent t-norm
generated from additive generator t and S1 = S2 is
a strict t-conorm generated from additive generator
s. Using the representations of nilpotent t-norms
(Theorem 3.5) and strict t-conorms (Theorem 3.6)
we can transform our problem to the following equa-
tions:

g
[z1,z2]
1 ([t−1(min(t(x1) + t(y1), t(0))),

t−1(min(t(x2) + t(y2), t(0)))])

= s−1(s(g[z1,z2]
1 ([x1, x2]))

+ s(g[z1,z2]
1 ([y1, y2]))).

Hence

s ◦ g[z1,z2]
1 ([t−1(min(t(x1) + t(y1), t(0))),

t−1(min(t(x2) + t(y2), t(0)))])

= s ◦ g[x1,x2]
1 ([x1, x2])

+ s ◦ g[z1,z2]
1 ([y1, y2]).

Let us put t(x1) = u1, t(x2) = u2, t(y1) = v1 and
t(y2) = v2. Of course u1, u2, v1, v2 ∈ [0, t(0)]. More-
over [x1, x2], [y1, y2] ∈ LI , thus x1 ≤ x2 and y1 ≤ y2.
The generator t is strictly decreasing, so u1 ≥ u2
and v1 ≥ v2. If we put

f[z1,z2](u, v) := s ◦ pr1 ◦ I([t−1(u), t−1(v)], [z1, z2]),

where u, v ∈ [0, t(0)], u ≥ v, then we get the follow-
ing functional equation

f[z1,z2](min(u1 + v1, t(0)),min(u2 + v2, t(0)))
= f[z1,z2](u1, u2) + f[z1,z2](v1, v2), (1)

satisfied for all (u1, u2), (v1, v2) ∈ Lt(0). Of course
function f[z1,z2] : Lt(0) → [0,∞] is unknown above.
In a same way we can repeat all the above calcula-
tions, but for the function g2, to obtain the following
functional equation

f [z1,z2](min(u1 + v1, t(0)),min(u2 + v2, t(0)))
= f [z1,z2](u1, u2) + f [z1,z2](v1, v2), (2)

satisfied for all (u1, u2), (v1, v2) ∈ Lt(0), where

f [z1,z2](u, v) := s ◦ pr2 ◦ I([t−1(u), t−1(v)], [z1, z2])

is an unknown function. Observe that (1) and (2)
are exactly our functional equation (A). There-
fore, using solutions of Proposition 4.2, we are able
to obtain the description of the horizontal section
I(·, [z1, z2]) for a fixed [z1, z2] ∈ LI . Since in this
proposition we have 4 possible solutions, we should
have 16 different solutions of (D-TS). Observe now
that some of these solutions maybe incorrect, since
the range of I is LI . Now, we will check all possibil-
ities. Let us fix arbitrarily [z1, z2] ∈ LI and consider
16 different cases:

1. f[z1,z2] = 0 and f [z1,z2] = 0.
This implies that

s ◦ pr1 ◦ I([t−1(u1), t−1(u2)], [z1, z2]) = 0,

for all u1, u2 ∈ [0, t(0)], u1 ≥ u2, thus

pr1 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

Similarly we get

pr2 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

In summary, we obtain the following correct
solution:

I([x1, x2], [z1, z2]) = [0, 0] = 0LI .

2. f[z1,z2] = 0 and f [z1,z2] =∞.
On one side we get

pr1 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

On the other side we have

s ◦ pr2 ◦ I([t−1(u1), t−1(u2)], [z1, z2]) =∞,

thus

pr2 ◦ I([x1, x2], [z1, z2]) = 1, [x1, x2] ∈ LI .

In summary we get the following correct solu-
tion

I([x1, x2], [z1, z2]) = [0, 1].

3. f[z1,z2] = 0 and f [z1,z2](u1, u2) ={
0, if u2 = 0,
∞, if u2 > 0.

On one side we get

pr1 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

On the other side we have

s ◦ pr2 ◦ I([t−1(u1), t−1(u2)], [z1, z2])

=
{

0, if u2 = 0,
∞, if u2 > 0,

thus

pr2 ◦ I([x1, x2], [z1, z2])

=
{

0, if x2 = 1,
1, if x2 < 1,

[x1, x2] ∈ LI .

In summary we get the following correct solu-
tion

I([x1, x2], [z1, z2]) =
{

[0, 0], if x2 = 1,
[0, 1], if x2 < 1.
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4. f[z1,z2] = 0 and f [z1,z2](u1, u2) ={
0, if u1 = 0,
∞, if u1 > 0.

On one side we get

pr1 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

On the other side we have

s ◦ pr2 ◦ I([t−1(u1), t−1(u2)], [z1, z2])

=
{

0, if u1 = 0,
∞, if u1 > 0,

thus

pr2 ◦ I([x1, x2], [z1, z2])

=
{

0, if x1 = 1,
1, if x1 < 1,

[x1, x2] ∈ LI .

In summary we get the following correct solu-
tion

I([x1, x2], [z1, z2]) =
{

[0, 0], if x1 = 1,
[0, 1], if x1 < 1.

5. f[z1,z2] =∞ and f [z1,z2] = 0.
This implies that

pr1 ◦ I([x1, x2], [z1, z2]) = 1, [x1, x2] ∈ LI ,

while

pr2 ◦ I([x1, x2], [z1, z2]) = 0, [x1, x2] ∈ LI .

In summary we obtain the following function:

I([x1, x2], [z1, z2]) = [1, 0]

which is incorrect, since [1, 0] /∈ LI .
6. f[z1,z2] =∞ and f [z1,z2] =∞.

In this case we obtain the following correct
solution:

I([x1, x2], [z1, z2]) = [1, 1] = 1LI .

7. f[z1,z2] = ∞ and f [z1,z2](u1, u2) ={
0, if u2 = 0,
∞, if u2 > 0.

On one side we get

pr1 ◦ I([x1, x2], [z1, z2]) = 1, [x1, x2] ∈ LI .

On the other side we have

pr2 ◦ I([x1, x2], [z1, z2])

=
{

0, if x2 = 1,
1, if x2 < 1,

[x1, x2] ∈ LI .

In summary we get the following function

I([x1, x2], [z1, z2]) =
{

[1, 0], if x2 = 1,
[1, 1], if x2 < 1,

which is incorrect.

8. f[z1,z2] = ∞ and f [z1,z2](u1, u2) ={
0, if u1 = 0,
∞, if u1 > 0.

On one side we get

pr1 ◦ I([x1, x2], [z1, z2]) = 1, [x1, x2] ∈ LI .

On the other side we have

pr2 ◦ I([x1, x2], [z1, z2])

=
{

0, if x1 = 1,
1, if x1 < 1,

[x1, x2] ∈ LI .

In summary we get the following function

I([x1, x2], [z1, z2]) =
{

[1, 0], if x1 = 1,
[1, 1], if x1 < 1,

which is incorrect.

9. f[z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [z1,z2] = 0.
In this case we obtain the following function:

I([x1, x2], [z1, z2]) =
{

[0, 0], if x2 = 1,
[1, 0], if x2 < 1.

which is incorrect.

10. f[z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [z1,z2] =∞.
In this case we obtain the following correct so-
lution:

I([x1, x2], [z1, z2]) =
{

[1, 1], if x2 = 1,
[0, 1], if x2 < 1.

11. f[z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

In this case we obtain the following correct
solution:

I([x1, x2], [z1, z2]) =
{

[0, 0], if x2 = 1,
[1, 1], if x2 < 1.

12. f[z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

and

f [z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

In this case we obtain the following correct so-
lution:

I([x1, x2], [z1, z2]) =


[0, 0], if x1 = 1,
[0, 1], if x1 < 1 & x2 = 1,
[1, 1], if x2 < 1.

Please note that u1 ≥ u2, so it is not possible
that x1 > x2.
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13. f[z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [z1,z2] = 0.
In this case we obtain the following function:

I([x1, x2], [z1, z2]) =
{

[0, 0], if x1 = 1,
[1, 0], if x1 < 1,

which is incorrect.

14. f[z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0,

and

f [z1,z2] =∞.
In this case we obtain the following correct so-
lution:

I([x1, x2], [z1, z2]) =
{

[0, 0], if x1 = 1,
[1, 1], if x1 < 1.

15. f[z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [z1,z2](u1, u2) =
{

0, if u2 = 0,
∞, if u2 > 0.

In this case we obtain the following function:

I([x1, x2], [z1, z2]) =


[0, 0], if x1 = 1,
[1, 0], if x1 < 1 & x2 = 1,
[1, 1], if x2 < 1,

which is incorrect.

16. f[z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

and

f [z1,z2](u1, u2) =
{

0, if u1 = 0,
∞, if u1 > 0.

In this case we obtain the following correct
solution:

I([x1, x2], [z1, z2]) =
{

[0, 0], if x1 = 1,
[1, 1], if x1 < 1.

Therefore, we have obtained 10 correct horizontal
sections in LI . Unfortunately, we need to notice
that it is not possible to find at least one solution
I which is a fuzzy implication on LI in the sense of
Definition 3.9. For solutions 1), 2), 3), 4), 11), 12),
14) and 16) we have

I(1LI , 1LI ) = I([1, 1], [1, 1]) 6= [1, 1] = 1LI ,

so it is not possible to find a horizontal solution,
which is correct for [x1, x2] = [1, 1].
The horizontal sections 6) and 10) are incorrect in
this situation since we have

I(0LI , 1LI ) = I([0, 0], [1, 1]) 6= [0, 0] = 0LI ,

so it is not possible to find a horizontal solution,
which is correct for [x1, x2] = [0, 0].

6. Conclusion

In this article we have discussed the following dis-
tributivity equation

I(T (x, y), z) = S(I(x, z), I(y, z)),

when both operations are t-representable and such
that T is generated from nilpotent t-norms, while
S is generated from strict t-conorms.
Using similar methods as in [31] we can easily

obtain all solutions of dual functional equation

I(S(x, y), z) = T (I(x, z), I(y, z)),

where I is an unknown function, S is a
t-representable t-conorm on LI generated
from nilpotent t-conorms S1, S2 and T is a
t-representable t-norm on LI generated from strict
t-norms T1, T2. In fact it is enough to consider for
each t-norm T on LI the function

S(x, y) = N (T (N (x),N (y)))

where N is a strong negation on LI (see [27] and
[32]). This function is a t-conorm on LI (N -dual
to T ). In our future work we will concentrate on a
situation, when both operations are t-representable
uninorms.
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