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Abstract

Recently, in [1], [2], [3], and [4] we have dis-
cussed the distributivity equation of implications
I(e,Ti(y,2) = Ta(Z(x.y),Z(x,2)) over t-repre-
sentable t-norms, generated from (classical) con-
tinuous Archimedean t-norms, in interval-valued
fuzzy sets theory. In [5] we discussed similar meth-
ods, but for the following distributivity functional
equation Z(x,51(y, 2)) = S2(Z(z,y),Z(z, 2)), when
Sy, Sy are t-representable t-conorms. In this ar-
ticle we continue investigations presented at pre-
vious EUSFLAT-LFA 2011, i.e., we will show all
solutions for the following distributivity equation
(T (z,y),2) = S(Z(x,2),Z(y,z)), where Z is an
unknown function, 7 is a t-representable t-norm on
L' generated from nilpotent t-norms Ty, T and S
is a t-representable t-conorm on £! generated from
strict t-conorms Sy, Ss.
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1. Introduction

Distributivity of (classical) fuzzy implications over
different fuzzy logic connectives has been studied in
the recent past by many authors (see [6], [7], [8], [9],
[10], [11],][12]). These equations have a very impor-
tant role to play in efficient inferencing in approxi-
mate reasoning, especially in fuzzy control systems.
Since all the rules of an inference engine are exer-
cised during every inference cycle, the number of
rules directly affects the computational duration of
the overall application. To reduce the complexity of
fuzzy “IF-THEN” rules, Combs and Andrews [13]
required of the following classical tautology

(pAg)—r=@pP—71)V(—T).

Subsequently, there were many discussions (see [14],
[15], [16], [17]), most of them pointed out the need
for a theoretical investigation required for employ-
ing such equations. An overview of the most impor-
tant methods that reduce the complexity of different
inference systems can be found in [18, Chapter 8].

Recently, in [1], [2], [3] and [4] we have discussed
the distributivity equation of implications

I(xa 7—1(y7 Z)) = ,TQ(I(xay)7I(x7z))
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over t-representable t-norms generated from contin-
uous Archimedean t-norms, in interval-valued fuzzy
sets theory. In these articles, as a byproduct, we
have obtained the solutions for each of the follow-
ing functional equations, respectively:

flur + vi,ug + v2) = flur,uz) + f(vr,v2),

g(min(uq + v1,a), min(us + ve, a))

= g(u1,u2) + g(v1,v2),

h(min(uy + v1,a), min(us + v, a))
= min(h(u1, uz) + h(vi,v2),b),

k(u1 -+ V1, U2 + Uz)
= min(k(ul,uQ) + k‘(’Ul, Ug),b)

where a,b > 0 are fixed real numbers, f: L>*® —
[0,00], g: L* [0,00], h: L* [0,0], and
k: L>* — [0,b] are unknown functions. The above
we use the following notation L™ = {(ui,us) €
[0,00]2 | ug > ua}, L* = {(u1,uz) € [0,a]? | ug >
uz}. In this paper, using solutions of the second
equation above (presented on previous EUSFLAT-
LFA 2011 conference), we continue these investiga-
tions, but for the following functional equation

LT (x,y),2) = S(Z(x,2),I(y, 2)),  (D-TS)

— —

satisfied for all z,y,z € L', where 7 is an un-
known function, 7 is a t-representable t-norm on
L1 generated from nilpotent t-norms 77, T» and S
is a t-representable t-conorm on £ generated from
strict t-conorms Sy, Ss.

Please note that such theoretical developments
connected with solutions of different functional
equations can be also useful in other topics like
fuzzy mathematical morphology (see [19]) or sim-
ilarity measures (cf. [20]).

2. Intuitionistic and interval-valued fuzzy
sets theories

Intuitionistic fuzzy sets theory introduced in 1983
by Atanassov [21] assign to each element of the
universe not only a membership degree, but also
a non-membership degree (for the discussion con-
nected with the proposed terminology see [22]).



Definition 2.1. An intuitionistic fuzzy set A on X Definition 3.2. A t-norm T on ([0, 1], <) is said to

is a set be
A={(z,palz),va(z)) : z€X}, (i) strict, if it is continuous and strictly monotone,
ie., T(x,y) < T(x,z) whenever x > 0 and y <
where p4, va: X — [0,1] are called, respectively, 2.
the membership function and the non-membership (ii) nilpotent, if it is continuous and if each z €
function. Moreover they satisfy the condition (0,1) is a nilpotent element of T, i.e., if there
: [n] _
pa(z) +vale) <1, z€X. exists n € N such that x{f =0, where
Let us define [n] x, ifn=1,
T T(z x[n_l]) ifn>1
L*:{($1,$2)6[0,1]2 : x1+x2§1}, T ’ '
(z1,22) <p+ (Y1,92) <= 21 < y1 Az > yo. Definition 3.3. A t-conorm S on ([0, 1], <) is said
to be
One can easily observe that £* = (L*,<-) is a
complete lattice with units Oz« = (0,1) and 17« = (i) strict, if S is continuous and strictly monotone,
(1,0). Moreover, an intuitionistic fuzzy set A on Le., S(z,y) < S(z,z) whenever <1 and y <
X can be represented by the £*-fuzzy set given by Zy
A X — L*. (ii) nilpotent, if S is continuous and if for each z €
Another extension of fuzzy sets theory is interval- (0,1) there exists n € N such that xg"} =1,
valued fuzzy sets theory introduced, independently, (] z, ifn=1,
by Sambuc [23] and Gorzalczany [24], in which to where zg" = [n—1] .
. . S(x,xg ), ifn>1.
each element of the universe a closed subinterval of
the unit interval is assigned — it can be used as an The following characterizations of nilpotent and
approximation of the unknown membership degree. strict t-norms and t-conorms are well-known in the
Let us define literature.
L' = {(z1,20) €[0,1)% : 21 < 25}, Theorem 3.4 ([26]). A function T: [0,1]*> — [0,1]

is a strict t-norm if and only if there exists a contin-

r1,®2) <1 (Y1,42) == T1 S Y1 A 22 < Y.
( ) <ur ) uous, strictly decreasing function t: [0,1] — [0, c0]

In the sequel, if z € L, then we denote it by z = with t(1) = 0 and t(0) = oo, which is uniquely deter-
[11,22]. One can easily observe that £ = (LT, <;1) mined up to a positive multiplicative constant, such
is also a complete lattice with units 0,r = [0, 0] and that

100 = [1,1].

T(x,y) :t_l(t(x) +t(y))7 x,y € [07 1]'
Definition 2.2. An interval-valued fuzzy set on X

is a mapping A: X — L. Theorem 3.5 ([26]). A function T: [0,1]> — [0,1]
o ] . o is a nilpotent t-norm if and only if there exists a
It 15 1m.p'ort.anj5 to notice that in [25] 1t 15 shown continuous, strictly decreasing function t: [0,1] —
that intuitionistic fl.IZZy sgts theOI."y is eql.nvalent, [0,00) with t(1) = 0, which is uniquely determined
from the mathematical point of view, to interval- up to a positive multiplicative constant, such that
valued fuzzy sets theory. In fact, we can see the
point (z1,22) € L* as the interval [z1,1 — z5] € L' T(z,y) =t~ (min(t(x) + t(y),1(0))), 2,y € [0,1].

(and vice-verse). Since we are limited in number of
pages, in this article we will discuss main results in
the language of interval-valued fuzzy sets, but they
can be easily transformed to the intuitionistic case.

Theorem 3.6 ([26]). A function S: [0,1]*> — [0,1]
is a strict t-conorm if and only if there exists a
continuous, strictly increasing function s: [0,1] —
[0,00] with s(0) = 0 and s(1) = oo, which is
uniquely determined up to a positive multiplicative
constant, such that

S(x,y) = s (s(x) +s(y), =,ye(0,1].

3. Basic fuzzy connectives

We assume that the reader is familiar with the clas-
sical results concerning basic fuzzy logic connec-

tives, but we briefly mention some of the results Theorem 3.7 ([26]). A function S: [0, 1]2 — [0,1]
employed in the rest of the work. is a nilpotent t-conorm if and only if there exists a
Definition 3.1. Let £ = (L,<r) be a complete continuous, strictly decreasing function s: [0,1] —

[0,00) with s(0) = 0, which is uniquely determined

lattice. An associative, commutative operation ) o
up to a positive multiplicative constant, such that

T:L? — L is called a t-norm if it is increasing and

1c s t-he neutral.elementzof 7. A-n associative, com- S(z,y) = s~ (min(s(z) +s(y), s(1))), .y € [0,1].
mutative operation S: L* — L is called a t-conorm

if it is increasing and 0, is the neutral element of In our article we shall consider the following spe-
S. cial classes of t-norms and t-conorms.
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Definition 3.8 (see [27]). (i) A t-norm 7 on L!
is called t-representable if there exist t-norms
Ty and T3 on ([0, 1], <) such that T3 < T, and

T ([z1, 22], [y1,y2]) = [T1(z1,91), Ta (w2, y2)],

for all [,%1, 31‘2}, [yhyg} e L.

(ii) A t-conorm S on L is called t-representable if
there exist t-conorms S; and Sy on ([0, 1], <)
such that S; < S5 and

S([x1, 22], [y1,y2]) = [S1(21,91), S2 (22, y2)],

for all [21,22], [y1,y2] € L.

It should be noted that not all t-norms and
t-conorms on L£! are t-representable (see [27]).

One possible definition of an implication on £ is
based on the well-accepted notation introduced by
Fodor and Roubens [28] (see also [18], [29] and [30]).

Definition 3.9. Let £ = (L, <) be a complete
lattice. A function Z: L? — L is called a fuzzy
implication on L if it is decreasing with respect
to the first variable, increasing with respect to
the second variable and fulfills the following con-
ditions: I(OL,Og) = Z(l[,l[) = I(OL,IL) = 1£
and I(IL, OL) = OL.

4. Some results pertaining to functional
equations

In this section we show two results related to func-
tional equations, which will be crucial in obtaining
main results.

Proposition 4.1 ([12, Proposition 3.6]). Fiz real
a > 0. For a function f:[0,a] — [0,00] the follow-
ing statements are equivalent:

(i) [ satisfies the functional equation

f(min(z +y,a)) = f(z) + f(y),

for all z,y € [0,al.
(it) Fither f =0, or f = oo, or

ift =0,

ifz>0, for all x € [0, a).

Proposition 4.2 ([2, Proposition 4.2]). Fiz real
a>0. Let L* = {(u1,uz) € [0,a)® : uy > ua}. For
a function f: L* — [0,00] the following statements
are equivalent:

(i) [ satisfies the functional equation

f(min(uy + v1, a), min(ug + ve, a))

= f(ur,u2) + f(vi,v2), (A)

for all (uy,us), (vi,v2) € L.
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(ii) Either

f=0, (S1)
or
= 00, (S2)
or
if ug =0,
S3
Flur,u) { if ug >0, (S3)
or
Flu,us) { Tu=0 sy
ifup >0,

for all (u1,uq) € L2

5. Distributive equations for t-representable
t-norms and t-conorms

In this section we will show how we can use solutions
presented in Proposition 4.2 to obtain all solutions
of our main distributivity equations

I(T(xvy)’ z) = S(I(x’ Z)71<yv Z))

satisfied for all z,y,2 € L', where 7 is an un-
known function, 7 is a t-representable t-norm on
LT generated from nilpotent t-norms 77, Tp and S
is a t-representable t-conorm on £ generated from
strict t-conorms S7, Ss.

Assume that projection mappings on £! are de-
fined as the following:

p7‘1([$1,$2]) = 71, prz([ﬂm,xﬂ) = T2,

for [z1,79] € LY.
At this situation our distributivity equation has
the following form

Z([T1 (w1, 91), To(w2, y2)], [21, 22])
=[S1(pr1(Z([z1, 2], [21, 22])), pr1(Z([y1, y2], [21, 22]))),
Sa(pra2(Z([w1, x2], [21, 22])), pr2(Z([y1, yal, 21, 22])))]

for all [z1, 2], [y1,¥2],[21,22] € L. As a conse-
quence we obtain the following two equations
pri(Z([T1 (w1, y1), Ta (w2, y2)], [21, 22]))

= Si(pri(Z([z1, 22, [21, 22])), pri(Z([y1, y2l, [21, 22]))),
pr2(Z([T1 (21, y1), Ta (w2, y2)], [21, 22]))

= Sa(pr2(Z([z1, z2], [21, 22])), pr2(Z([y1, y2], [21, 22]))),

which are satisfied for all [zq, 23], [y1, y2], [21, 22] €
L!. Now, let us fix arbitrarily [21,22] € L' and

define two functions g[Z“Z?] ggzl’”]: LT — LT by

)

g

gbl()

Thus we have shown that if 7 and S on £! are
t-representable, then

g (T (21, 1), To (22, )]
— Sy(af ™ s, ),

g5 (T (2, 1), To (22, )]
= Sa(g5 " ([, 2)), 057, wa])),

= pr1 o Z(+, [21, 22]),
i=pra o Z(:, [21, 22]).

))
). 9v7 % (1, 12))),
)])
) 93



Let us assume that 77 = T5 is a nilpotent t-norm
generated from additive generator ¢ and S; = S is
a strict t-conorm generated from additive generator
s. Using the representations of nilpotent t-norms
(Theorem 3.5) and strict t-conorms (Theorem 3.6)
we can transform our problem to the following equa-
tions:

gl

(min(t(z1) + t(y1), £(0))),

1 (t(xq
£~ (min(t(z2) + t(y2), 1(0)))])
= 57 (s(g1" " ([, 22]))

+ (0% ([y1,120)))-

Hence

s 0 gl # ([t (min(t(z1) + t(y1), (0))),
¢ (min(t(z2) + t(y2), 1(0)))])

= 507" (21, 22))

[21,22]

+s0g; (1, y2])-

Let us put t(x1) = ug, t(z2) = ug, t(y1) = v1 and
t(y2) = va. Of course uy, ug, v1,v2 € [0,¢(0)]. More-
over [r1, 73], [y1, y2] € LT, thus z; < 29 and y; < yo.
The generator t is strictly decreasing, so u; > uo
and vy > vo. If we put

f[zlvzﬂ (u’ ’U) =Ssopr oI([t_l(u)7t_1(v)]7 [21’ 22]),

where u, v € [0,¢(0)], u > v, then we get the follow-
ing functional equation

f[zl,zz] (min(ul + v, t(O))v min(UQ + v, t(O)))
= f[Zl,ZQ](u17u2) +f[21722](7]1av2>7 (1)

satisfied for all (u1,us), (v1,v2) € LHO). Of course
function f;, .,): LY9) — [0, 00] is unknown above.
In a same way we can repeat all the above calcula-
tions, but for the function go, to obtain the following
functional equation

f[zl,ZQ] (mil’l(ul + vy, t(())), miH(UZ + va, t(O)))
= Bl (ug u) + fE ) (0, 0), (2)

satisfied for all (uy,us), (v1,v2) € LYO), where
FEvzl(u0) = s 0 pro o Z([t™ (), ™1 (v)], [21, 22])

is an unknown function. Observe that (1) and (2)
are exactly our functional equation (A). There-
fore, using solutions of Proposition 4.2, we are able
to obtain the description of the horizontal section
Z(-, [21, 22]) for a fixed [21,20] € L. Since in this
proposition we have 4 possible solutions, we should
have 16 different solutions of (D-T'S). Observe now
that some of these solutions maybe incorrect, since
the range of Z is L’. Now, we will check all possibil-
ities. Let us fix arbitrarily [21, 20] € L’ and consider
16 different cases:
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. f[Zl,Zz] = 0

. f[zl,zQ] =0 and f[ZhZz] —0.

This implies that
sopri o ([t~ (wr),t " (ug)], [21, 22]) = 0,
for all uy,us € [0,¢(0)], u1 > ug, thus
pri o I([x1, o], [21, 22]) = 0, [y, 20) € L.
Similarly we get
pro o I([x1, xa], [21,20]) = 0, [21,22] € L.

In summary, we obtain the following correct
solution:

I([:El,xg], [2’1,22]) = [0,0] = OLI.

: f[zl7z2] =0 and f[ZhZQ] - .

On one side we get

pri o I([z1, o], [21, 22]) =0, [y, 0] € L.
On the other side we have

sopry o Z([t™ (ur),t™ (u2)], [21, 22]) = o0,

thus

prooZ([z1, 32, [21,22)) = 1, [w1,20] € L.

In summary we get the following correct solu-
tion

Z([z1,x2], [21,22]) = [0, 1].
and  flEEl(ug up) =
0, ifuy=0,
oo, if ug > 0.

On one side we get

prioZ([wy,w2),[21,22]) =0, [w1,22] € L.
On the other side we have

sopra o T([t™  (ur), t ™ (u2)], [21, 22])
&

pra o Z([x1, 3], [21, 22])

p— 0,
=11

In summary we get the following correct solu-
tion

if Ug = 0,
if ug > 0,

thus

if.]?g = 1,

x, 2] € L.
if zo < 1, [1 2]

[07 0]7
[07 1]?

if.’EQ = ].,
if xo < 1.

Z([x1, 2], [21, 22]) = {



4. fiz1 0] = 0 and f[zl’z2](u1,u2) = 8. flz1,20] = oo and f[zl’zﬂ(uhug) =

0, ifwu; =0, 0, ifwu; =0,
oo, ifu; >0. oo, if u; > 0.
On one side we get On one side we get
prioZ([x1, @2], [21,22]) =0, [w1,20] € L. prioZ([z1, 0], 21, 2)) = 1, [w1,29] € L.
On the other side we have On the other side we have
s§0prao I([til(ul)v til(fu@)]a [Zla ZQ]) pra2© I([xl’ .132], [Z1, 22])
_ 0, lf U1 0, — ) l Ty ) [xl,.TQ] c LI.
oo, ifu; >0, 1, ifx <1,
thus In summary we get the following function
1,0 if =1
pTQOI([x17w2]7[21aZ2]) I([$17$2],[21722]) _ [ ’ ]) 1 Z1 )
0, ifz; =1 1,1], ifzy <1,
= ’ . ’ [1'171'2] c LI.
1, ifz <1, which is incorrect.
O7 if Ug = 0,
In summary we get the following correct solu- 9. flz1,20) (U1, u2) = . and
. oo, ifug > 0.
tion
flevzl = 0.
I(w1, 23], [21, 22]) = [0, 0], %f x1 =1, In this case we obtain the following function:
[0,1]), ifzy <1
[0,0], ifxzo =1,

I ) Y ) =
5. f[thQ] — 0 and f‘[z1,22] —0. ([xl $2] [21 22]) {

This implies that

[1,0], if 2o < 1.

which is incorrect.

r o Z([x1, 20, (21, 22])) = 1, [w1,20] € LY, 0, ifuy=0,
p ! ([ ! 2] [ ! 2]) [ ! 2] 10' f[Zl,Zz](U’l?uz) = . 2 a’nd
while oo, if us > 0.
f[zl’ZZ] = 0.
pra o Z([z1, 2, [21,22]) =0, [z1,22] € L' In this case we obtain the following correct so-
lution:

In summary we obtain the following function:
(w1, 22], [21, 22]) = [1,0] I([x1, w2), [21, 22]) = {

which is incorrect, since [1,0] ¢ L’.

[1,1], ifas=1,
[O, 1], if xg < 1.

0. f[Zng2] =0 and f[Zl,Zz] = 0. B 07 lf Uy = O7
In this case we obtain the following correct UL ey za) (1, u2) B oo, if us > 0. and
solution: 0, ifuy=0,
FE=2l (g, ug) = .
I([xl,l‘g],[Zl,Zg]) = [1,1] =1,r. oo, if ug > 0.
. In this case we obtain the following correct
7. Jlz1,20] = oo and fB 2](u1,u2) = solution:
0, if U = 0, ¢
. ; =1
oo, if ugy > 0. I([x1, w2], [21, 22]) = {[070]’ l 2 7
On one side we get (1,1, ifwy < 1.
prioZ(lxy, xs],[21,22]) =1, [x1,22 el 0, ifuy=0,
( L ) [ ] 12, fizy,z9) (U1, uz) = " 2 0 and
On the other side we have 00, 1uz >U.
212 0, if Uy = 0,
pra o I([z1, 23], [21, 22]) frrl (o, ug) = 00, if u; > 0.
0, ifaxs=1, I In this case we obtain the following correct so-
= . [$1,$2] €L .
1, if g <1, lution:

0,0, ifz =1,
I([z1, 2], [21, 22]) = € [0,1], ifxy <1 & a2 =1,

[1,0], ifas =1, .
I([x171'2]7 [21,22]) = {[1 1] " 2y < 1 [1, 1], if To < 1.

In summary we get the following function

Please note that u; > us, so it is not possible
which is incorrect. that xq > xs.
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0, ifu; =0
13 f[zl722](U1,u2) — { ) I Uy s and

oo, ifwu; >0.

f[21722] =0.
In this case we obtain the following function:

[0,0], ifxz =1,
Hlow, w2l for, 2]) = {[1 0, ifa; <1
which is incorrect.
0, ifu; =0,
14 fiz) 2] (u1, uz) = {oo iy >0 and

flEozl = oo

In this case we obtain the following correct so-

lution:
[0,0], ifx =1,
I b) ) b =
([x1, z2), [21, 22]) {[1,1]’ iy <1,
15. fio (1, ’ ’ d
Jier za1 (0, u2) {oo, ifup >0
0 if us =0
[21,22] _ ) )
/ (1, uz) oo, if ug > 0.
In this case we obtain the following function:
[0,0], if T = 1,
Z([Il,JEQ],[Zl,Zz]): [1,0], if{El <1 &1‘2:17
[1,1], ifas <1,
which is incorrect.
0, ifu; =0,
16. fi,, . , = d
Jier a1 (0, u2) {oo, ifug >0
0 ifu; =0
[21,22] — _ ) 1 )
/ (1, u2) oo, ifwu; > 0.

In this case we obtain the
solution:

following correct

[0, 0],
[1? 1]7

if 1 = ].7
L, wa]s 21, 22]) = { if x7 < 1.
Therefore, we have obtained 10 correct horizontal
sections in £. Unfortunately, we need to notice
that it is not possible to find at least one solution
T which is a fuzzy implication on £! in the sense of
Definition 3.9. For solutions 1), 2), 3), 4), 11), 12),
14) and 16) we have

I(lpr,dpr) =Z(0, 1], [1,1) # [1,1] = 1z,

so it is not possible to find a horizontal solution,
which is correct for [x1,z2] = [1,1].

The horizontal sections 6) and 10) are incorrect in
this situation since we have

I(OLIa ILI) :I([Ovo}v [171]) # [O’O] =0gr,

so it is not possible to find a horizontal solution,
which is correct for [x1,z2] = [0,0].
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6. Conclusion

In this article we have discussed the following dis-
tributivity equation

I(T(xvy)a Z) = S(I(.’ﬂ, Z),I(y, Z))a

when both operations are t-representable and such
that 7 is generated from nilpotent t-norms, while
S is generated from strict t-conorms.

Using similar methods as in [31] we can easily
obtain all solutions of dual functional equation

I(S(x,y), Z) = T(Z(JZ, Z)’I(y’ Z))a

where Z is an unknown function, § is a
t-representable t-conorm on L£!  generated
from nilpotent t-conorms Sy, Sy and 7 is a
t-representable t-norm on £! generated from strict
t-norms 71, T>. In fact it is enough to consider for
each t-norm 7 on £! the function

S(z,y) = N(T(N (), N(y)))

where A is a strong negation on £! (see [27] and
[32]). This function is a t-conorm on £ (N-dual
to 7). In our future work we will concentrate on a
situation, when both operations are t-representable
uninorms.
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