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Abstract

In this contribution, the F 1-transform of functions
of two variables is introduced. It combines proper-
ties of the F-transform of functions of two variables
and the F 1-transform of functions of one variable.
The aim of this study is to prove approximation
properties of the F 1-transform components and of
the inverse F 1-transform in this particular case.
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1. Introduction

The technique of F-transform was developed as a
tool for a fuzzy modeling [1]. Similar to conven-
tional integral transforms (the Fourier and Laplace
transforms, for example), the F-transform performs
a transformation of an original universe of func-
tions into a universe of their “skeleton models”.
More specifically, the F-transform establishes a cor-
respondence between a set of continuous functions
on an interval of real numbers (space of reals) and
the set of n-dimensional real vectors (matrices).
Each component of the resulting vector (matrix) is
a weighted local mean of a corresponding function
over an area covered by a corresponding basic func-
tion (“kernel” of transformation). The vector (ma-
trix) of the F-transform components is a simplified
representation of an original function that can be
used instead of the original function and for which
further computations are easier. In this respect,
the F-transform can be as useful in applications as
traditional transforms. Moreover, sometimes the F-
transform is more efficient than its counterparts.
Initially, the F-transform was introduced for func-

tions of one or two variables. This method turned
out to be very general and powerful in many ap-
plications. Especially, the F-transform of functions
of two variables shows a great potential in applica-
tions to image processing, particularly, image com-
pression [2], image fusion [3], edge detection [4].

Generalization of the ordinary F-transform to the
F-transform of a higher degree in the case of func-
tions of one variable was introduced in [5]. Many
interesting properties of the F-transform of a higher
degree have been proved there, and among others,
a property of approximation of the first derivative
of the original function.

In this contribution, we focuse on the F-transform
of the first degree (F 1-transform) and its extension
to functions of many variables. We discuss prop-
erties of the F 1-transform and their applications.
It turned out that the F 1-transform has successful
applications in image processing, especially in edge
detection [6]. The edge detection problem consists
in a specification of an area with significant changes
of image intensity. In other words, the latter can be
characterized by saying that the corresponding ab-
solute value of a gradient reaches its maximum.

The goal of this paper is to characterize the F 1-
transform of functions of two variables and show
how their partial first order derivatives can be
approximated by the corresponding F 1-transform
components. Moreover, we aim at giving estimates
of the qualities of the approximation of partial first
order derivatives and of an original function by the
inverse F 1-transform.
The paper is organized as follows: Section 1 re-

calls the techniques of F-transform of functions of
two variables and F 1-transform of functions of one
variable. In Section 2, the F 1-transform of functions
of two variables is introduced and partial deriva-
tives are approximated. The inverse F 1-transform
of functions of two variables is established in Sec-
tion 3. In Section 4, a short introduction to the
edge detection problem based on the F 1-transform
is mentioned. Finally, conclusions and comments
are in Section 5.

1.1. F-transform of functions of two
variables

Let us recall the basic conceptions of the F-
transform of function f : [a, b] × [c, d] → R of two
variables and refer to [1] for more details. At first,
we introduce the notion of fuzzy partition. It is
defined for the interval [a, b] and then extended to
[a, b]× [c, d].
Let [a, b] be an interval on the real line R and let

n ≥ 2 a number of fuzzy sets in a fuzzy partition
of [a, b]. Let x0, x1, . . . , xn, xn+1 ∈ [a, b] be nodes
such that a = x0 ≤ x1 ≤ . . . ≤ xn ≤ xn+1 = b.
Fuzzy sets A1, . . . , An : [a, b] → [0, 1] establish a
fuzzy partition of [a, b] if the following requirements
are fulfilled:

1. for every k = 1, . . . , n, Ak(x) = 0 if x ∈ [a, b] \
[xk−1, xk+1];
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2. for every k = 1, . . . , n, Ak is continuous on
[xk−1, xk+1];

3. for every k = 1, . . . , n, Ak(x) > 0 if x ∈
(xk−1, xk+1);

4. for all x ∈ [a, b],
∑n
k=1 Ak(x) = 1 (Ruspini con-

dition).

It follows from the conditions 1− 4 that for each
k = 1, . . . , n,

Ak(xk) = 1.

If the nodes x0, x1, . . . , xn, xn+1 are h-
equidistant, i.e. for all k = 1, . . . , n + 1,
xk = xk−1 + h, where h = (b − a)/(n + 1),
we say that the fuzzy partition A1, . . . , An is
h-uniform.
If fuzzy sets A1, . . . , An establish an hx-uniform

fuzzy partition of [a, b] and B1, . . . , Bm establish an
hy-uniform fuzzy partition of [c, d] then the Carte-
sian product {A1, . . . , An} × {B1, . . . , Bm} of these
fuzzy partitions is the set of all fuzzy sets Ak ×Bl,
k = 1, . . . , n, l = 1, . . . ,m. The membership func-
tion Ak × Bl : [a, b] × [c, d] → [0, 1] is equal to
the product Ak · Bl of the corresponding member-
ship functions. We say that fuzzy sets Ak × Bl,
k = 1, . . . , n, l = 1, . . . ,m establish an hxhy-
uniform fuzzy partition of the Cartesian product
[a, b]× [c, d].
Once the fuzzy partition Ak × Bl, k = 1, . . . , n,

l = 1, . . . ,m is selected, we define the F-transform
of a function f : [a, b] × [c, d] → R with respect to
the chosen partition of [a, b]× [c, d]. The (direct) F-
transform of f is an image of the mapping Fnm[f ] :
{A1, . . . , An} × {B1, . . . , Bm} → R represented by
a matrix

Fnm[f ] =

 F11 . . . F1m
...

...
...

Fn1 . . . Fnm

 ,

where

Fkl =
∫ b
a

∫ d
c
f(x, y)Ak(x)Bl(y)dx dy∫ b

a

∫ d
c
Ak(x)Bl(y)dx dy

, (1)

k = 1, . . . , n, l = 1, . . . ,m. The value Fkl is called
an F-transform component.

The inverse F-transform of f is a function on
[a, b] × [c, d] which is defined by the following in-
version formula:

f̂nm(x, y) =
n∑
k=1

m∑
l=1

FklAk(x)Bl(y),

x ∈ [a, b], y ∈ [c, d].

It was proved that the inverse F-transform f̂nm(x, y)
approximates the original function f with an arbi-
trary precision.

1.2. F 1-transform of functions of one
variable

The Fm-transform of a higher degree m ≥ 1 was
introduced in [5]. In this section we give a short
description of the F 1-transform of functions of one
variable. The F 1-transform is a generalization of
the F-transform where the constant components are
replaced by linear components (polynomials of the
first degree).

Throughout this section, we assume that
A1, . . . , An, n > 2 is a fuzzy partition of [a, b] with
nodes xk, k = 0, . . . , n+ 1. Let k be a fixed integer
from {1, . . . , n} and let L2(Ak) be a normed space
of square-integrable functions f : [xk−1, xk+1] →
R, k = 1, . . . , n.

By L2(A1, . . . , An) we denote a set of functions
f : [a, b] → R such that for all k = 1, . . . , n,
f |[xk−1,xk+1] ∈ L2(Ak), where f |[xk−1,xk+1] is the re-
striction of f on [xk−1, xk+1].
For any function f from L2(A1, . . . , An) we define

the F 1-transform of f with respect to A1, . . . , An as
a vector

F 1[f ] = [F 1
1 , . . . , F

1
n ]

where the components F 1
k , k = 1, . . . , n are linear

functions

F 1
k = c1

k,0 + c1
k,1(x− xk),

k = 1, . . . , n,
with coefficients c1

k,0, c
1
k,1 given by

c1
k,0 =

∫ xk+1
xk−1

f(x)Ak(x)dx
(
∫ xk+1
xk−1

Ak(x)dx)
,

c1
k,1 =

∫ xk+1
xk−1

f(x)(x− xk)Ak(x)
(
∫ xk+1
xk−1

(x− xk)2 Ak(x)dx)
.

Here we emphasize the following two properties
of the F 1-transform, more can be found in [5].

• If f is sufficiently smooth on [a, b], then for each
k = 1, . . . , n

c1
k,0 = f(xk) +O(h2),
c1
k,1 = f ′(xk) +O(h2).

• Coefficient c1
k,0 is equal to the k-th F-transform

component of f , i.e.

c1
k,0 = Fk.

In the following section we extend the F 1-
transform to functions of two variables and show
some properties.

2. Introduction of the F 1-transform of
functions of two variables

2.1. Space L2(Ak ×Bl)

Let us assume a rectangle [a, b]×[c, d] and fix a fuzzy
partition {A1, . . . , An} × {B1, . . . , Bm}, n,m ≥ 2
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of this rectangle. Let k, l be fixed integers from
{1, . . . , n}, {1, . . . ,m} respectively, and let L2(Ak ×
Bl) be a set of square-integrable functions f :
[xk−1, xk+1] × [yl−1, yl+1] → R, k = 1, . . . , n; l =
1, . . . ,m, on their domain.
Let 〈f, g〉kl be an inner product of functions f

and g in L2(Ak ×Bl) defined as follows

〈f, g〉kl =
∫ b

a

∫ d

c

f(x, y)g(x, y)Ak(x)Bl(y)dx dy

and let
‖f‖kl =

√
〈f, f〉kl

be a corresponding norm. Then L2(Ak × Bl) is a
Hilbert space.
In the sequel, we assume that our functions f :

[a, b]× [c, d]→ R are such that for all k = 1, . . . , n,
l = 1, . . . ,m, f |[xk−1,xk+1]×[yl−1,yl+1] ∈ L2(Ak ×Bl),
where f |[xk−1,xk+1]×[yl−1,yl+1] is the restriction of f
on [xk−1, xk+1]× [yl−1, yl+1].

2.2. F 1-transform of functions of two
variables

Let L1
2(Ak), k = 1, . . . , n be a linear subspace of

L2(Ak) with the orthogonal basis given by two poly-
nomials

P 0
k (x) = 1, P 1

k (x) = x− xk,

and L1
2(Bl), l = 1, . . . ,m be a linear subspace of

L2(Bl) with the basis

Q0
l (y) = 1, Q1

l (y) = y − yl.

In order to introduce the F 1-transform of a function
f : [a, b]× [c, d]→ R we choose the linear subspace
L1

2(Ak × Bl) of L2(Ak × Bl) with the orthogonal
basis given by S0

kl(x, y) = 1, S1
kl(x, y) = x − xk,

S2
kl(x, y) = y − yl.

S0
kl(x, y) = 1,
S1
kl(x, y) = x− xk,
S2
kl(x, y) = y − yl.

(2)

Lemma 1 Let for all k = 1, . . . , n, l = 1, . . . ,m
f ∈ L2(Ak × Bl) and let the polynomial F 1

kl be an
orthogonal projection of f on the linear subspace
L1

2(Ak × Bl) with the orthogonal basis {Sikl}i=0,1,2.
Then

F 1
kl = c1

kl,0S
0
kl + c1

kl,1S
1
kl + c1

kl,2S
2
kl, (3)

where

c1
kl,i = 〈f, Sikl〉kl

〈Sikl, Sikl〉kl
=∫ yl+1

yl−1

∫ xk+1
xk−1

f(x, y)Sikl(x, y)Ak(x)Bl(y)dx dy∫ yl+1
yl−1

∫ xk+1
xk−1

(Sikl(x, y))2Ak(x)Bl(y)dx dy
,

i = 0, 1, 2.

proof: Let the assumptions of Lemma 1 be
hold. From the properties of the Hilbert space
L2(Ak ×Bl), f − F 1

kl is orthogonal to the subspace
L1

2(Ak ×Bl), i.e. the following holds

〈f − F 1
kl, S

i
kl〉kl = 0, i = 0, 1, 2.

After substitution the expression for F 1
kl, we obtain

〈f − F 1
kl, S

i
kl〉kl =

〈f − c1
kl,0S

0
kl − c

1
kl,1S

1
kl − c

1
kl,2S

2
kl, S

i
kl〉kl =

〈f, Si
kl〉kl − c1

kl,i〈S
i
kl, S

i
kl〉kl = 0,

and therefore

c
1
kl,i =

〈f, Si
kl〉kl

〈Si
kl
, Si

kl
〉kl

, i = 0, 1, 2.

�

Similarly to the F-transform of a function f of
two variables, we define the F 1-transform of f with
components in the form of linear polynomials.

Definition 2 Let f : [a, b]× [c, d]→ R and let lin-
ear polynomials F 1

kl (3) be the kl-th orthogonal pro-
jections of f |[xk−1,xk+1]×[yl−1,yl+1] on L1

2(Ak × Bl),
k = 1, . . . , n, l = 1, . . . ,m. We define the (direct)
F 1-transform of f as a matrix F 1

nm[f ] = (F 1
kl) of

linear components F 1
kl, k = 1, . . . , n, l = 1, . . . ,m.

By Lemma 1, the F 1-transform components have
the following representation

F 1
kl = c1

kl,0 + c1
kl,1(x− xk) + c1

kl,2(y − yl),

k = 1, . . . , n, l = 1, . . . ,m,

where coefficients are given by

c1
kl,0 =

∫ yl+1
yl−1

∫ xk+1
xk−1

f(x, y)Ak(x)Bl(y)dx dy
(
∫ xk+1
xk−1

Ak(x)dx)(
∫ yl+1
yl−1

Bl(y)dy)
,

c1
kl,1 =

∫ yl+1
yl−1

∫ xk+1
xk−1

f(x, y)(x− xk)Ak(x)Bl(y)dx dy
(
∫ xk+1
xk−1

(x− xk)2Ak(x)dx)(
∫ yl+1
yl−1

Bl(y)dy)
,

c1
kl,2 =

∫ yl+1
yl−1

∫ xk+1
xk−1

f(x, y)(y − yl)Ak(x)Bl(y)dx dy
(
∫ xk+1
xk−1

Ak(x)dx)(
∫ yl+1
yl−1

(y − yl)2Bl(y)dy)
.

Here we made use of the fact that polynomials
{Sikl}i=0,1,2 are represented by (2).

Remark 3 The coefficients c1
kl,0 are equal to the

components Fkl (1) of the ordinary F-transform of
the given function f . Therefore, we can write for
each k = 1, . . . , n, l = 1, . . . ,m,:

F 1
kl = Fkl + c1

kl,1(x− xk) + c1
kl,2(y − yl),

where the coefficients c1
kl,1, c

1
kl,2 are given as above.
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Lemma 4 Let f : [a, b] × [c, d] → R and Ak × Bl,
k = 1, . . . , n, l = 1, . . . ,m be an hxhy-uniform fuzzy
partition of [a, b]× [c, d]. Moreover, let functions f ,
Ak, Bl be twice continuously differentiable on [a, b]×
[c, d]. Then for every k, l the following holds:

c1
kl,0 = f(xk, yl) +O(h)

where we assume that h = hx = hy.

proof: We will give the proof for fixed values
of k from 1, . . . , n, and l from 1, . . . ,m.

c
1
kl,0 =

∫ yl+1
yl−1

∫ xk+1
xk−1

f(x, y)Ak(x)Bl(y)dx dy

(
∫ xk+1

xk−1
Ak(x)dx)(

∫ yl+1
yl−1

Bl(y)dy)
.

We denote the below given integrals as follows:

I1 =

∫ xk+1

xk−1

f(x, y)Ak(x)dx,

I2 =

∫ yl+1

yl−1

I1Bl(y)dy,

I3 =

∫ xk+1

xk−1

Ak(x)dx,

I4 =

∫ yl+1

yl−1

Bl(y)dy.

Then we apply the trapezoidal rule with nodes
xk−1, xk, xk+1 to the integral I1 and the same rule
with nodes yl−1, yl, yl+1 to the integral I2. We use
the properties:

Ak(xk−1) = Ak(xk+1) = 0, Ak(xk) = 1,

Bl(yl−1) = Bl(yl+1) = 0, Bl(yl) = 1.

I1 =

∫ xk+1

xk−1

f(x, y)Ak(x)dx =

h[1/2f(xk−1, y)Ak(xk−1) + f(xk, y)Ak(xk) +
1/2f(xk+1, y)Ak(xk+1)] + R1 =
h[f(xk, y)] + R1,

I2 =

∫ yl+1

yl−1

I1Bl(y)dy =∫ yl+1

yl−1

[h(f(xk, y)) + R1]Bl(y)dy =

h[h(f(xk, yl)) + R1] + R2 =

h
2(f(xk, yl)) + hR1 + R2.

Integrals I3, I4 are:

I3 =

∫ xk+1

xk−1

Ak(x)dx = h,

I4 =

∫ yl+1

yl−1

Bl(y)dy = h.

By the trapezoidal rule, the estimations of errors
R1, R2 are as follows:

Ri = −
h3Mi

6
, i = 1, 2,

where for ξ ∈ (xk−1, xk+1) and η ∈ (yl−1, yl+1)

M1 = (f(ξ, y)Ak(ξ))(2)
,

M2 = (f(xk, η)Bl(η))(2)
.

Then the final estimation of the coefficient c1
kl,0 is

following:

c
1
kl,0 =

h2(f(xk, yl)) + hR1 + R2

h2 =

f(xk, yl) + O(h).

�

The goal of this contribution is to show that
the coefficients c1

kl,1 and c1
kl,2 approximate the cor-

responding partial derivatives ∂f
∂x |(xk,yl), ∂f

∂y |(xk,yl)
and to estimate the qualities of the approximation
of the partial derivatives of the original function.
The below given theorem proves the goal.

Theorem 5 Let Ak×Bl, k = 1, . . . , n, l = 1, . . . ,m
be an hxhy-uniform fuzzy partition of [a, b] × [c, d]
and let F 1

nm[f ] = (F 1
11, . . . , F

1
nm) where F 1

kl = c1
kl,0+

c1
kl,1(x− xk) + c1

kl,2(y− yk), be the F 1-transform of
f with respect to the given partition. Let functions
f , Ak, Bl be four times continuously differentiable
on [a, b] × [c, d]. Then for every k, l the following
holds:

∂F 1
kl

∂x
|(xk,yl) = c1

kl,1 = ∂f

∂x
|(xk,yl) +O(h), (4)

∂F 1
kl

∂y
|(xk,yl) = c1

kl,2 = ∂f

∂y
|(xk,yl) +O(h) (5)

where h = hx = hy.

proof: We will give the proof for (4) only, be-
cause the proof of (5) can be obtained analogously.

Let k = 1, . . . , n, l = 1, . . . ,m and

c
1
kl,1 =

∫ yl+1
yl−1

∫ xk+1
xk−1

f(x, y)(x− xk)Ak(x)Bl(y)dx dy

(
∫ xk+1

xk−1
(x− xk)2Ak(x)dx)(

∫ yl+1
yl−1

Bl(y)dy)
.

Let us denote h1 = h/2. We assume the following
integrals:

I1 =

∫ yl+1

yl−1

f(x, y)Bl(y)dy,

I2 =

∫ xk+1

xk−1

I1(x− xk)Ak(x)dx,

I3 =

∫ xk+1

xk−1

(x− xk)2
Ak(x)dx,

I4 =

∫ yl+1

yl−1

Bl(y)dy.

Then we apply the trapezoidal rule with three nodes
yl−1, yl, yl+1 to the integral I1 and we use the fol-
lowing:

Bl(yl−1) = Bl(yl+1) = 0, Bl(yl) = 1.
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I1 =

∫ yl+1

yl−1

f(x, y) Bl(y)dy =

h[1/2f(x, yl−1)Bl(yl−1) + f(x, yl)Bl(yl) +
1/2f(x, yl+1)Bl(yl+1)] + R1 =
h[f(x, yl)] + R1,

We apply the Simpson’s rule with five nodes
xk−1, xk−h1, xk, xk+h1, xk+1 to the integrals I2, I3
and we use the properties:

Ak(xk−1) = Ak(xk+1) = 0,

Ak(xk − h1) = Ak(xk + h1).

I2 =

∫ xk+1

xk−1

I1(x− xk)Ak(x)dx =∫ xk+1

xk−1

[h(f(x, yl)Bl(yl)) + R1](x− xk)Ak(x)dx =

h1/3{[4hf(xk − h1, yl)](xk − h1 − xk)Ak(xk − h1) +
4R1(xk − h1 − xk)Ak(xk − h1) +
4h[f(xk + h1, yl)](xk + h1 − xk)Ak(xk + h1) +
4R1(xk + h1 − xk)Ak(xk + h1)}+ R2 =
4h2

1hAk(xk + h1)
3

[f(xk + h1, yl)− f(xk − h1, yl)] + R2 =

8h3
1Ak(xk + h1)

3
[f(xk + h1, yl)− f(xk − h1, yl)] + R2,

I3 =

∫ xk+1

xk−1

(x− xk)2
Ak(x)dx =

h1/3[4(xk − h1 − xk)2
Ak(xk − h1) +

4(xk + h1 − xk)2
Ak(xk + h1)] + R3 =

8h3
1Ak(xk + h1)

3
+ R3.

Analogously to the previous proof, integral I4 is
given as follows:

I4 =

∫ yl+1

yl−1

Bl(y)dy = h = 2h1.

The estimations of the errors R2, R3 with respect
to Simpson’s rule and R1, R4 with respect to the
trapezoidal rule are following:

R1 = −
(yl+1 − yl−1)h2M1

12
= −

h3M1

6
= −

4h3
1M1

3
,

R2 = −
(xk+1 − xk−1)h4

1M2

180
= −

h5
1M2

45
,

R3 = −
h5

1M3

45
,

where M1,M2,M3 for ξ ∈ (xk−1, xk+1) and η, ζ ∈
(yl−1, yl+1) are given by

M1 = (f(x, ξ)Bl(ξ))(2)
,

M2 = (f(η, yl)Ak(η))(4)
,

M3 = ((ζ − xk)2
Ak(ζ))(4)

.

According to the integrals I1, I2, I3, I4, errors
R1, R2, R3 and the fact that Ak(xk + h1) > 0, we
come to the final estimation:
c

1
kl,1 =

8h3
1Ak(xk + h1)[f(xk + h1, yl)− f(xk − h1, yl)] + 3R2

16h4
1Ak(xk + h1) + 6h1R3

=

[f(xk + h1, yl)− f(xk − h1, yl)]/2h1 + O(h1)
1 + O(h2

1)
=

f(xk + h1, yl)− f(xk − h1, yl)
2h1

+ O(h1).

And therefore

c
1
kl,1 =

∂f

∂x
|(xk,yl) + O(h1).

According to the assumptions, O(h1) and O(h) are
counted to be same.

�

Corollary 6 Under the assumptions of Theorem 5,
for every k = 1, . . . , n, l = 1, . . . ,m, the following
holds:

f(x, y) = F 1
kl +O(h),

x ∈ [xk−1, xk+1], y ∈ [yl−1, yl+1].

proof: Let x ∈ [xk−1, xk+1], y ∈ [yl−1, yl+1],
k = 1, . . . , n, l = 1, . . . ,m. By the Taylor polyno-
mial of the first degree we have

f(x, y) =f(xk, yl) +
∂f

∂x
|(xk,yl)(x− xk)+

∂f

∂y
|(xk,yl)(y − yl) + O(h2).

(6)

According to Lemma 4 and Theorem 5, we can
rewrite the formula (6) to the following form:

f(x, y) = c
1
kl,0 + O(h) + (c1

kl,1 + O(h))(x− xk) +

(c1
kl,2 + O(h))(y − yl) + O(h2) =

c
1
kl,0 + c

1
kl,1(x− xk) + c

1
kl,2(y − yl) +

O(h) + O(h)(x− xk) + O(h)(y − yl) + O(h2) =

F
1
kl + O(h).

�

3. Inverse F 1-transform

We define the inverse F 1-transform of function f
similar to the ordinary case as a linear combination
of basic functions Ak, Bl and components F 1

kl.

Definition 7 Let F 1
nm[f ] = (F 1

kl), k = 1, . . . , n,
l = 1, . . . ,m be the F 1-transform of given function
f : [a, b]×[c, d]→ R with respect to Ak×Bl. We say
that the function f̂1

nm : [a, b]× [c, d]→ R represented
by

f̂1
nm(x, y) =

n∑
k=1

m∑
l=1

F 1
klAk(x)Bl(y),

x ∈ [a, b], y ∈ [c, d],
is the inverse F 1-transform of function f .

The following theorem estimates the difference
between the original function and its inverse F 1-
transform.

Theorem 8 Let Ak×Bl, k = 1, . . . , n, l = 1, . . . ,m
be an hxhy-uniform fuzzy partition of [a, b] × [c, d]
that fulfills the Ruspini condition on [a, b]×[c, d] and
let f̂1

nm be the inverse F 1-transform of f with respect
to the given partition. Moreover, let functions f ,
Ak, Bl be four times continuously differentiable on
[a, b]× [c, d]. Then, for all (x, y) ∈ [a, b]× [c, d] the
following estimation holds:

f(x, y)− f̂1
nm(x, y) = O(h),

where we assume h = hx = hy.
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proof: Let (x, y) ∈ [a, b]×[c, d] so that (x, y) ∈
[xk, xk+1] × [yl, yl+1] for some k = 1, . . . , n, l =
1, . . . ,m. Using the Corollary 6 and the Ruspini
condition we get

f(x, y)− f̂1
nm(x, y) =

f(x, y)−
n∑

i=1

m∑
j=1

F
1
ijAi(x)Bj(y) =

f(x, y)
n∑

i=1

m∑
j=1

Ai(x)Bj(y)−
n∑

i=1

m∑
j=1

F
1
ijAi(x)Bj(y) =

n∑
i=1

m∑
j=1

Ai(x)Bj(y)(f(x, y)− F 1
ij) =

k+1∑
i=k

l+1∑
j=l

Ai(x)Bj(y)(F 1
ij + O(h)− F 1

ij) = O(h).

�

4. Application to the edge detection
problem

In this section, we will show that the theory intro-
duced in this article can be applied in image pro-
cessing. Particularly, we will briefly describe the
main idea of using the F 1-transform technique in
the edge detection problem.
Edge detection is one of important problems in

image processing. This is due to a wide spectrum of
methods which use the edge detection as a prepro-
cessing technique. There are many methods which
solve the problem of edge detection. They differ one
from another one by a specification of the notion of
“edge”. Let us remark that there is no explicit def-
inition of the term “edge”.

In our approach, we chose a characterization of
an edge as an area with significant changes of im-
age intensity. In this respect, the edge detection
problem is connected with a searching of local max-
ima of the gradient magnitude. This means to find
the first derivative of the image function and the
local maxima of it.

If we keep the formalization of the theory de-
scribed above, we assume a given function

f : [1, N ]× [1,M ]→ R

of two variables as an image function. The function
f is then represented by N ×M discrete points.
We apply our theory (adapted to the discrete

case) to the image function f . By using the F 1-
transform we approximate partial derivatives of the
function f and determine the gradient magnitude:

| grad f | =

√
(∂f
∂x

)2 + (∂f
∂y

)2.

The advantage of the proposed method is that
we can solve two problems in one step by using the
technique of F 1-transform:

• blur the image,

• compute the gradient magnitude.

Blurring (removing of high frequencies) is a general
property of the F-transform technique. In image
processing, blurring is used to smooth the image
and filter out any noise.

The proposed method was successfully combined
with the Canny’s method of detection one-pixel
edges. In [6], it was proved that our technique de-
tects more relevant edges, keeps all necessary details
and gives a smoother output image.

5. Conclusion

In this paper, we extended the technique of F 1-
transform to functions of two variables and focused
on the F 1-transform components. We character-
ized coefficients in the F 1-transform component.
We showed how partial derivatives of an original
function can be approximated by coefficients of the
F 1-transform components and moreover, we esti-
mated the quality of this approximation. We also
described the inverse F 1-transform of functions of
two variables and estimated the quality of approxi-
mation of the original function. Finally, we briefly
described the main idea of applying the technique of
F 1-transform in the edge detection problem. In the
future, we aim to approximate mixed partial deriva-
tives and elaborate applications of these results.
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