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Abstract

In this paper, we will illustrate the F-transform
based on generalized fuzzy partitions as a tool
for expectile smoothing. This allows to represent
a time series in terms of a fuzzy-valued function
whose level-cuts are modeled by F-transform and
estimated by expectile regression. The proposed
methodology is illustrated on real economic and �-
nancial time series.
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1. F-transform and its properties

The fuzzy transform (F-transform) has recently
been introduced by I. Per�lieva in [3] (see also [4],
[5], [6]) and its properties as a general smoothing
tool have been illustrated in [8], [10], [1].
We brie�y recall the basic de�nitions and proper-

ties of the F-transform (see [3], [10]).
Given a continuous function f : [a; b] �! R and

given a �nite family of fuzzy sets (in particular fuzzy
numbers) A = fA1; A2; :::; Ang forming a fuzzy par-
tition of [a; b], the F-transform produces a vector
of real numbers F = (F1; F2; :::; Fn) (called the di-
rect F-transform). Each Fk is the minimizer of
a weighted squared error between the values f(x)
and Fk on the k�th subinterval of [a; b]. The direct
F-transform F is then used to de�ne the inverse F-
transform function bf : [a; b] �! R and the main
result is that bf is an approximating function of f
on [a; b].
In the basic setting, each basic function Ak of the

fuzzy partition (P;A) has been considered to be zero
outside the union of the two adjacent subintervals
[xk�1; xk][ [xk; xk+1]; we can generalize (see details
in [10]) the concept of a fuzzy partition by taking ba-
sic functions that cover more than two consecutive
subintervals. Consider an integer r � 1 and 2r + 1
consecutive points (and consequently 2r subinter-
vals) of P, xk�r; :::; xk; :::; xk+r for all k = 1; 2; :::; n;
to complete the notation, we extend the points to
x1�r < ::: < x0 < a and b < xn+1 < ::: < xn+r.

De�nition 1: ([3], [10]) Let r � 1 be a �xed in-
teger number; a fuzzy r-partition of [a; b] is

given by a pair (P;A(r)) where P = fa = x1 <
x2 < ::: < xn = bg is a decomposition of [a; b],
and A(r) is a family of n+ 2r � 2 continuous,
normal, convex fuzzy numbers

A(r) = fA(r)k : [a; b] �! [0; 1]j
k = �r + 2; :::; n+ r � 1g

such that
a. for k = 1; 2; :::; n, A(r)k is a continuous fuzzy

number with A(r)k (xk) = 1 and A
(r)
k (x) = 0 for

x =2 [xk�r; xk+r];
b. for k = 1; 2; :::; n, A(r)k is increasing on
[xk�r; xk] and decreasing on [xk; xk+r];
c. for k = �r + 2; :::; 0, A(r)k is decreasing on
[xk; xk+r];
d. for k = n+1; :::n+ r� 1, A(r)k is increasing
on [xk�r; xk];
e. for all x 2 [a; b], the following partition-of-r

condition holds
n+r�1P
k=�r+2

A
(r)
k (x) = r.

The integer r � 1 will be called the bandwidth of
the partition (P;A(r)).
A parametric form of a fuzzy r-partition of [a; b] is

obtained by considering n+r�2 shape functions of
type L(r)k (x) k = 2; :::; n+ r� 1; the basic functions
are

A
(r)
k (x) =

8><>:
L
(r)
k (x) if x 2 [xk�r; xk]

1� L(r)k+r(x) if x 2 [xk; xk+r]
0 otherwise

,(1)

for k = 2; :::; n� 1

A
(r)
k (x) =

�
1� L(r)k+r(x) if x 2 [xk; xk+r]

0 otherwise
,(2)

for k = �r + 2; :::; 1

A
(r)
k (x) =

�
L
(r)
k�r(x) if x 2 [xk�r; xk]
0 otherwise

,(3)

for k = n; :::; n+ r � 1.

Figure 1 illustrates a fuzzy 2-partition (P;A(2));
each A(2)k (x) covers four intervals.
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Figure 1. Generalized fuzzy partition, r=2.

De�nition 2: ([3], [10]) The direct F (r)-transform
(of integer bandwidth r � 1) based on the given
generalized fuzzy r-partition (P;A(r)) is de�ned
by the vector F(r) = (F

(r)
1 ; F

(r)
2 ; :::; F

(r)
n )T ,

where

F
(r)
k =

1

I
(r)
k

bR
a

f(x)A
(r)
k (x)dx for k = 1; 2; :::; n

(4)

I
(r)
k =

bR
a

A
(r)
k (x)dx: (5)

Correspondingly, the iF (r)-transform function
(of bandwidth r) is

bf (r)(x) = 1

r

nP
k=1

F
(r)
k A

(r)
k (x): (6)

We see that bf (r)(x) has the structure of a moving
average of the values {F (r)j ; j = 1; :::; n}; in fact,

assuming F (r)k = 0 if k < 1 or k > n, we have

bf (r)(x) = 1

r

k+rP
j=k�r

F
(r)
j A

(r)
j (x), (7)

i.e., a weighted average of F (r)k�r; :::; F
(r)
k ; :::; F

(r)
k+r

with weights
A
(r)
k�r(x)

r ; :::;
A
(r)
k (x)

r ; :::;
A
(r)
k+r(x)

r .
The main properties of the F(r)-transform are

analogues to the properties of the standard F-
transform proved in [3].

Proposition 1: ([3], [10]) Let f : [a; b] �! R
be a continuous function, and let F(r) =

(F
(r)
1 ; F

(r)
2 ; :::; F

(r)
n )T be its F (r)-transform with

respect to a given r-partition (P;A(r)). Then,
for any k = 1; 2; :::; n, the function �k(y) =
bR
a

(f(x)� y)2A(r)k (x)dx is minimized by y =

F
(r)
k .

The discrete version of the F(r)-transform is anal-
ogous to the standard case as in [3]. Consider a
function f : [a; b] �! R andm points t1 < t2 < ::: <

tm where f(ti) = fi is known, i = 1; 2; :::;m. Let
(P;A(r)) be a fuzzy r-partition of [a; b], and assume
that the set of points ftiji = 1; :::;mg is su¢ ciently
dense with respect to (P;A(r)), i.e. that each set
Tk = ftj jA(r)k (tj) > 0g, k = 1; :::; n, is nonempty.

De�nition 3: The discrete (direct) F (r)-transform
of the data set f(ti; fi)ji = 1; :::;mg with the
fuzzy r-partition (P;A(r)) (assuming ftiji =
1; :::;mg su¢ ciently dense) is de�ned by the
vector

F(r) =
�
F
(r)
1 ; F

(r)
2 ; :::; F (r)n

�T
, where (8)

F
(r)
k =

g
(r)
k

s
(r)
k

for k = 1; 2; :::; n , and

g
(r)
k =

mP
i=1

fiA
(r)
k (ti) , s

(r)
k =

mP
i=1

A
(r)
k (ti) > 0.

The discrete (inverse) iF (r)-transform is the
function bf (r) : [a; b] �! R given by

bf (r)(t) = 1

r

nP
k=1

F
(r)
k A

(r)
k (t), t 2 [a; b]. (9)

In matrix notation, de�ne the following vectors:

f = (f1; f2; :::; fm)
T (10)

g(r) =
�
g
(r)
1 ; g

(r)
2 ; :::; g(r)n

�T
bf (r) = � bf (r)(t1); bf (r)(t2); :::; bf (r)(tm)�T

and the following m� n matrix:

M(r) = [mi;k] with mi;k = A
(r)
k (xi). (11)

It follows that

bf (r) = 1

r
M(r)F(r) (12)

and 1
rM

(r) represents the moving average operator

acting on F(r) to produce bf (r). If the elements s(r)k
are organized into a diagonal n�matrix

Sr = diag(s
(r)
1 ; s

(r)
2 ; :::; s

(r)
n ), (13)

then we have (M(r))T f = g(r) so that F(r) =
S�1r (M(r))T f and

bf (r) = 1

r
M(r)S�1r (M(r))T f . (14)

Matrix Sr is invertible, and matrix H(r) =
1
rM

(r)S�1r (M(r))T is positive semide�nite, called
the hat-matrix in the resulting equationbf (r) = H(r)f . (15)
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2. F-transform in expectile smoothing

In order to investigate the role of F-transform in
expectile smoothing, let�s �rst introduce some basic
facts on quantile and expectile regression and au-
toregression, a recent interesting �eld in nonpara-
metric regression (see e.g. [7], [2] and the references
therein).
Consider a real-valued random variable �; a given

r-quantile � (r) is de�ned by the property that the
probability that an observation is less than � (r) is
r, with r 2 ]0; 1[

Prob(� � � (r)) = r:

Given a set of T observations xt; t = 1; :::; T; the
sample quantile � (r) can be obtained as the solution
to minimize the function (with respect to m)

Sr (m) =
TX
t=1

�r (xt �m)

where �r (y) is the check function (see e.g. [7]) de-
�ned for quantiles as

�r (y) = (r � I (y < 0)) y

and the function I(:) is de�ned by

I (y < 0) =

�
1 if y < 0
0 otherwise

.

We can write

Sr (m) = (r � 1)
X
xt<m

(xt �m) + r
X
xt>m

(xt �m)

and it is immediate to see that Sr (m) � 0 for all
real m.
If r = 1

2 , then the r-quantile gives the median me

of the (empirical) distribution of �, i.e. the mini-
mizer of the functional

me = argmin
m
S1=2 (m) =

TX
t=1

jxt �mj.

The expectiles are de�ned in a similar way as for
quantiles, in particular by using the mean instead
of the median.
The population expectiles e� (!) ; for ! 2 ]0; 1[ ;

are de�ned by tail expectations rather than tail
probabilities. For a given value of ! 2 ]0; 1[, the
sample expectile e� (!) is obtained by minimizing

S! (�) =
TX
t=1

�! (xt � �) , ! 2 ]0; 1[

where the check function is now given by

�! (y) = y
2 j! � I (y < 0)j .

This is equivalent to

S! (�) =
TX
t=1
xt<�

(1� !) (xt � �)2 +
TX
t=1
xt>�

! (xt � �)2 .

If ! = 1
2 we obtain the mean value �e of the

observations

�e = argmin
�
S 1
2
(�) =

1

2

TX
t=1

(xt � �)2

�e =
1

T

TX
t=1

xt

The ordinary least squares (OLS) estimation of �
is obtained by minimizing

SOLS =
TX
t=1

(xt � �)2 ;

when an asymmetry parameter ! 2]0; 1[ is cho-
sen, then the least asymmetrical weighted squares
(LAWS) function

S
(!)
LAWS(�) =

TX
t=1

w! (t) (xt � �)2 (16)

is minimized, where the weights w! (t) are

w! (t) =

�
! if xt > �

1� ! if xt � �

The value � = � (!) (depending on !) is the pop-
ulation expectile for di¤erent values of the asym-
metry parameter ! 2 ]0; 1[. The model in (16) can
be �tted by applying iteratively a weighted least
squares minimization (see e.g. [11]).
Iterated LAWS Algorithm:

1. Chose a value ! 2 ]0; 1[ and start with esti-
mated (initial) wli; l = 0 (e.g. w0t =

1
2 for all

t = 1; :::; T );
2. Compute the minimizer �l of S(!)LAWS(�) =

TX
t=1

wlt (xt � �)
2 and compute new weights

wl+1t =

�
! if xt > �

l

1� ! if xt � �l

increase l = l + 1;
3. Continue iteratively with step 2 until the
weights wl+1t become "stable" with respect to
wlt (i.e. w

l+1
t = wlt for all t).

Note that ordinary least squares is a special case
of LAWS when ! = 1

2 , and the solution of (16) in
step 2 is given by

�l =
TX
t=1

wltxt

,
TX
t=1

wlt .

The expectile F-transform, for a �xed generalized
fuzzy r-partition (P;A(r)) and for a given value of
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! 2]0; 1], can be de�ned, according to the expectiles
setting described above, to be the minimizer of the
following operators, for k = 1; :::; n,

�k;! (F ) =

bZ
a

w! (x) (f (x)� F )2A(r)k (x) dx

where

w! (x) =

�
! if f (x) � F

1� ! if f (x) > F
.

Remark that if ! = 0:5 the minimization of
�k;0:5 (F ) with respect to F gives the usual F-
transform component Fk;0:5 in De�nition 3.
According to the fact that, corresponding to ! >

1
2 we obtain a value of F greater than Fk;0:5, and
that, corresponding to ! < 1

2 we obtain a value of
F less than Fk;0:5, we suggest the following proce-
dure to obtain a fuzzy-valued version of the direct
F-transform:
Choose � 2]0; 1] and consider the two operators

��k;� (F ) and �
+
k;� (F ), de�ned by

��k;� (F ) =

bZ
a

w�� (x) (f (x)� F )
2
A
(r)
k (x) dx

where

w�� (x) =

�
�
2 if f (x) � F

1� �
2 if f (x) > F

and

�+k;� (F ) =

bZ
a

w+� (x) (f (x)� F )
2
A
(r)
k (x) dx

where

w+� (x) =

�
1� �

2 if f (x) � F
�
2 if f (x) > F

.

If � = 1 we obtain �k;0:5 (F ).

The minimization of ��k;� (F ) and �+k;� (F )

produces, respectively F�k;� and F+k;� so thath
F�k;�; F

+
k;�

i
is the ��cut of Fk:

As a consequence, the iF-transform of f is fuzzi-
�ed by: bf (x) = 1

r

nX
k=1

FkA
(r)
k (x)

with the corresponding ��cuts expressed as a linear
combination of intervals

h
F�k;�; F

+
k;�

i
:h bf (x)i

�
=

h bf�� (x) ; bf+� (x)i
�

(17)

=
1

r

nX
k=1

h
F�k;�; F

+
k;�

i
A
(r)
k (x)

When � = 1 we obtain the standard
F�transform and the corresponding iF�transform.

The discrete case can be handled in a similar way
as for the standard discrete F-transform. The ex-
pectiles, in the discrete case, are obtained by mini-
mizing the following functions:

��k;� (F ) =
mX
k=1

w�� (ti) (f (ti)� F )
2
A
(r)
k (ti) (18)

where

w�� (ti) =

�
�
2 if f (ti) � F

1� �
2 if f (ti) > F

and

�+k;� (F ) =
mX
k=1

w+� (ti) (f (ti)� F )
2
A
(r)
k (ti) (19)

where

w+� (ti) =

�
1� �

2 if f (ti) � F
�
2 if f (ti) > F

Consider that, for �xed values of w�� (ti), the min-
imizers F�k;� and F

+
k;� of (18) and (19) are obtained,

respectively, for k = 1; :::; n, by

F�k;� =

mX
k=1

w�� (ti) f (ti)A
(r)
k (ti)

mX
k=1

w�� (ti)A
(r)
k (ti)

and

F+k;� =

mX
k=1

w+� (ti) f (ti)A
(r)
k (ti)

mX
k=1

w+� (ti)A
(r)
k (ti)

.

An iterative procedure can be easily designed,
similar to the Iterated LAWS Algorithm as de-
scribed above.
Remark that if � = 1

2 , then we have w
�
� (ti) =

w+� (ti) =
1
2 for all i = 1; :::;m and we obtain ex-

actly the standard discrete F-transform of f based
on the observations f (ti) at the points t1; t2; :::; tm,
assumed to be su¢ ciently dense with respect to the
given fuzzy r-partition (P;A(r)).
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Figure 2. �-cuts of a fuzzy-valued function

by F-transform (m = 501, n = 101, r = 6) and

� = 0:01; 0:25; 0:5; 0:75; 1:0
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In �gure 2 we illustrate the expectile smoothing
to the same simulated example as in [10] (Section
4.3, example 1): f(ti) = 5e�0:5t

2
i sin2(�ti) + 2zi,

ti 2 [0; 2], i = 1; :::;m, where zi 2 N(0; 1).
The data are represented by points and 9 curves

are generated, corresponding to the values of
� = 0:01; 0:25; 0:5; 0:75; 1:0; it is to be remarked
that for any value of � 2]0; 1] we can obtain the
��cut

h
F�k;�; F

+
k;�

i
of Fk, k = 1; 2; :::; n. The curves

are then constructed by inverse F-transform, equa-
tion (17).

3. Application to �nancial time series

In order to show how the F-transform can be used
for expectile smoothing, we apply the proposed esti-
mation on some real �nancial time series. In all the
cases, the number n of subintervals in the fuzzy par-
tition (P;A(r)) is approximately m

5 and the band-
width r is estimated by generalized cross validation
as in [10]. In all cases, for simplicity, the basic func-
tions Ak(x), de�ned on the intervals [xk�r; xk+r],
are obtained by translating and rescaling the same
symmetric triangular fuzzy number T0, de�ned on
[�1; 1] and centered at the origin, with membership

T0(t) =

8<: 1 + t if t 2 [�1; 0]
1� t if t 2 [0; 1]
0 otherwise

.

The �rst time series is the daily London Gold
Fixing, the usual benchmark for the gold price; it
also provides a published benchmark price that is
widely used as a pricing medium by producers, con-
sumers, investors and central banks. The m = 1317
observations cover the period from 1 june 2007 to
31 august 2012.
Figures 3 and 3a represent the observations and

the �-cuts obtained by the repeated application of
F-transform (18), (19) for the indicated values of
� 2]0; 1].
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Figure 3. �-cuts of a fuzzy-valued function

by F-transform (m = 1317, n = 250, r = 3) and

� = 0:01; 0:25; 0:5; 0:75; 1:0
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Figure 3a. Zoom of �gure 3.

As a second collection of data we use 5 years of
the FTSE 100, that is a share daily index of the
100 companies listed on the London Stock Exchange
with the highest market capitalization. It is one of
the most widely used stock indices and is seen as
an indicator of business prosperity. The m = 1264
cover the period from 1 june 2007 to 31 may 2012.
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Figure 4. �-cuts of a fuzzy-valued function

by F-transform (m = 1264, n = 250, r = 3) and

� = 0:01; 0:25; 0:5; 0:75; 1:0

The fuzzy values (17) can be better distinguished
in �gure 4a.
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Figure 4a. Zoom of �gure 4.
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The third series of data considers the traded vol-
umes of FTSE 100 above.
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Figure 5. �-cuts of a fuzzy-valued function

by F-transform (m = 1264, n = 250, r = 3) and

� = 0:01; 0:25; 0:5; 0:75; 1:0

The last time series is the daily ITRAXX Eu-
rope index, with m = 1380 data from 16/6/2004 to
01/10/2009.
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Figure 6. �-cuts of a fuzzy-valued function

by F-transform (m = 1380, n = 276, r = 4) and

� = 0:01; 0:25; 0:5; 0:75; 1:0

4. Conclusions

The F-transform (FT) setting is suggested as a tool
for expectile smoothing of a time series. The dis-
crete F-transform Fk corresponding to di¤erent ex-
pectile smoothing estimations are used to obtain the

��cuts
h
F�k;�; F

+
k;�

i
of Fk, k = 1; 2; :::; n and con-

sequently, by inverse F-transform, a fuzzy-valued
function is constructed representing the given time
series. What seems to be of interest, is the fact
that both direct and inverse F-transforms are able
to reproduce (the direct FT) and to reconstruct (us-
ing inverse FT) the time series at di¤erent levels of
precision.
Using an appropriate (generalized) fuzzy parti-

tion, the ��cuts
h
F�k;�; F

+
k;�

i
of Fk have the same

smoothing property inherited from F-transform,
with a "degree of smoothness" depending on the
bandwidth of the partition.
The preliminary results in section 3, obtained for

the real �nancial time series, encourage to further
work in the study and applications of F-transform
as a tool to obtain a fuzzy-valued interpretation of a
time series. In particular, we are interested to better
understand the connections between the fuzzy par-
tition (P;A(r)) (the number and form of the basic
functions, the length of the bandwidth,...) and the
properties of the estimated fuzzy-valued (inverse)
F-transform.
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