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Abstract

This paper deals with the problem of the aggrega-
tion of implication functions. After characterizing
those binary operations which merge two implica-
tion functions into a new implication function, we
study some aspects of the aggregated implication
functions in terms of the two given ones. In partic-
ular, we are interested in aggregation processes such
that properties of the implication functions are pre-
served.
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1. Introduction

A many-valued propositional logic in which the set
of truth values is modeled by the real unit inter-
val [0, 1], and which is an extension of the classical
Boolean logic, i.e., the logic with truth values {0, 1},
is often called a fuzzy logic. In such a logic, the
(fuzzy) implication If p, then q with p and q fuzzy
propositions, is usually interpreted by an implica-
tion function, that is, a function I : [0, 1]× [0, 1] →
[0, 1] which satisfies a set of natural axioms. A com-
plete study of this class of functions can be found
in [1] and references therein. Specifically, given a
fuzzy set A on an universe X, a fuzzy set B on an
universe Y , and points x ∈ X, y ∈ Y one consider
the fuzzy implication

(A→ B)(x, y) = I(A(x), B(y)), (1)

where I is an implication function. Note that the
value (A→ B)(x, y) only depends, once fixed I, on
the values taken by A and B at the points x and y;
we say that the fuzzy implication → is functionally
expressible through the implication function I. Al-
ternatively, one can consider fuzzy implications, as
well as conjunctions, disjunctions and other logical
connectives, defined in an axiomatic way (see [4]) by
considering similar conditions to those used in the
definition of implication function, but now applied
directly on the fuzzy sets.
Approximate reasoning refers to processes by

which imprecise conclusions are inferred from im-
precise premises. When imprecision is fuzzy in na-
ture, the term fuzzy reasoning is used.

The most common formal deduction process in
fuzzy reasoning has the following structural pattern:

if we know that A implies B and we know A,
then we conclude B,

where A and B are fuzzy sets on universes X and
Y respectively. This pattern of reasoning is called
Modus Ponens (MP ). A modified version of the
MP is:

if we know that A implies B and we know A′,
then we conclude B′,

(in short, A→ B & A′ / B′ )

where A, A′ are fuzzy sets on X and B, B′ are fuzzy
sets on Y , and the conclusion B′ is given by the
formula B′(y) = sup{T (A′(x), I(A(x), B(y))) ; x ∈
X}, y ∈ Y , where the conjunction & is modelled by
a t-norm T and the implication → is interpreted
by an implication function I. The t-norm T and
the implication function I are assumed such that
B′ = B when A′ = A; in this sense, this extended
pattern of reasoning is called theGeneralized Modus
Ponens (GMP ).

In this paper, we address the aggregation of impli-
cation functions. More specifically, our purpose is
to find functions F : [0, 1]n → [0, 1] such that for any
implication functions I1, . . . , In, K = F (I1, . . . , In)
it is also an implication function, where K(x, y) =
F (I1(x, y), . . . , In(x, y)), x, y ∈ [0, 1].

The paper is organized as follows. In the next
section we give some basic preliminaries that will
be used along the paper. In Section 3 we deal with
the problem of aggregation of implication functions,
and in the Section 4 we study the preservation of
properties concerning implication functions through
the process of aggregation. The paper ends with a
section where some conclusions are mentioned.

2. Preliminaries

Here, we recall some basic definitions:

Definition 2.1 A map F : [0, 1]2 → [0, 1] is said to
be an aggregation function if it satisfies:

i) (Monotonicity) F (x, y) 6 F (x′, y′), whenever
x 6 x′ and y ≤ y′.

ii) (Boundary conditions) F (0, 0) = 0 and
F (1, 1) = 1.

Definition 2.2 A triangular norm (t-norm for
short) is an increasing mapping T : [0, 1]2 → [0, 1]
which is associative, commutative, and has neutral
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element 1. A t-conorm is an increasing mapping
S : [0, 1]2 → [0, 1] which is associative, commuta-
tive, and has neutral element 0.

Definition 2.3 A negation is a decreasing mapping
N : [0, 1]→ [0, 1] such that N(1) = 0 and N(0) = 1.
We say that a negation is strong if it is involutive.

The classical negation is N(x) = 1− x.
A good reference book on t-norms is [2]. For ag-

gregation functions see, for example, [3].

3. Aggregation of implication functions

Definition 3.1 A mapping I : [0, 1]2 → [0, 1] is
said to be an implication function if I(0, 0) =
I(1, 1) = 1, I(1, 0) = 0 and is decreasing w.r.t the
first variable and increasing w.r.t. the second vari-
able.

We will denote the set of implication functions
defined on [0, 1] by IF .

Proposition 3.2 Let I, J ∈ IF and a function
F : [0, 1]2 → [0, 1]. Then,

K(a, b) = F
(
I(a, b), J(a, b)

)
is an implication function, for all I, J , if and only
if F is an aggregation function.

Proof. First, we will see that if F is an aggregation
function, then K is an implication function, for all
I, J .

i) (Boundary conditions)

K(0, 0) = F (I(0, 0), J(0, 0)) = F (1, 1) = 1,
K(1, 1) = F (I(1, 1), J(1, 1)) = F (1, 1) = 1,
K(1, 0) = F (I(1, 0), J(1, 0)) = F (0, 0) = 0.

ii) (Monotonicity) K is decreasing with respect to
the first variable: if x 6 x′, then I(x, y) >
I(x′, y) and J(x, y) > J(x′, y).
Furthermore, F (I(x, y), J(x, y)) >
F (I(x′, y), J(x′, y)), and so K(x, y) > K(x′, y).
Similarly, for the increasingness of K with re-
spect to the second variable.

Therefore K is an implication function.
Now, we assume that K ∈ IF , for all I, J , and

we will show that F is an aggregation function:

i) (Boundary conditions) From the boundary con-
ditions of K and for any fixed I, J ∈ IF we
have
(a)

1 = K(0, 0)
= F (I(0, 0), J(0, 0))
= F (1, 1).

(b)
0 = K(1, 0)

= F (I(1, 0), J(1, 0))
= F (0, 0).

ii) (Monotonicity) If a 6 a′ we need to prove
that F (a, b) 6 F (a′, b). It is sufficient to find
x, x′, y ∈ [0, 1], with x > x′, and I, J ∈ IF ,
such that

I(x, y) = a,
I(x′, y) = a′,
J(x, y) = J(x′, y) = b.

For that, we consider these implication func-
tions:

I(x, y) =


1 if x = 0 or y = 1
a′ if 0 < x 6 y < 1
0 if (x, y) = (1, 0)
a otherwise,

and

J(x, y) =

 1 if x = 0 or y = 1
0 if (x, y) = (1, 0)
b otherwise.

Then,

F (a, b) = F (I(x, y), J(x, y)))
= K(x, y)
6 K(x′, y)
= F (I(x′, y), J(x′, y))
= F (a′, b),

that is, F (a, b) 6 F (a′, b).
Analogously, if b 6 b′ we need to prove
F (a, b) 6 F (a, b′). For this, we take now the
following implication functions:

I(x, y) =

 1 if x = 0 or y = 1
0 if (x, y) = (1, 0)
a otherwise,

and

J(x, y) =


1 if x = 0 or y = 1
b′ if 0 < x 6 y < 1
0 if (x, y) = (1, 0)
b otherwise,

,

and then we proceed in a similar way.

If F is commutative then the aggregated of two
implication functions does not depend on the order
in which they are taken. On the other hand, in order
to aggregate more than two implication functions
the associativity of the aggregation function F is
needed.

Example 3.3 Given f : [0, 1] → [0, 1] we consider
F : [0, 1]2 → [0, 1] defined by F (a, b) = f(a). Then
F is an aggregation function if and only if f is in-
creasing, with f(0) = 0 and f(1) = 1. Of course, in
this case K(x, y) = F (I(x, y), J(x, y)) = f(I(x, y))
is the f -transformed of the first implication I.
Moreover, F is associative if and only f2 = f .
Note that the only increasing continuous function

satisfying f2 = f is f = Id. The shape of non con-
tinuous functions such that f2 = f is as the function
in Fig. 1.
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Figure 1: A non-continuous function such that f2 = f .

It could be interesting to study how properties of
F determine some features of F (I, J). Let us denote
by Lc, c ∈ [0, 1], the c-region of a function L, that
is,

Lc = {(x, y) ∈ [0, 1]2;L(x, y) = c}.

We will focus our attention on the meaning of idem-
potent, absorbent and neutral elements of F in the
result of the aggregation.
For example, the existence of idempotent ele-

ments, that is, elements a such that F (a, a) = a.

Proposition 3.4 Let F be an aggregation function.
Then:

i) F (I, J)a ⊇ Ia ∩ Ja for any I, J ∈ IF if and
only if a is an idempotent element of F .

ii) The equality F (I, J)a = Ia ∩ Ja holds for any
I, J ∈ IF if and only if it is F (x, y) = a only
at (a, a).

Proof.

i) Let a be an idempotent element of F and sup-
pose (x, y) ∈ Ia∩Ja, that is, I(x, y) = J(x, y) =
a. Then,

F (I, J)(x, y) = F (I(x, y), J(x, y))
= F (a, a)
= a.

and so, (x, y) ∈ F (I, J)a.
The converse is as follows: we choose I and J
such that Ia ∩ Ja 6= ∅ and let (x, y) ∈ Ia ∩ Ja.
As (x, y) ∈ F (I, J)a, we have

a = F (I, J)(x, y)
= F (I(x, y), J(x, y))
= F (a, a).

ii) From right-to-left we need to prove the inclu-
sion F (I, J)a ⊆ Ia ∩ Ja.

If (x, y) ∈ F (I, J)a, then F (I(x, y), J(x, y)) =
a, but this holds only for I(x, y) = J(x, y)) = a,
that is, (x, y) ∈ Ia ∩ Ja.
Now, the converse. Consider F (x, y) = a =
F (I(z, t), J(z, t)), where (z, t) ∈ [0, 1]2 and I, J
are implication functions such that I(z, t) = x
and J(z, t) = y. As (z, t) ∈ Ia ∩ Ja, that is,
I(z, t) = J(z, t) = a, we have x = y = a.

Remember that 0 and 1 are idempotent; so, these
results give relevant information about the 0 and
1-regions of F (I, J) from the ones of I and J , as
Ex. 3.7 will show.

More can be said about the a-region of F (I, J) if
a is not only idempotent but absorbent, that is,

F (a, x) = F (x, a) = a,

for all x ∈ [0, 1].

Proposition 3.5 Let a be an idempotent element
of an aggregation function F . Then:

i) F (I, J)a ⊇ Ia ∪ Ja for any I, J ∈ IF if and
only if a is absorbent.

ii) F (I, J)a = Ia ∪ Ja for any I, J ∈ IF if and
only if it is F (x, y) = a only when x = a or
y = a.

Proof.

i) First, let us suppose F (I, J)a ⊇ Ia ∪ Ja.
For any z ∈ [0, 1] we can choose (x, y), I and
J such that (x, y) ∈ Ia and (x, y) ∈ Jz. There-
fore, we have F (I, J)(x, y) = F (a, z). But we
know that F (I, J)(x, y) = a, because (x, y) ∈
F (I, J)a. That is, F (a, z) = a for any z.
In a similar way, we arrive at F (z, a) = a, and
so a is absorbent.
For the converse, consider (x, y) ∈ Ia ∪
Ja. Then, F (I, J)(x, y) equals F (a, J(x, y)) or
F (I(x, y), a). In both cases F (I, J)(x, y) = a,
because a is supposed absorbent, and (x, y) ∈
F (I, J)a.

ii) Let us suppose F (I, J)a = Ia ∪ Ja.
For (x, y) ∈ Ia ∪ Ja, we have I(x, y) = a or
J(x, y) = a. Then, F (x, a) = F (a, x) = a be-
cause (x, y) ∈ F (I, J)a.
For the converse we need to prove F (I, J)a ⊆
Ia ∩ Ja, under the condition F (x, y) = a only
when x = a or y = a.
Suppose that (x, y) ∈ F (I, J)a. Then,
F (I(x, y), J(x, y)) = a, but this only holds
when I(x, y) = a or J(x, y) = a, that is,
(x, y) ∈ Ia ∩ Ja.

The existence of a neutral element:

F (e, x) = F (x, e) = e,

for all x ∈ [0, 1], has also influence in the aggrega-
tion.

571



Proposition 3.6 Let F be an aggregation function
with neutral element e ∈ [0, 1]. Then:

• F (I, J)(x, y) = J(x, y) whenever (x, y) ∈ Ie,
• F (I, J)(x, y) = I(x, y) whenever (x, y) ∈ Je.

Proof. For (x, y) ∈ Ie, we have:

F (I, J)(x, y) = F (I(x, y), J(x, y))
= F (e, J(x, y))
= J(x, y).

The same for the other case.
Let us conclude with an example.

Example 3.7 We consider two implication func-
tions I and J , whose 0 and 1-regions are the shaded
areas shown in Fig. 2.

i) If we take as the aggregation function a t-norm
T with trivial 0-region:

T0 = {(x, y) ∈ [0, 1]2 : x = 0 or y = 0},

then:
– T fulfills the condition in Prop. 3.4-ii for

1, and so T (I, J)1 = I1 ∩ J1.
– As T (x, y) = 0 only when x = 0 or y = 0,

we have T (I, J)0 = I0 ∪ J0 (Prop. 3.5-ii).
– And according to Prop. 3.6, T (I, J) = J

on I1 and T (I, J) = I on J1 because 1 is
neutral.

See Fig. 3.
ii) Similarly if we consider a t-conorm S with triv-

ial 1-region:

S1 = {(x, y) ∈ [0, 1]2 : x = 1 or y = 1}.

In this case, we have:
– S(x, y) = 0 only for x = y = 0, and so
S(I, J)0 = I0 ∩ J0 (Prop. 3.4-ii).

– S(I, J)1 = I1∪J1 because S(x, y) = 1 only
when x = 1 or y = 1 (Prop. 3.5-ii).

– Finally, Prop. 3.6 applied to the neutral 0
says that S(I, J) = J on I0 and S(I, J) =
I on J0.

Fig. 4 gives the result of the aggregation.

4. Preservation of properties of implication
functions

Some of the properties that can be required for im-
plication functions are the following. Let x, y ∈
[0, 1]:

(NP) Neutrality principle:

I(1, x) = x,

(CP) Law of contraposition, with respect to a fuzzy
negation N :

I(x, y) = I(N(y), N(x)),

I

1

0

J

1

0

Figure 2: The zero and one regions of I, J .

T (I, J)

1

0J

I

Figure 3: The result of the aggregation for a t-norm
T with trivial 0-region.

S(I, J)

1

0J

I

Figure 4: The result of the aggregation for a t-
conorm S with trivial 1-region.
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(OP) Ordering property:

I(x, y) = 1⇔ x 6 y,

(IP) Identity principle:

I(x, x) = 1,

(C) Continuity.

Our purpose is to study how F should be in order
to preserve those properties. Briefly, we say that F
preserves a property P if whatever I and J fulfilling
P , then K = F (I, J) also satisfies it.

Proposition 4.1 Any aggregation function F pre-
serves IP and CP .

Proof. If I, J are IP we have, for all x ∈ [0, 1],

K(x, x) = F (I(x, x), J(x, x)) = F (1, 1) = 1,

and then K also is IP.
For the preservation of CP:

K(N(y), N(x))
= F (I(N(y), N(x)), J(N(y), N(x)))
= F (I(x, y), J(x, y))
= K(x, y)

Proposition 4.2 Let F be an aggregation function.
Then:

i) F preserves NP if and only if F (x, x) = x for
all x ∈ [0, 1] (F is idempotent).

ii) F preserves OP if and only if F (x, y) < 1 when
x, y < 1.

iii) F preserves continuity if and only if F is con-
tinuous.

Proof.

i) If I, J,K are NP we have, for all y ∈ [0, 1],

y = K(1, y) = F (I(1, y), J(1, y)) = F (y, y)

then F is idempotent.
For the converse: if F is idempotent and the
implications I, J are NP we have, for all y ∈
[0, 1],

y = F (y, y) = F (I(1, y), J(1, y)) = K(1, y).

Then, K also fulfills the neutrality principle.
ii) From left-to-right: let us suppose that F pre-

serves OP. Let a, b < 1. There exist x, y ∈
[0, 1], with x > y, and I, J OP such that
I(x, y) = a and J(x, y) = b. Then,

F (a, b) = F (I(x, y), J(x, y)) = K(x, y),

which is less than 1 because K is OP.
Now, the converse. The condition is

x, y < 1⇒ F (x, y) < 1.

Let I, J be OP.

a T

S b

x

a < b

a T

S b

y

a > b

Figure 5: Associative, continuous aggregation func-
tions on [0, 1]2.

– If x 6 y, I(x, y) = J(x, y) = 1 and then
K(x, y) = F (1, 1) = 1

– If x > y, I(x, y) < 1 and J(x, y) < 1. So,
K(x, y) < 1 due to the condition.

That is, K is OP and F preserves OP.
iii) The continuity follows directly from the conti-

nuity of involved implications I and J .

A class of aggregation functions that could be ap-
propriate to our purpose, in order to assure the ful-
fillness of some of the properties we have dealt with,
is that introduced in [3], which can be reformulated
as follows.

Proposition 4.3 If F : [0, 1]2 → [0, 1] is an asso-
ciative, continuous in each argument, aggregation
function, then F has the form:

F (x, y) =


S(x, y) if x, y ∈ [0, α]2
T (x, y) if x, y ∈ [β, 1]2
(x ∧ y) ∨ (x ∧ a) ∨ (y ∧ b))

otherwise.
(2)

where T, S are continuous t-norm and t-norm, a =
F (1, 0), b = F (0, 1), α = a ∧ b and β = a ∨ b.

See Fig. 5, with the two cases a < b and a > b.
Taking into account Propositions 4.1 and 4.2, we

observe that any continuous associative aggregation
function preserves IP, CP, OP and C. With respect
to the other property we can establish the following.

Proposition 4.4 A continuous associative aggre-
gation function F preserves NP if and only if it is
of the form:

F (x, y) =


x ∨ y if x, y ∈ [0, α]2,
x ∧ y if x, y ∈ [β, 1]2,
(x ∧ y) ∨ (x ∧ a) ∨ (y ∧ b))

otherwise.
(3)

Proof. The condition for NP is the idempotency
of F . So, T = min and S = max in (3).
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a y

y b

a b

x

a x

x b

b a

y

Figure 6: Associative, continuous, idempotent ag-
gregation functions on [0, 1]2.

a

a

y

y

x

x

a

Figure 7: Associative, continuous, idempotent,
commutative aggregation functions on [0, 1]2.

The two cases a < b and a > b can be seen in
Fig. 6.

Remark 4.5 A continuous associative aggregation
function F is commutative if and only if a = b. In
this case the aggregation functions, shown in Fig. 7,
are the following:

F (x, y) =

 x ∨ y if x, y ∈ [0, α]2
x ∧ y if x, y ∈ [β, 1]2
a otherwise.

5. Conclusions

Firstly, we have described how a binary operation
on the unit interval [0, 1] should be in order to trans-
form two implication functions in another implica-
tion function.
We have considered some aspects of the aggre-

gated implication functions in terms of the two
given ones and also we have analysed under which
conditions the aggregation operation preserves some
significant properties of the involved implication
functions.
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