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Abstract

In many decision making problems evaluations of
possible alternatives of choice, with respect to sev-
eral points of view (criteria) are expressed by means
of h−interval (or fuzzy numbers). For example a
pessimistic and an optimistic evaluation generate
an interval containing the exact evaluation. These
situations reflect lack of information or uncertainty
on the same evaluations. In this paper we discuss
h − k−aggregation functions that aggregate several
h−interval evaluations into an overall evaluation,
again expressed in terms of a k−interval.

1. Introduction

In Decision Analysis and, especially, in multiple-
criteria Decision Analysis (MCDA) the aggregation
of information is a fundamental process [6] and, con-
sequently, different types of aggregation operators
are found in the literature [7]. However, while in
the theory it is often assumed that the available
information are expressed by means of exact num-
bers, in many real situations found in MCDA the
available information is vague or imprecise. In or-
der to assess the uncertainty a good method is the
use of fuzzy numbers. To express the evaluation
of possible alternatives of choice by means of fuzzy
numbers means that we are able to consider the best
and worst possible scenario and also the possibility
that the internal values of the fuzzy intervals will
occur.

We consider h−intervals [a1, . . . , ah], a1, . . . , ah ∈
R such that a1 ≤ . . . ≤ ah that express evalua-
tions with respect to a considered point of view by
means of the h values a1, . . . , ah. For example, if
h = 2, then evaluations are 2-intervals assigning to
each criterion two evaluations corresponding to a
pessimistic and an optimistic evaluation. If h = 3,
then evaluations are 3-intervals [a1, a2, a3] assigning
to each criterion three evaluations such that a1 cor-
responds to a pessimistic evaluation, a2 corresponds
to an average evaluation and a3 corresponds to an
optimistic evaluation. If h = 4, then evaluations are
4-intervals [a1, a2, a3, a4] assigning to each criterion
four evaluations such that a1 corresponds to a pes-
simistic evaluation, a2 and a3 to two evaluations
defining an interval [a2, a3] of average evaluation
and a4 corresponds to an optimistic evaluation. Ob-
serve that 2-interval evaluations can be seen as usual
intervals of evaluations, 3-interval evaluations can

be seen as triangular fuzzy numbers and 4-intervals
evaluations can be seen as trapezoidal fuzzy num-
bers. We have similar situations with h ≥ 5. Let us
denote by Ih the set of all h-intervals, i.e.

Ih = {[a1, . . . , ah]|a1, . . . , ah ∈ R , a1 ≤ . . . ≤ ah}.

In [10], a general framework for the comparison of
h−intervals has been presented. Here we introduce
h − k−aggregation functions that assigns to vectors

x = ([x11, . . . , x1h] , . . . , [xn1 . . . , xnh]) ∈ In
h

of h−interval evaluations with respect to a set N =
{1, . . . , n} of considered criteria an overall evalua-
tion in terms of a k−interval.

1

a1,3a1,2a1,1

1
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1
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Formally an h−k−aggregation function is a func-
tion g : In

h → Ik with g(x) = (g1(x), . . . , gk(x)),
satisfying the following properties:

• monotonicity: for all x, y ∈ In
h , if xi,j ≥ yi,j

for all i = 1, . . . , n and for all j = 1, . . . , h,
then gr(x) ≥ gr(y) for all r = 1, . . . , k;

• left boundary condition: if xi,h → −∞ for all
i = 1, . . . , n, then gr(x) → −∞ for all r =
1, . . . , k;

• right boundary condition if xi,1 → +∞ for all
i = 1, . . . , n, then gr(x) → +∞ for all r =
1, . . . , k.

2. The h − k−weighted average

Let us consider k vectors of In
h

a(r) = ([a
(r)
11 , . . . , a

(r)
1h ], . . . , [a

(r)
n1 . . . , a

(r)
nh ]),

r = 1, . . . , k, such that
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•
∑h

j=h−t a
(r1)
i,j ≥

∑h
j=h−t a

(r2)
i,j , for all i =

1, . . . , n, t = 1, . . . h − 1 and r1, r2 = 1, . . . , k,
such that r1 ≥ r2;

•
∑n

i=1

∑h
j=1 a

(r)
i,j = 1, for all r = 1, . . . , k.

The h − k−weighted average with respect to the
weights a(r), r = 1, . . . , k is the h − k−aggregation
function

WAa : In
h → Ik,

with WAa(x) = (WAa,1(x), . . . , WAa,k(x)), de-
fined as follows: for all x ∈ In

h and r = 1, . . . , k,

WAa,r(x) =

n∑

i=1

h∑

j=1

a
(r)
i,j xi,j . (1)

The h − k−weighted average can be formulated
also as follows. Let us consider k vectors of In

h

b(r) = ([b
(r)
11 , . . . , b

(r)
1h ], . . . , [b

(r)
n1 . . . , b

(r)
nh ]),

r = 1, . . . , k, such that

• b
(r)
i,1 ≥ b

(r)
i,2 ≥ . . . ≥ b

(r)
i,h ≥ 0, for all i = 1, . . . , n

and r = 1, . . . , k;

• b
(1)
i,j ≥ b

(2)
i,j ≥ . . . ≥ b

(k)
i,j ≥ 0, for all i = 1, . . . , n

and j = 1, . . . , h;

•
∑n

i=1 b
(r)
i,1 = 1, for all i = 1, . . . , n and r =

1, . . . , k.

The h − k−weighted average with respect to
weights b

(r) is the h − k−aggregation function
WAa : In

h → Ik defined as follows: for all x ∈ In
h

and r = 1, . . . , k,

WAa,r(x) =
n∑

i=1

b
(r)
i,1 xi,1 +

n∑

i=1

h∑

j=2

b
(r)
i,j (xi,j −xi,j−1).

(2)

There is the following relation between weights b
(r)
ij

and a
(r)
i,j : for all i = 1, . . . , n; j = 1, . . . , h − 1, and

r = 1, . . . , k,

{

a
(r)
i,j = b

(r)
i,j − bi,j+1

a
(r)
i,h = b

(r)
i,h.

(3)

Two very natural conditions for h − k−aggregation
functions are the following

• additivity: for all x, y ∈ In
h , g(x + y) = g(x) +

g(y), where x+y = z with zi,j = xi,j +yi,j for
all i = 1, . . . , n and for all j = 1, . . . , h;

• idempotence: for all a ∈ R, g(a) = a, where
a ∈ In

h is a = [a, . . . , a].

Theorem 1 An h − k−aggregation function is ad-
ditive and idempotent if and only if it is the h − k
weighted average.

3. The h − k−Choquet integral

Given the set of criteria N = {1, . . . , n} let us con-
sider the set

Q = {(A1, . . . , Ah) | A1 ⊆ A2 ⊆ . . . ⊆ Ah ⊆ N} .

Elements of Q are h−uple of coalitions of crite-
ria Aj such that Aj ⊆ Aj+1, j = 1, . . . , h − 1
We indicate a generic element (A1, . . . , Ah) ∈ Q
with the abbreviated form (Aj)h

1 , which means
(Aj)h

j=1. Regarding its algebraic structure, the set

Q is a lattice where sup{(Aj)h
1 , (Bj)h

1 } = (Aj ∪
Bj)h

1 and inf{(Aj)h
1 , (Bj)h

1 } = (Aj ∩ Bj)h
1 , for all

(Aj)h
1 , (Bj)h

1 ∈ Q.
Regarding the significance of Q in this work, let us
consider a possible alternative of choice x and sup-
pose that on each criterion i ∈ N , x is evaluated by
means of an h−interval. Thus, such an alternative
x can be identified with a score vector

x = ([x11, . . . , x1h] , . . . , [xn1 . . . , xnh]) ∈ In
h .

Now consider a fixed evaluation level t ∈ R (e.g.
t could represent some satisfaction level). The set
{i ∈ N | xi,j ≥ t} (briefly indicated with {xi,j ≥ t})
for all j = 1, . . . , h aggregates the criteria whose
jth evaluation of x is at least t and, obviously, the
vector ({xi,1 ≥ t}, . . . , {xi,h ≥ t}) ∈ Q.
We aim to define a tool allowing for the assignment
of a “weight” to such elements of Q.

Definition 1 An h−interval-capacity on Q is a
function µh : Q → [0, 1] such that

• µr(∅, . . . , ∅) = 0, and µh(N, . . . , N) = 1; and
• for all (Aj)h

1 , (Bj)h
1 ∈ Q such that Aj ⊆ Bj for

all j = 1, . . . , h, µh

[
(Aj)h

1

]
≤ µh

[
(Bj)h

1

]
.

Definition 2 An h−k−interval capacity is a vector
(µh1

, . . . , µhk
) = (µhr

)k
r=1 such that

• for every r = 1, . . . , k, µhr
: Q → [0, 1] is an

h-interval capacity; and
• for all (Aj)h

1 ∈ Q and for all r = 1, . . . , k − 1,
µhr

[
(Aj)h

1

]
≤ µhr+1

[
(Aj)h

1

]
.

Definition 3 An h−interval-capacity µh is an ad-
ditive h−interval-capacity on Q if for all (Aj)h

1 ∈ Q,
for any j = 1, . . . , h, for any B ⊆ N such that
Ah ∩ B = ∅,

µh (A1, . . . , Ak−1, Ak ∪ B, . . . , Ah ∪ B) =

µh (A1, . . . , Ah) + µh(∅, ∅, . . . ,

h−k+1
︷ ︸︸ ︷

B, B, . . . , B).

An h − k−interval capacity (µhr
)k
r=1 is additive if

µhr
is additive for all r = 1, . . . , k.

Let us provide a simple example of an additive
2−interval capacity. Let us consider N = {1, 2}
and suppose that h = 2, i.e. on each of the two
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criteria an alternative is evaluated by means of an
interval. In this case

Q = {(∅, ∅), (∅, {1}), (∅, {2}), (∅, {1, 2}), ({1}, {1}),

({1}, {1, 2}), ({2}, {2}), ({2}, {1, 2}), ({1, 2}, {1, 2})},

and we can set, e.g,






µ2(∅, ∅) = 0
µ2(∅, {1}) = 0.2
µ2(∅, {2}) = 0.2
µ2({1}, {1}) = 0.4
µ2(N, N) = 1.

The hypothesis that µ2 is additive constrains the
other values of µ2, indeed






µ2({2}, {2}) = µ2(N, N) − µ2({1}, {1}) = 0.6
µ2(∅, N) = µ2(∅, {1}) + µ2(∅, {2}) = 0.4
µ2({1}, N) = µ2(∅, {2}) + µ2({1}, {1}) = 0.6
µ2({2}, N) = µ2(∅, {1}) + µ2({2}, {2}) = 0.8.

Definition 4 The h−Choquet integral of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h])

with respect to the h−interval capacity µh is

Chh(x, µh) = min
i∈N

xi,1 +

∫ maxi∈N xi,h

mini∈N xi,1

µhr
({xi,1 ≥ t}, . . . , {xi,h ≥ t})dt. (4)

The h − k−Choquet integral of x with respect to the
h − k−interval capacity (µhr

)k
r=1 is given by

Chh−k

(
x, (µhr

)k
r=1

)
= (Chh (x, µhr

))
k

r=1 (5)

Note that the 2 − 1−Choquet integral is the robust
Choquet integral presented in [8]. Now we give some
additional information about the h−Choquet inte-
gral. Let us consider x ∈ In

h and a fixed evaluation
level t ∈ R. We define

Aj (x, t) = {i ∈ N | xi,j ≥ t} for all j = 1, . . . , h.

Thus, Aj (x, t) aggregates the criteria whose jth
evaluation of x is at least t, and Aj (x, t) ⊆
Aj+1 (x, t), j = 1, . . . , h − 1 and then

A (x, t) := ((A1 (x, t) , . . . , Ah (x, t)) ∈ Q

for all t ∈ R and for all x ∈ In
h . An alternative

formulation of the h−Choquet integral (4) implies
some additional notations. We identify every vector
x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ∈ In

h with
the vector x∗ = (x1, . . . , xnh) ∈ R

nh defined by
setting for all i = 1, . . . , nh

xi =







xi,1 if i ≤ n
xi,2 if n < i ≤ 2n
...
xi,h if n(h − 1) < i ≤ nh.

(6)

This corresponds to identify x ∈ In
h with

x∗ = (x1,1 . . . , xn,1 . . . , x1,h . . . xn,h) ∈ R
nh.

If (·) : {1, . . . , nh} → {1, . . . , nh} is a permutation
of indices such that x(1) ≤ . . . ≤ x(nh), then two
alternative formulations of the h−Choquet integral
(4) computed with respect to the h−interval capac-
ity µh are:

Chh (x, µh) =

nh∑

i=1

(
x(i) − x(i−1)

)
µh

(
A

(
x, x(i)

))
=

nh∑

i=1

x(i)

[
µh

(
A

(
x, x(i)

))
− µh

(
A

(
x, x(i+1)

))]
.

3.1. Interpretation and characterization

The indicator function of a set A ⊆ N is the func-
tion 1A : N → {0, 1} which takes the value of 1 on
A and 0 elsewhere. Such a function can be iden-
tified with the vector 1A ∈ R

n whose ith compo-
nent equals 1 if i ∈ A and equals 0 if i /∈ A. For
all (Aj)h

1 ∈ Q the generalized indicator function
1(Aj)h

1
: N → Ih is defined by

1(Aj)h
1
(i) =







[

t−1
︷ ︸︸ ︷

0, . . . , 0,

h−t+1
︷ ︸︸ ︷

1 . . . , 1] i ∈ At \ At−1,
t = 1, . . . , h

[0, . . . , 0] i ∈ N \ Ah

with A0 = ∅. The function 1(Aj) can be identified
with the correspondent vectors of In

h , 1(Aj)h
1
, whose

ith component equals [0, . . . , 0, 1 . . . , 1] with t − 1
zeros and h − t + 1 ones if i ∈ At \ At−1 for some
t = 1, . . . , h and equals [0, . . . , 0] if i ∈ N \ Ah.
It follows by the definition of the h−Choquet in-
tegral (4) that for any h−interval capacity µh,
Chh(1(Aj)h

1
, µh) = µh

[
(Aj)h

1

]
. This relation offers

an appropriate definition of the weights µh

[
(Aj)h

1

]
.

Definition 5 Given α, β ∈ R and x, y ∈ In
h with

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ,

y = ([y1,1, . . . , y1,h] , . . . , [yn,1 . . . , yn,h])

we define αx + βy as the vector of In
h whose ith

component is [αxi,1 + βyi,1, . . . , αxi,h + βyi,h], i =
1, . . . , n.

Definition 6 The two vectors of In
h

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ,

y = ([y1,1, . . . , y1,h] , . . . , [yn,1 . . . , yn,h])

are comonotone if the two vectors of R
nh (defined

according to 6)

x∗ = (x1,1, . . . , x1,h, . . . , xn,1, . . . , xn,h) ,

y∗ = (y1,1, . . . , y1,h, . . . , yn,1 . . . , yn,h)

are comonotone.

592



An h−k−aggregation function Gh−k is comonotone
additive if it is additive for comonotone vectors, i.e.
Gh−k(x+y) = Gh−k(x)+Gh−k(y) whenever x and
y are comonotone.

Theorem 2 The h−k−Choquet integral is the only
h−k−aggregation function which is comonotone ad-
ditive and idempotent.

Theorem 3 Chh−k (·, (µh1
, . . . , µhk

)) is the h−k−
weighted average if and only if the h − k−interval
capacity (µh1

, . . . , µhk
) is additive.

4. Other non-additive h − k−aggregation

functions

In [8] the robust Shilkret and Sugeno integrals
have been presented. These are 2 − 1−aggregation
functions which can be generalized to the case of
h − k−aggregation functions.

Definition 7 The h−Shilkret integral of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h])

with respect to the h−interval capacity µh is

Shh (x, µh) =
∨

(Aj)h
1 ∈Q







∧

(Aj)h
1

x · µh

[
(Aj)h

1

]






(7)

where

∧

(Aj)h
1

x =
∧

{
∧

i∈A1

xi,1, . . . ,
∧

i∈Ah

xi,h

}

.

The h − k−Shilkret integral of x with respect to the
h − k−interval capacity (µhr

)k
r=1 is given by

Shh−k

(
x, (µhr

)k
r=1

)
= (Shh (x, µhr

))
k
r=1 (8)

Definition 8 The h−Sugeno integral of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h])

with respect to the h−interval capacity µh is

Suh (x, µh) =
∨

(Aj)h
1 ∈Q







∧

(Aj)h
1

x, µh

[
(Aj)h

1

]






(9)

where

∧

(Aj)h
1

x =
∧

{
∧

i∈A1

xi,1, . . . ,
∧

i∈Ah

xi,h

}

.

The h − k−Sugeno integral of x with respect to the
h − k−interval capacity (µhr

)k
r=1 is given by

Suh−k

(
x, (µhr

)k
r=1

)
= (Suh (x, µhr

))
k

r=1 (10)

In [8] several non-additive 2−1−aggregation func-
tions have been presented, i.e. the robust Choquet
integral with respect to a bipolar interval-capacity,
the robust Choquet integral with respect to an in-
terval capacity level dependent, the robust concave
integral and the robust universal integral. All these
integrals admit a natural generalization to the case
of h − k−aggregation functions presented here.

3,3

2,3

2,21,3

1,20,3

1,10,2

0,1

0,0

w[(3,3,1)=0.1

w(2,3,2)=0.1
w(2,3,2)=0.2

w(2,2,1)=0.2w(1,3,1)=0.2
w(1,3,2)=0.1

w(1,2,1)=0.2
w(1,2,2)=0.2w(0,3,1)=0.1

w(1,1,1)=0.3w(0,2,2)=0.3

w(0,1,2)=0.1

Figure 1: The lattice Q#, 2-intervals and 3 criteria

5. h−OWA operators

An h−interval capacity µh : Q → [0, 1] only de-
pends on the cardinality of the sets in its argu-
ments if for all (Aj)h

1 , (Bj)h
1 ∈ Q, such that

|Aj | = |Bj |, j = 1, . . . , h it holds that µh

[
(Aj)h

1

]
=

µh

[
(Bj)h

1

]
. Let us define the following sets. The

set of nodes

Q# =
{

(r1, . . . , rh) ∈ {0, 1, . . . , n}h | r1 ≤ . . . ≤ rh

}

and the set of edges

A = {(r, r′) ∈ Q2
# | rt ≥ r′

t, t = 1, . . . , h and

h∑

t=1

(rt − r′
t) = 1}. (11)

Obviously the set Q# inherits the structure of lat-
tice from the set Q, see, e.g., the tree-diagram
of figure 1 where the nodes represent the lattice
Q# corresponding to the situation of 2−intervals
and 3 criteria. We identify any h−interval ca-
pacity µh : Q → [0, 1] depending only on the
cardinality of the sets in its arguments with the
corresponding function µh : Q# → [0, 1] de-
fined by µh(r1, . . . , rh) = µh (A1, . . . , Ah) for all
(r1, . . . , rh) ∈ Q# and (A1, . . . , Ah) ∈ Q such that
|Ai| = ri, i = 1, . . . , h.

Definition 9 The class of h−OWA operators is the
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class of h−Choquet integrals computed with respect
to the h−interval capacities µh : Q# → [0, 1].

Definition 10 The class of h − k−OWA operators
is the class of h−k−Choquet integrals computed with
respect to the h−k−interval capacities (µhr

)
h
r=1 with

µhr
: Q# → [0, 1] r = 1, . . . , k.

We define an nh−path in Q# as a sequence of nh
consecutive edges

Pnh =
(
(r1, r2), (r2, r3) . . . , (rnh−1, rnh)

)
∈ Anh

For example in figure 1 a 6-path is

([(3, 3), (2, 3)], [(2, 3), (1, 3)], [(1, 3), (1, 2)],

[(1, 2), (1, 1)], [(1, 1), (0, 1)], [(0, 1), (0, 0)]).

Note that in any nh−path we have nh + 1 nodes
and nh edges.

Definition 11 An OWA-weighting function is a
function w : A′ → [0, 1] such that for any nh−path,

Pnh =
(
(r1, r

2), (r2, r
3) . . . , (rnh−1, r

nh)
)

∈ (A′)
nh

it holds that
∑nh−1

i=1 w((ri, r
i+1)) = 1.

In words, an OWA-weighting function is a function
which assigns a weight in [0, 1] to each edge in such
a way that the sum of the weights along each path
is 1. Now we show that to define an h−OWA oper-
ator trough the capacity µh : Q# → [0, 1] is equiva-
lent to define an OWA-weighting function and vice-
versa. This will be initially cleared with a tree-
diagram, where the nodes are the elements of Q#,
while on the edges we represents the weights as-
signed by the OWA-function w : A → [0, 1]. In
figure 1 we have plotted the lattice Q# correspond-
ing to the situation of 2−intervals and 3 criteria.
The elements of Q# are represented by the nodes,
while the values of the OWA-function w : A → [0, 1]
are represented on the edges. Note that w(i, j, 1)
stands for w[(i, j), (i − 1, j)] while w(i, j, 2) stands
for w[(i, j), (i, j − 1)]. The capacity µ : Q# → [0, 1]
is elicited by computing on each node the differ-
ence between 1 and the sum of all the values on the
previous nodes along any nh−path, and then, w.r.t.
figure 1







µ(3, 3) = 1
µ(2, 3) = 1 − 0.1 = 0.9
µ(1, 3) = 1 − (0.1 + 0.2) = 0.7
µ(2, 2) = 1 − (0.1 + 0.1) = 0.8
µ(0, 3) = 1 − (0.1 + 0.2 + 0.2) = 0.5
µ(1, 2) = 1 − (0.1 + 0.1 + 0.2) = 0.5
µ(0, 2) = 1 − (0.1 + 0.1 + 0.2 + 0.2) = 0.4
µ(1, 1) = 1 − (0.1 + 0.1 + 0.2 + 0.2) = 0.4
µ(0, 1) = 1 − (0.1 + 0.1 + 0.2 + 0.2 + 0.3) = 0.1
µ(0, 0) = 0

Conversely, from the values of the capacity on the
nodes we can elicit the values of the weights on the
edges (see figure 1)by means of

w(ri, ri+1) = µh

(
ri

)
− µh

(
ri+1

)
. (12)

Finally, we wish to note that the h−OWA could
be defined also in the following manner. For a
given x ∈ In

h let us consider the permutation (·)
of values xi,j , i = 1, . . . , n, j = 1, . . . , h, such that
x(1) ≤ x(2) ≤ . . . x(nh). In case x(p) < x(p+1) for
all p = 1, . . . , nh, the h−OWA of x with respect to
OWA weights w is given by

OWAw(x) =

nh∑

p=1

x(p)w(|{x ≥ x(p)}|, |{x ≥ x(p+1)}|)

with

| {x ≥ t} | = (|A1 (x, t) |, . . . , |Ah (x, t) |)

and x(nh+1) ∈ R is some value such that x(nh+1) ≥
x(nh).

6. h − k−order statistics

Another noticeable case of h − k−aggregation func-
tion is given by the h − k−order statistics. The
lattice Q# is partial ordered with respect to the
dominance relation %# on it defined as follows: for
all (r1, . . . , rh), (r′

1, . . . , r′
h) ∈ Q#

(r1, . . . , rh) %# (r′
1, . . . , r′

h) iff r1 ≥ r′
1, . . . , rh ≥ r′

h.

Definition 12 For any r = (r1, . . . , rh) ∈ Q#, the
h−order statistic OSr of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ∈ In
h

associated to r is given by

OSr(x) = max{t ∈ R : | {x ≥ t} | %# r}

where

| {x ≥ t} | = (|A1 (x, t) |, . . . , |Ah (x, t) |) .

Definition 13 For any k-uple of profiles

(r(l))k
1 =

(

r(1), . . . , r(k)
)

such that r(l) = (r
(l)
1 , . . . , r

(l)
h ) ∈ Q#, l = 1, . . . , k

and

(rl
1, . . . , rl

h) %# (rl+1
1 , . . . , rl+1

h ), l = 1, . . . , k − 1,

the h − k−order statistic OS(r
(l))k

1
of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ∈ In
h

associated to (r(l))k
1 is given by

OS(r
(l))k

1
(x) = (OS(r

(1)(x), . . . , OS(r
(k)(x)).
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mathematics literature language
S1 6 [5, 7] [7, 8]
S2 7 [6, 7] 9
S3 [6, 8] 7 7

Table 1: Students evaluation

The h−order statistics can be characterized in terms
of OWA and in terms of h−Choquet integral.

Theorem 4 For any r = (r1, . . . , rh) ∈ Q#, the
h−order statistic OSr is an h−OWA such that for
any edge

(
(r1

1, . . . , r1
h), (r2

1, . . . , r2
h)

)

in the graph GQ#
we have

w
(
(r1

1, . . . , r1
h), (r2

1, . . . , r2
h)

)
= 1

if (r2
1, . . . , r2

h) = (r1, . . . , rh) = r and

w
(
(r1

1, . . . , r1
h), (r2

1, . . . , r2
h)

)
= 0

otherwise.

Theorem 5 For any r = (r1, . . . , rh) ∈ Q#, the
h−order statistic OSr is an h−Choquet integral
with respect to a h-capacity µh such that

µ(A1, . . . , Ah) = 1 if (|A1|, . . . , |Ah|) %# r

and

µ(A1, . . . , Ah) = 1 otherwise.

7. A motivating example

Let us provide an example where 2-interval num-
bers need to be aggregated into a triangular num-
ber. The director of a university decides on students
who are applying for graduate studies in manage-
ment. Since some prerequisites from school are re-
quired, three students, S1, S2 and S3, are indeed
evaluated according to mathematics (Mat), litera-
ture (Lit) and language (Lang) skills. All the marks
with respect to the scores are given on the scale
from 0 to 10. The director receives the candidates
evaluations serving as a basis for the selection. He
notes that some judgments are expressed as inter-
vals (corresponding to some evaluators doubts, see
Table 1).

At the university the freshmen are initially di-
vided into three groups, depending on the starting
level. The assignment of a student to a group is
not just decided on the basis of his average eval-
uation, but more properly, depends on the poten-
tiality of the student. This means that the director
prefers that every student is represented by a trian-
gular number (Ep, Ea, Eo), where Ep corresponds
to a pessimistic evaluation, Ea corresponds to an

Mathematics Literature Language
aij1 0.3, 0.1 0.2, 0.2 0.1, 0.1
aij2 0.25, 0.15 0.15, 0.25 0.05, 0.15
aij3 0.2, 0.2 0.1, 0.3 0.05, 0.15

Table 2: Weights for the h − k−weighted average

Wa,1(x) Wa,2(x) Wa,3(x)
S1 6.3 6.45 6.55
S2 7.2 7.25 7.3
S3 6.8 6.9 7

Table 3: h − k−weighted average of students’ notes

average evaluation and Eo corresponds to an opti-
mistic evaluation. On the basis of this triple infor-
mation the director will decide, for each student, the
pertinent group. This is a realistic example where
2-interval numbers need to be aggregated into a tri-
angular number.
Let us aggregate the notes of students in the three
subjects using different h−k−aggregation functions
presented in this paper.

7.1. Using the h − k−weighted average

Let us first aggregate the notes of students in the
three subjects using the h − k-weighted average ac-
cording to the weights in Table 2. The results are
in Table 3.

7.2. Using the 2-OWA

We can after compute the 2-OWA of students’ notes
taking into consideration the weights in Figure 1
and obtaining the evaluations in table 4. Figure 2
shows the path corresponding to the evaluations of
student S1 on lattice Q#.

7.3. Using a 2 − 3−order statistics

Finally we considered a 2 − 3−order statistics
OS(2,3)(1,2)(1,1)(x) obtaining the results shown in
Table 5.

8. Conclusions

In many decision-making problems, fuzzy num-
bers represent the evaluating values of alternatives.
Thus methods to treat with these type of informa-
tion have received increasing attention in literature,
especially in recent years.

2-OWA
S1 6.6
S2 7.7
S3 7

Table 4: 2−OWA of students’ notes
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OS(1,1)(x) OS(1,2)(x) OS(2,3)(x)
S1 6 7 7
S2 7 7 9
S3 7 7 7

Table 5: h − k−order statistics of students’ notes

Several researchers have proposed methods for
ranking fuzzy numbers, see, e.g. [4] and the ref-
erences therein.

Another relevant example is the ordered weighted
averaging (OWA) operator introduced in [12], which
has been studied in situations involving imprecise
evaluations expressed by fuzzy numbers [9, 1, 2, 3,
5, 12].

Also in the context of multiple attribute group
decision making problems it is assumed that the
attribute values take the form of fuzzy numbers, see
[11] and the references within.

However in the majority of cited papers it is faced
the problem of ranking fuzzy numbers, while in this
paper we have proposed innovative methods to ag-
gregate imprecise information expressed by fuzzy
numbers.

Finally let us note as in some context, like that of
group decision making, it is often assumed that the
more suitable form to express valuations is that of a
generalized interval-valued trapezoidal fuzzy num-
bers [11]. These are more general form of fuzzy
numbers and we hope thet the aggregation of such
a type of complex information will be the topic for
future researches.
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