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Abstract

In this paper, an extension of Yager’s implications
is proposed by means of generalizing the internal
factor x, in the case of f -generated implications, or
1
x , in the case of g-generated implications, to more
general unary functions. The importance of this
extension stems from the fact that both subclasses
of Yager’s implications are extended in a similar
way and the resulting classes of fuzzy implications
will be useful to characterize the recently introduced
(h, e)-implications. In addition, the behaviour and
additional properties of the generated implications
are determined.

Keywords: Fuzzy implications, Yager’s f -
generated implications, Yager’s g-generated
implications, (h, e)-implications.

1. Introduction

Fuzzy implications have become one of the main
operations in fuzzy logic. Their importance lies on
the fact that they play a similar role to the classi-
cal implication in crisp logic. Since it is well-settled
that the fuzzy concept has to generalize the cor-
responding crisp one, fuzzy implications restricted
to {0, 1}2 must coincide with the classical implica-
tion. Nowadays, it is widely accepted that fuzzy
implications are performed by means of a binary op-
eration I : [0, 1]2 → [0, 1] satisfying, in addition of
that boundary conditions, some monotonicity prop-
erties. These logical connectives have recently at-
tracted the efforts of numerous researchers, as evi-
dence the publication of the survey [1] and the books
[2] and [3], entirely devoted to these operators.
In this field, one of the main topics is the study

of the known families of fuzzy implications, the
proposal of new ones and how they interrelate
among them. The requirements of the definition of
fuzzy implications are flexible enough to allow sev-
eral classes of implications with different additional
properties. The proposal of many classes of fuzzy
implications is supported by the use of these opera-
tors to perform any fuzzy “if-then” rule in fuzzy sys-
tems and inference processes, through Modus Po-
nens and Modus Tollens (see [4]). This is also true
in other fields where fuzzy implications play an im-
portant role, such as fuzzy mathematical morphol-
ogy [5] or fuzzy DI-subsethood measures [6]. So,
depending on the context, and on the proper rule

and its behaviour, different implications with differ-
ent properties can be adequate.

An extended approach to generate classes of fuzzy
implications is the use of unary generators of aggre-
gation functions. In this sense, Yager’s f and g-
generated implications [7] are generated from addi-
tive generators of continuous Archimedean t-norms
and t-conorms; h-generated implications [8], from
multiplicative generators of Archimedean t-conorms
and h and (h, e)-implications [9], from additive gen-
erators of representable uninorms.

From these generated classes of fuzzy implica-
tions, Yager’s implications have focused many ef-
forts due to their applications in approximate rea-
soning since they accomplish strictness of a fuzzy
implication and sharpness of inference, two concepts
introduced by Yager [7]. These implications have
been recently characterized [10] and several gener-
alizations have been proposed. In particular, the
extensions of f -generated implications vary from
taking a more general aggregation function than
the product t-norm as internal function [11, 12]
to considering a more general increasing function
g : [0, 1] → [0, 1] than the identity function as a in-
ternal factor [13]. With respect to the g-generated
implications, an extension considering the minimum
t-norm instead of the product as internal function
was proposed in [14].

In this paper, we want to propose a new extension
of Yager’s implications. The novelty of this exten-
sion lies on the use of a unary continuous function
with range in [0, +∞] in the definition of both f
and g-generated implications instead of the inter-
nal factors x and 1

x . In this way, a common gen-
eralization is proposed for both methods and the
conditions of these functions under which the gen-
erated operators are in fact fuzzy implications are
studied. These extended Yager’s implications will
fulfil, in some cases, some of the usual additional
properties that a fuzzy implication can satisfy, like
the left neutrality principle, the exchange principle
or the law of importation. Furthermore, these new
classes will be crucial to characterize the recently
introduced (h, e)-implications, in a similar way how
h-implications are characterized by Yager’s implica-
tions (see [15]).

The communication is organized as follows. In
the next section we recall the basic definitions and
properties we will use in the subsequent sections.
In Section 3, the new classes of fuzzy implications
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extending Yager’s ones will be proposed and the
conditions under which some additional properties
are satisfied by these operations are determined.
Then, in Section 4, the characterization of (h, e)-
implications involving these two new classes of im-
plications is proved. The paper ends with some con-
clusions and future work.

2. Preliminaries

To make this work self-contained, we recall here
some of the concepts and results employed in the
rest of the paper. First of all, the definition of fuzzy
negation is given.

Definition 1 ([16, Definition 1.1]). A decreasing
function N : [0, 1] → [0, 1] is called a fuzzy nega-
tion, if N(0) = 1, N(1) = 0. A fuzzy negation N is
called

(i) strict, if it is strictly decreasing and continu-
ous.

(ii) strong, if it is an involution, i.e., N(N(x)) = x
for all x ∈ [0, 1].

Next, we recall the definition of fuzzy implica-
tions.

Definition 2 ([16, Definition 1.15]). A binary
operator I : [0, 1]2 → [0, 1] is said to be a fuzzy
implication if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈
[0, 1].

(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈
[0, 1].

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that
I(0, x) = 1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas
the symmetrical values I(x, 0) and I(1, x) are not
derived from the definition. We will denote by FI
the set of all fuzzy implications. Special interesting
properties for implication functions are:

• The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1].
(EP)

• The law of importation with a t-norm T ,

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1].
(LI)

• The left neutrality principle,

I(1, y) = y, y ∈ [0, 1]. (NP)

• The ordering property,

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

• The identity principle,

I(x, x) = 1, x ∈ [0, 1]. (IP)

• The contrapositive symmetry with respect to a
fuzzy negation N ,

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1].
(CP(N))

Definition 3 ([2, Definition 1.4.15]). Let I be
a fuzzy implication. The function NI defined by
NI(x) = I(x, 0) for all x ∈ [0, 1], is called the nat-
ural negation of I.

Next, we recall the definitions of Yager’s f and
g-generated implications.

Definition 4 ([16]). Let f : [0, 1] → [0,∞] be
a strictly decreasing and continuous function with
f(1) = 0. The function I : [0, 1]2 → [0, 1] defined by

I(x, y) = f−1(x · f(y)), x, y ∈ [0, 1]

with the understanding 0 · ∞ = 0, is called an
f -generated implication. The function f itself is
called an f -generator of the I generated as above.
In such a case, to emphasize the apparent relation
we will write If instead of I.

Definition 5 ([16]). Let g : [0, 1] → [0,∞] be
a strictly increasing and continuous function with
g(0) = 0. The function I : [0, 1]2 → [0, 1] defined by

I(x, y) = g(−1)
(

1
x
· g(y)

)
, x, y ∈ [0, 1]

with the understanding 1
0 = ∞ and ∞ · 0 = ∞, is

called a g-generated implication, where the function
g(−1) is the pseudo-inverse of g given by

g(−1)(x) =
{

g−1(x) if x ∈ [0, g(1)],
1 if x ∈ [g(1),∞].

The function g is called a g-generator of the func-
tion I. In this case, we will write Ig instead of I to
emphasize the apparent relation.

3. Extended Yager’s implications

If the definitions of Yager’s implications are ob-
served accurately, one can see that x can be re-
garded as a particular case of a function g(x) = x
and 1

x can be understood as a particular case of an-
other function f(x) = 1

x . Taking into account the
above observation in this section, we will propose an
extension of Yager’s implications involving the use
of more general unary functions as internal factor.

3.1. Extension of f-generated implications

We will focus on an extension of f -generated impli-
cations generalizing g(x) = x to a continuous and
strictly increasing function g : [0, 1]→ [0, +∞] with
g(0) = 0.

598



Definition 6. Let f : [0, 1] → [0,∞] be a strictly
decreasing and continuous function with f(1) = 0
and g : [0, 1]→ [0, +∞] be a continuous and strictly
increasing function with g(0) = 0. The function
If,g : [0, 1]2 → [0, 1] defined by

If,g(x, y) = f (−1)(g(x) · f(y)), x, y ∈ [0, 1]

with the understanding 0 ·∞ = 0, is called an (f, g)-
generated operation.

A first difference from Yager’s f -generated impli-
cations is that in this case, the use of the pseudo-
inverse is mandatory since when f(0) < +∞,
g(x) · f(y) can be greater than f(0). However, the
pseudo-inverse can be avoided in the definition lead-
ing to

If,g(x, y) = f−1(min{g(x)·f(y), f(0)}), x, y ∈ [0, 1].

Remark 1. This extension is different from the
one proposed in [13]. Although a similar approach
is considered, their (f, g)-implications are generated
through strictly increasing functions g : [0, 1] →
[0, 1] with g(0) = 0 and g(1) = 1, not necessarily
continuous. In our approach, we extend the range of
the function g to [0, +∞] and consequently, g(1) 6= 1
in general. Obviously, if g(1) = 1 then both ap-
proaches coincide and in fact, the generated (f, g)-
implications are ϕ-conjugated of f -generated impli-
cations with f -generator f ◦ g−1 and ϕ = g (see
Remark 2.1 in [13]).

(f, g)-generated implications are not always fuzzy
implications in the sense of Definition 2.

Theorem 1. An (f, g)-operation If,g is a fuzzy im-
plication if, and only if, one of the following condi-
tions hold:

1. f(0) = +∞.
2. f(0) < +∞ and g(1) ≥ 1.

When an (f, g)-operation is in fact a fuzzy impli-
cation, we will use the term (f, g)-implication and
(f, g) will be called an admissible pair of generators.
Next, we show some examples of (f, g)-

implications which are neither Yager’s f -generated
implications nor Xie and Liu’s (f, g)-implications
covering all the boundary possibilities. These im-
plications are depicted in Figure 1.

Example 1. (i) If we take f1(x) = 1 − x and
g1(x) = x2 + x then we obtain the following
implication

If1,g1(x, y) = max{1− x2 + x2y − x + xy, 0},

for all x, y ∈ [0, 1].
(ii) If we consider f1 and g2(x) = x

1−x then we get
the following implication

If1,g2(x, y) =
{

1 if x = y = 1,

max
{

1−2x+xy
1−x , 0

}
otherwise.

(iii) If we consider f2(x) = − ln x and g1, we get
the next implication

If2,g1(x, y) =
{

1 if x = y = 0,

yx2+x otherwise.

(iv) If we consider f2 and g2, we get the next im-
plication

If2,g2(x, y) =
{

1 if x = y ∈ {0, 1},
y

x
1−x otherwise.

(a) If1,g1 (b) If1,g2

(c) If2,g1 (d) If2,g2

Figure 1: Plots of some (f, g)-implications.

Note that in the previous examples, the (f, g)-
implications have in some cases non-trivial zero re-
gion. The following result deals with this issue.

Proposition 1. Let (f, g) be an admissible pair of
generators. Then the following statements hold:

1. If g(1) < f(0) = +∞, then If,g(x, y) = 0 ⇔
y = 0 < x.

2. If g(1) = f(0) = +∞, then If,g(x, y) = 0 ⇔
y < x = 1 or y = 0 < x.

3. If f(0) < +∞, then If,g(x, y) = 0 ⇔ g(x) ≥ 1
and y < f−1

(
f(0)
g(x)

)
.

On the other hand, we can also compute when
these implications take the value 1.

Proposition 2. Let (f, g) be an admissible pair of
generators. Then If,g(x, y) = 1 if, and only if, x =
0 or y = 1.

The property obtained in the previous proposi-
tion is studied in detail in [17] where it is shown
that such property is essential for the construction
of strong equality indices.

Corollary 1. Let (f, g) be an admissible pair of
generators. Then the (f, g)-implication If,g does
not satisfy either (IP) or (OP).

Next, the following result establishes the condi-
tion under which (f, g)-implications satisfy (NP).
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Proposition 3. Let (f, g) be an admissible pair of
generators. Then If,g satisfies (NP) if, and only if,
g(1) = 1.

Another interesting property of fuzzy implica-
tions is the continuity of these operators. The fol-
lowing result establishes that the possible points of
discontinuity are restricted to (0, 0) or (1, 1).

Proposition 4. Let (f, g) be an admissible pair of
generators. Then the following properties hold:

1. If g(1) = +∞, If,g is not continuous at (1, 1).
2. If f(0) = +∞, If,g is not continuous at (0, 0).
3. If,g is continuous if, and only if, f(0), g(1) <

+∞.

Next we deal with the natural negation of these
fuzzy implications.

Proposition 5. Let (f, g) be an admissible pair of
generators. Then the following properties hold:

1. If f(0) = +∞, then the natural negation NIf,g

is the Gödel or least negation ND1 .
2. If f(0) < +∞, then the natural negation NIf,g

is given by

NIf,g
(x) =

{
f−1(g(x) · f(0)) if g(x) ≤ 1,
0 if g(x) > 1.

3. If f(0) < +∞ and g(1) = 1, then the natural
negation NIf,g

is a strict fuzzy negation.

Finally, the following results fully determine when
the (f, g)-implications satisfy the exchange principle
and the law of importation.

Proposition 6. Let (f, g) be an admissible pair
of generators. Then the following statements are
equivalent:

1. If,g satisfies (EP).
2. f(0) = +∞ or (f(0) < +∞ and g(1) = 1).

Proposition 7. Let (f, g) be an admissible pair
of generators and T a t-norm. Then the following
statements are equivalent:

1. The couple of functions If,g and T satisfies
(LI).

2. g(1) = 1 and T = (TP )g, i.e., T (x, y) =
g−1(g(x) · g(y)) for all x, y ∈ [0, 1].

In [18], the equivalence between (EP) and (LI)
was deeply studied. It was proved that (LI) is a
strictly stronger property than (EP) and some coun-
terexamples of fuzzy implications satisfying (EP)
but not (LI) (or even the so-called weak law of im-
portation) were pointed out. So, from the previous
results, more examples are available since all (f, g)-
implications with f(0) = +∞ and g(1) 6= 1 satisfy
(EP) but not (LI) with any t-norm T .

Example 2. Let us consider the (f, g)-implication
If2,g1 presented in Example 1-(iii). It can be easily
computed that If2,g1 satisfies (EP), but it does not
satisfy (LI) since if we consider x = 1, y = 1

4 and
z = 1

2 we obtain on one hand,

If2,g1(T (x, y), z) = If2,g1(y, z) = 0.594604,

and on the other hand,

If2,g1(x, If2,g1(y, z)) = If2,g1(1, If2,g1(y, z)) = 0.64842.

3.2. Extension of g-generated implications

Now we will propose a similar extension of g-
generated implications generalizing f(x) = 1

x to
a continuous and strictly decreasing function f :
[0, 1]→ [0, +∞] with f(0) = +∞.

Definition 7. Let g : [0, 1] → [0,∞] be a strictly
increasing and continuous function with g(0) = 0
and f : [0, 1]→ [0, +∞] be a continuous and strictly
decreasing function with f(0) = +∞. The function
I : [0, 1]2 → [0, 1] defined by

Ig,f (x, y) = g(−1)(f(x) · g(y)), x, y ∈ [0, 1]

with the understanding 0 · (+∞) = +∞ and 1
0 =

+∞, is called a (g, f)-generated operation.

Let us determine which (g, f)-generated opera-
tions are in fact fuzzy implications in the sense of
Definition 2.

Theorem 2. A (g, f)-operation Ig,f is a fuzzy im-
plication if, and only if, one of the following condi-
tions hold:

1. g(1) = +∞.
2. g(1) < +∞ and f(1) ≥ 1.

When a (g, f)-operation is a fuzzy implication, we
will use the term (g, f)-implication and (g, f) will
be called an admissible pair of generators.

In Figure 2 we show some examples of (g, f)-
implications which are not Yager’s g-generated im-
plications covering all the boundary possibilities.

Example 3. (i) If we take g1(x) = − ln (1− x)
and f1(x) = 1

x2 then we obtain the following
implication

Ig1,f1(x, y) =
{

1 if x = 0, y ∈ {0, 1},
1− (1− y)

1
x2 otherwise.

(ii) If we consider g1 and f2(x) = x2+1
x2 then we get

the following implication

Ig1,f2(x, y) =
{

1 if x = 0, y ∈ {0, 1},
1− (1− y)

x2+1
x2 otherwise.

(iii) If we consider g2(x) = x and f1, we get the
next implication

Ig2,f1(x, y) = min
{ y

x2 , 1
}

for all x, y ∈ [0, 1].
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(iv) If we consider g2 and f2, we get the next im-
plication

Ig2,f2(x, y) = min
{

y · (x2 + 1)
x2 , 1

}
for all x, y ∈ [0, 1].

(a) Ig1,f1 (b) Ig1,f2

(c) Ig2,f1 (d) Ig2,f2

Figure 2: Plots of some (g, f)-implications.

Let us find when these implications take value 1.
Note that in some cases the (g, f)-implications can
have a non-trivial 1 region.

Proposition 8. Let (g, f) be an admissible pair of
generators. Then the following statements hold:

1. If g(1) = +∞, then Ig,f (x, y) = 1 ⇔ x = 0 or
y = 1.

2. If g(1) < +∞, then Ig,f (x, y) = 1 ⇔ y ≥
g−1

(
g(1)
f(x)

)
.

On the other hand, they do value 0 only when
x > 0 and y = 0 as the following result shows.

Proposition 9. Let (g, f) be an admissible pair of
generators. Then Ig,f (x, y) = 0 if, and only if, x >
0 and y = 0.

From the previous result, the following corollary
is straightforward.

Corollary 2. Let (g, f) be an admissible pair of
generators. Then the natural negation NIg,f

is the
Gödel or least fuzzy negation ND1 .

Unlike (f, g)-implications, (g, f)-implications can
satisfy (IP) and (OP) in some cases.

Proposition 10. Let (g, f) be an admissible pair
of generators. Then Ig,f satisfies (IP) if, and only
if, g(1) < +∞ and f(x) ≥ g(1)

g(x) for all x ∈ [0, 1].

Proposition 11. Let (g, f) be an admissible pair
of generators. Then the following statements are
equivalent:

1. Ig,f satisfies (OP).
2. g(1) < +∞ and there exists a constant c ∈

(0, +∞) such that f(x) = c
g(x) .

3. Ig,f (x, y) = f−1
(

max
{

f(1), f(y)
f(x)

})
Next, we study the continuity of (g, f)-

implications which are never continuous at point
(0, 0) since the natural negation is ND1 . In addi-
tion, they can be also not continuous at (1, 1) as
the following result states.

Proposition 12. Let (g, f) be an admissible pair
of generators. Then the following properties hold:

1. Ig,f is continuous everywhere except at (0, 0)
if, and only if, g(1) < +∞ or (g(1) = +∞ and
f(1) > 0).

2. Ig,f is continuous everywhere except at (0, 0)
and (1, 1) if, and only if, g(1) = +∞ and
f(1) = 0.

Finally, let us study (EP) and (LI) for this class
of fuzzy implications.

Proposition 13. Let (g, f) be an admissible pair
of generators. Then Ig,f always satisfy (EP).

Proposition 14. Let (g, f) be an admissible pair
of generators and T a t-norm. Then the following
statements are equivalent:

1. The couple of functions Ig,f and T satisfies
(LI).

2. f(1) = 1 and T (x, y) = f−1(f(x) · f(y)) for all
x, y ∈ [0, 1].

Again novel examples of fuzzy implications sat-
isfying (EP) but not (LI) with any t-norm T arise.
In particular, any (g, f)-implication with f(1) > 1
satisfies (EP) but not (LI).

Example 4. Let us consider the (g, f)-implication
Ig2,f2 presented in Example 3-(iv). It can be easily
computed that Ig2,f2 satisfies (EP), but it does not
satisfy (LI) since if we consider x = 1, y = 3

4 and
z = 1

8 we obtain on one hand,

Ig2,f2(T (x, y), z) = Ig1,f2(y, z) = 0.3472,

and on the other hand,

Ig2,f2(x, Ig2,f2(y, z)) = Ig2,f2(1, Ig2,f2(y, z)) = 0.6944.

4. Characterization of (h, e)-implications

The (f, g) and (g, f)-generated implications pre-
sented in the previous section are going to be de-
cisive in order to characterize the class of (h, e)-
implications, presented recently in [9]. Let us recall
the definitions of h and (h, e)-implications.

Definition 8 ([9, Definition 7]). Fix an e ∈ (0, 1)
and let h : [0, 1]→ [−∞,∞] be a strictly increasing
and continuous function with h(0) = −∞, h(e) = 0
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and h(1) = +∞. The function I : [0, 1]2 → [0, 1]
defined by

Ih(x, y) =

 1 if x = 0,
h−1(x · h(y)) if x > 0 and y ≤ e,
h−1 ( 1

x · h(y)
)

if x > 0 and y > e,

is called an h-implication. The function h itself is
called an h-generator (with respect to e) of the im-
plication function I defined as above.

Definition 9 ([9, Definition 8]). Let h : [0, 1]→
[−∞,∞] be a strictly increasing and continuous
function with h(0) = −∞, h(e) = 0 for an e ∈ (0, 1)
and h(1) = +∞. The function I : [0, 1]2 → [0, 1]
defined by

Ih,e(x, y) =


1 if x = 0,
h−1 (x

e · h(y)
)

if x > 0 and y ≤ e,
h−1 ( e

x · h(y)
)

if x > 0 and y > e,

is called an (h, e)-implication. The function h itself
is called an h-generator of the I defined as above.

The (h, e)-implications were proposed with the
aim of modifying h-implications in order to satisfy
the left neutrality principle for implications derived
from uninorms (NPe), that is, I(e, y) = y for all
y ∈ [0, 1]. Both h and (h, e)-implications are gen-
erated by means of the additive generator h of a
representable uninorm.
Recently, a novel method to generate fuzzy im-

plications from two given ones, called the threshold
generation method, was proposed in [15]. It is based
on an adequate scaling on the second variable of the
initial implications.

Theorem 3 ([15, Theorem 3]). Let I1, I2 be two
implications and e ∈ (0, 1). Then the binary func-
tion II1−I2 : [0, 1]2 → [0, 1], called the e-threshold
generated implication from I1 and I2, defined as
II1−I2(x, y)

=


1 if x = 0,

e · I1

(
x,

y

e

)
if x > 0 and y ≤ e,

e + (1− e) · I2

(
x,

y − e

1− e

)
if x > 0 and y > e,

is a fuzzy implication.

In such a paper, h-implications were character-
ized in terms of some Yager’s f and g-generated
implications as particular cases of threshold gener-
ated implications.

Theorem 4 ([15, Theorem 2, Remark 3]).
Let I : [0, 1]2 → [0, 1] be a binary function and
e ∈ (0, 1). Then I is an h-implication with respect
to e, if and only if, there exist f and g-generated
implications with f(0) = g(1) = ∞, If and Ig re-
spectively, such that I = IIf −Ig .

Moreover, in this case generators h, f and g are
related in the following way:

f(x) = −h(e · x) for all x ∈ [0, 1],
g(x) = h(e + (1− e) · x) for all x ∈ [0, 1],

h(x) =


−f
(x

e

)
if x ≤ e,

g

(
x− e

1− e

)
if x > e.

On the other hand, until now, although (h, e)-
implications are also particular cases of thresh-
old generated implications, since they also satisfy1

Ih,e(x, e) = e for all x > 0, they have not been
characterized yet. However, after the introduction
of (f, g) and (g, f)-implications in the previous sec-
tion, they can be characterized in a similar way to
h-implications.

Theorem 5. Let I : [0, 1]2 → [0, 1] be a binary
function and e ∈ (0, 1). Then I is an (h, e)-
implication with respect to e if, and only if, there
exist an f -generator with f(0) = +∞ and a g-
generator with g(1) = +∞ such that I is given by
I(x, y) =

=


1 if x = 0,
e · f−1 (x

e · f
(

y
e

))
if x > 0, y ≤ e,

e + (1− e) · g−1
(

e
x · g

(
y−e
1−e

))
if x > 0, y > e.

Moreover, in this case generators h, f and g are
related in the following way:

f(x) = −h(e · x) for all x ∈ [0, 1],
g(x) = h(e + (1− e) · x) for all x ∈ [0, 1],

h(x) =
{
−f
(

x
e

)
if x ≤ e,

g
(

x−e
1−e

)
if x > e.

Remark 2. Note that under the same conditions
of the previous theorem, if we consider the admis-
sible pair of generators (f, g1) such that g1(x) = x

e
and the admissible pair of generators (g, f1) such
that f1(x) = e

x , then I = IIf,g1 −Ig,f1
. That is, an

(h, e)-implication is the e-threshold generated impli-
cation of some adequate (f, g) and (g, f)-generated
implications.

This characterization allows us to fully deter-
mine the initial (f, g) and (g, f)-implications from
which the (h, e)-implication is obtained through the
threshold generation method.

Example 5. If we take the h-generator (with re-

spect to e = 1
2) h1(x) = ln

(
x

1− x

)
, then we obtain

the following (h, e)-implication

Ih1(x, y) =


1 if x = 0,

y2x

(1−y)2x+y2x if x > 0 and y ≤ 1
2 ,

y
1

2x

(1−y)
1

2x +y
1

2x
if x > 0 and y > 1

2 .

1Threshold generated implications were characterized in
[15] as those that satisfy I(x, e) = e for all x > 0.
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By the previous theorem, this implication is con-
structed from the (f, g)-generated implication If,g1

with f(x) = − ln
(

x

2− x

)
and g1(x) = 2x,

and from the (g, f)-generated implication Ig,f1 with

g(x) = ln
(

1 + x

1− x

)
and f1(x) = 1

2x (see Figure 3).

That is, Ih1,e is constructed from

If,g1(x, y) = 2y2x

(2− y)2x + y2x
,

Ig,f1(x, y) = (1 + y) 1
2x − (1− y) 1

2x

(1 + y) 1
2x + (1− y) 1

2x

,

using the threshold generation method.

(a) If,g1 (b) Ig,f1

(c) Ih1

Figure 3: Plot of the (h, e)-implication Ih1,e and its
generating implications, If,g1 and Ig,f1 .

5. Conclusions and Future work

In this paper, we have proposed an extension of
Yager’s f and g-generated implications based on
considering a more general internal factor than
the usual g(x) = x and f(x) = 1

x in f and g-
generated implications respectively. The generated
new classes of implications, called (f, g) and (g, f)-
generated implications, have been deeply studied
showing the additional properties they satisfy, in-
cluding (EP), (OP) and (LI). In particular, in some
cases we generate fuzzy implications satisfying (EP)
but not (LI). Furthermore, these new classes have
led to the characterization of (h, e)-implications
showing that (h, e)-implications are just thresh-
old generated implications from (f, g) and (g, f)-
implications.
As a future work, we want to study some ad-

ditional properties on (f, g) and (g, f)-implications
such as the distributivity properties or the con-
trapositive symmetry. Finally, the intersections of

these classes with the already known classes is wor-
thy to study.
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