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Abstract 

The paper extends author’s previous works on a proba-
bility/possibility transformation based on a maximum 
specificity principle to the case of the sum of two iden-
tical unimodal symmetric random variables.  This trans-
formation requires the knowledge of the dependency 
relationship between the two added variables. In fact, 
the comonotone case is closely related to the Zadeh’s 
extension principle. It often leads to the worst case in 
terms of specificity of the corresponding possibility dis-
tribution, but it may arise that the independent case is 
worse than the comonotone case, e.g. for symmetric Pa-
reto probability distributions. When no knowledge 
about the dependence is available, a least specific pos-
sibility distribution can be obtained from Fréchet 
bounds. 

Keywords: Possibility theory, uncertainty propagation, 
maximum specificity principle, independence, co-
monotonicity. 

1. Introduction  

In a lot of applications, a probability distribution or an 
interval are frequently used in order to give an account 
of uncertainty of observations or of a parameter. The 
first representation provides a quite rich information but 
it is not always easy to determine, unlike the second re-
presentation that is more simple to obtain but also gene-
rally more rough. A third uncertainty representation ba-
sed on the possibility theory [1] has been proposed in 
the late 70’s by Dubois and Prade and further developed 
within the fuzzy community, among ones the author 
who has proposed a probability-possibility transforma-
tion identifying the dispersion intervals of level 1 α− of 
a probability distribution to the α-cuts of a fuzzy subset 
seen as a possibility distribution [2]. This identification 
is closely related to the transformation principles propo-
sed originally by Dubois, Prade and Sandri [3] (consis-
tency, preference preservation, least commitment). Fol-
lowing this way, the maximum specific possibility dis-
tribution is obtained, i.e. the least one in the sense of 
fuzzy subset inclusion without adding arbitrary infor-
mation. 
In other respects, as many practical engineering situa-
tions involve many variables, it is important to consider 
the problem of the possibility representation of a prob-
ability distribution associated to a function of many ran-

dom variables not being necessarilly independent. Since 
this issue is not so simple as it seems at a first sight, we 
will limit ourselves in this paper to the case of the pro-
bability-possibility transformation of the sum of two 
identical continuous unimodal symmetric random va-
riables. After having recalled the basic principles of the 
previously proposed probability possibility transforma-
tion and associated properties, we will study the case 
where the two random variables are independent and 
the case where they are comonotone. It will be shown 
that this later case is closely related to the Zadeh’s ex-
tension principle conventionally used for the propaga-
tion of possibility distributions [4]. Finally, we will give 
some elements about the case where no knowledge 
about the dependency is available. The fundamental de-
velopments will be illustrated with widely used proba-
bility distributions: uniform and Gaussian ones, but also 
with less used ones (nevertheless important in specific 
areas): the Cauchy and symmetric Pareto distributions.  
The paper sheds some new lights at the conditions in 
which the Zadeh’s extension principle leads to least 
specific possibility distributions. Let us note that in this 
paper we consider the dependency concept under the 
conventional umbrella of random variables, and we do 
not consider other dependency notions introduced be-
yond the conventional probability theory [5][6]. 

2. Probability-possibility transformation recalls  

2.1. Basics of possibility theory 

A fundamental notion of the possibility theory [4] is the 
possibility distribution, denotedπ . Here, we consider 
possibility distributions defined on the real line, i.e. 
π is an upper semi-continuous mapping from R to the 
unit interval to the unit interval such that π(x) = 1 for 
some x belonging to R. Thus π  is a fuzzy subset but 
with specific semantics for the membership function. 
Indeed, a possibility distribution describes the more or 
less plausible values of an uncertain variable X. The 
possibility theory provides two evaluations of the like-
lihood of an event, for instance whether the value of a 
real variable X does lie within a given interval: the pos-
sibility Π  and the necessity Ν . The normalized 
measures of possibility Π  and necessity Ν  are de-
fined from the possibility distribution [ ]: 0,1Rπ →  
such that sup ( ) 1x R xπ∈ =  as follows: 
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, ( ) sup ( )x AA R A xπ∈∀ ⊂ Π = and

, ( ) 1 ( ) inf (1 ( ))x AA R N A A xπ∉∀ ⊂ = − Π = −  

The possibility measure Π  verifies : 
, , ( ) max( ( ), ( ))A B R A B A B∀ ⊂ Π ∪ = Π Π  

The necessity measure Ν  verifies : 
, , ( ) min( ( ), ( ))A B R N A B N A N B∀ ⊂ ∩ =  

To qualify the informativeness of a possibility distribu-
tion, the concept of specificity can be used [7]. Indeed, 
a possibility distribution 1π  is said more specific than 

2π  as soon as 1 2, ( ) ( )x x xπ π∀ ≤ (it is the usual 
definition of inclusion of fuzzy sets), i.e.1π  is more in-
formative than 2π (or dually less spread). If( ) 1xπ =  
for some x and ( ) 0yπ = for all y x≠ , then π is totally 
specific (fully precise and certain knowledge), if 

( ) 1xπ = for all x then π is totally non specific (com-
plete ignorance). 
In fact, a numerical degree of possibility can be viewed 
as an upper bound to a probability degree [8][9]. 
Namely, with every possibility distribution π one can 
associate a non-empty family of probability measures 
dominated by the possibility measure: 

}{( ) , , ( ) ( )P A R P A Aπ = ∀ ⊂ ≤ ΠP . This provides a 

bridge between probability and possibility, and there is 
also a bridge with interval calculus. Indeed, a unimodal 
numerical possibility distribution may also be viewed as 
a nested set of intervals, which are the α -cuts of 

π : [ ] }{, , ( )x x x xα α π α= ≥ . In fact, these α-cuts can be 

identified with the dispersion intervals of probability 
level 1β α= −   of a probability distribution. For every 

possible probability level [ ]0,1β ∈ , the corresponding 

dispersion interval (called a coverage interval in the 
metrology area [10]) is defined as an interval that con-
tains a portion of X with probability β≥ . In others 

words, a dispersion interval of probability level β (de-

notedI β ) is defined as an interval for which the prob-

ability 
out

P to be outside this interval I β does not ex-

ceed 1
def

α β= − . In fact, the dispersion intervals give in-

formation about the concentration of the probability dis-
tribution associated to a random variable. 
 
For the same probability density function and for the 
same probability level, we can have different types of 
dispersion intervals. Indeed, we can impose the disper-
sion intervals to be defined around a same point*x , 
generally a typical central point of the probability den-
sity, e.g. the mode, the mean or the median. Obviously, 
the dispersion intervals built around the same point *x  
are nested. It has been proven in [11] that stacking dis-
persion intervals on top of one another leads to a possi-
bility distribution (denoted *π  having *x as modal 
value). In fact, in this way, the α-cuts of *π , i.e., 

{ }* ( )A x xα π α= ≥  are identified with the dispersion 

interval *I β  of probability level 1β α= −   around the 

nominal value *x . 
Thus, the possibility distribution *π encodes the whole 
set of coverage intervals in its membership function. 
Moreover, this possibility distribution satisfies: 

*, ( ) ( )A R A P AΠ∀ ⊂ ≥ , with *Π and P the possibility 

and probability measures associated respectively to *π  
andp  (the underlying probability density function of 

the measurements). It is proved in [11] that the most 
informative (i.e. with minimal length) dispersion inter-
vals are level cuts of the probability density, which are 
in the multi-modal case constituted of unions of inter-
vals. The corresponding possibility distribution, de-
noted π*, has therefore the following expression: 

*

( ) ( )

( ) 1 ( )
p y p x

x p y dyπ
>

= − ∫    (1) 

This possibility distribution is the most specific possi-
bility distribution among those that dominate p, i.e. 

, ( ) ( )A R A P AΠ∀ ⊂ ≥ . 

For symmetric unimodal probability distributions with 
mode M, the expression (1) becomes: 

( ) 2 ( ),

( ) 2(1 ( )),
X

X

X F x x M

y F x x M

π
π

= ≤
= − ≥

 

and thus, the possibility distribution is simply related to 
the cumulative distribution functionF . 
The expression under the form of α -cut nested inter-
vals is : 

1 1( / 2), (1 / 2)X F Fαπ α α− − = −   (2) 

with 1F −  the left inverse function  (called also quantile 
function) of the corresponding cumulative distribution 

functionF  ( { }1
( ) inf ( )

x R

F y F x y
−

∈

= ≥ . 

The following figure illustrates the possibility distribu-
tions equivalent to the probability distributions of mode 
0 and standard deviation for uniform Gaussian, triangu-
lar and double exponential densities.  

  
 
Fig. 1: Examples of possibility distributions equivalent to 
probability distribution with M= 0 and 1σ = . 
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In the following, for a sake of simplicity but without 
lack of generality we will consider distributions with a 
mode  M=0. 
 
2.2. Properties of transformation 

In fact, the equivalent possibility distribution is a func-
tional summary of the dispersion of the random varia-
ble. Thus, it has many relationships with the conventio-
nal dispersion parameters : mean absolute deviation, 
variance, interquantile intervals.   
For instance, the specificity index of the possibility dis-
tribution equivalent to an unimodal symmetric probabil-
ity distribution, is equal twice the mean absolute devia-
tion [12] : 

   ( ) ( ) 2.
X X

sp x dx E Xπ π
+∞

−∞
= =∫ .  

The relationship with the variance is not so direct be-
cause it involves the mean absolute deviation of the in-

tegral of the equivalent possibility distribution
X

iπ  : 

( ) ( )
x

X X
i x y dyπ π

−∞
= ∫  

0

2. ( ) ( )
X

V X x i x dxπ
−∞

= ∫  

Let us remark that when the mean absolute deviation or 
the variance is indefinite, the equivalent possibility dis-
tribution can still be computed (see hereafter the case of 
the Cauchy distribution).  
One more general result allows to relate the specificity 
order of possibility distributions to order on the mo-
ments. Indeed, for every functionL having the form 

( , ) ( )L x h xθ θ= −  (θ  being a fixed central value of 

the distribution, here the mode which for symmetric 
distribution is equal to the mean and to the median), 

with [ ) [ ): 0, 0,h ∞ → ∞  a decreasing function, we 

have [12]: 

1 2 1 2

( ) ( ) ( ( )) ( ( )),
X X X X

x x E L x E L x Lπ π≤ ⇔ ≤ ∀  

The mean absolute deviation is obtained with 

( , )L x xθ θ= − , and the variance with 
2

( , )L x xθ θ= − . 

Let us also note that Fréchet has introduced in 1940 
[13] another dispersion measure, i.e. the half-width of 
the interquartile interval defined in the following way: 

1 1(0,25), (0,75)F F− −   . This interval is indeed the cut 

of level 0.5 of the equivalent possibility distribution 

Xπ  . 

3. Transformation of the sum of two identical 
symmetric unimodal random variables 

Let us consider two identical continuous symmetric un-
imodal random variables X1 and X2 represented by the 
distribution functions F1 and F2, and Y the random vari-

able associated to their sum 
1 2

Y X X= +  represented 

by the distribution function G. To determine, the possi-

bility distribution equivalent to Y, denoted πY, the 
knowledge of G is required, and the associated expres-
sion depends on the dependence relationship between 
X1 and X2. Hereafter, we consider two extremal case of 
dependency (independence and comonotonicity [14]), 
and also the case where no knowledge about the de-
pendency is available. For these different cases, we de-
termine the expression of πY for X1 and X2 being identi-
cal uniform, Gaussian, Cauchy or symmetric Pareto dis-
tributions, and we compare them in terms of specificity. 
Without lack of generality, we consider distributions 
with a mode at 0, the results being invariant with tran-
slation.   
 
3.1. Independent random variables 

In this widely used case, Y is defined by the conventio-
nal convolution product of  X1 with X2: 

1 2
( ) ( ) ( )G y F y x dF x

+∞

−∞
= −∫  

For unimodal and symmetric random variables X1 and 
X2, Y is also unimodal and symmetric, thus πY can be 
written in the form: 

( ) 2 ( ), 0

( ) 2(1 ( )), 0
Y

Y

y G y y

y G y y

π
π

= ≤
= − ≥

  (3) 

For arbitrary X1 and X2, it is not easy to obtain an ana-
lytical expression for G, but the later is available for 
frequently encountered cases. Corresponding equivalent 
possibility distributions are plotted in the figures of the 
following subsection 3.2 in a way such that the com-
parison with the comonotone case will be easy.  
 

Gaussian distributions 

 One of the most important property which explains the 
abundant use in a lot of areas of the Gaussian (or nor-
mal) distribution is that it is stable under addition, i.e. 
the sum of two independent Gaussian random variables 

1 1 1
( , )N m σ  an 

2 2 2
( , )N m σ is also a Gaussian random 

variable 2 2

1 2 1 2
( , )

Y
N m m σ σ+ + . 

 

Cauchy distribution 

This distribution will be denoted C(M,a) (M being the 
location parameter, and a the scale parameter.) and the 
associated  distribution function has the following ex-
pression :  

1 1
( ) ( )

2

x M
F x arctg

aπ
−

= +  

 
This distribution has no mean nor variance (but the me-
dian and the mode are definite). The shape invariance 
by the convolution product is also satisfied (it also be-
longs to the family of stable distribution) and thus we 
have : 

  1 2

1 2

1 1
( ) ( )

2

y M M
G y arctg

a aπ
− −

= +
+
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Uniform distribution 

This distribution will be denoted U(a,b), it has a con-

stant probability density on the interval [ ],a b . There-

fore, the distribution function is  a straight line.  A re-
markable result is that the equivalent possibility distri-
bution around the middle of the interval is a triangular 
symmetric possibility distribution [2]. The convolution 
product of two identical uniform distributions gives a 
triangular probability density, and consequently a para-
bolic possibility distribution (see figure 2).   
Let us remark that thanks to a theorem from Birnbaum 
[15], the equivalent possibility distribution of the sum 

Yπ  of two identical independent unimodal symmetric 

random variables X1 and X2 is more specific than the 

sum 'Yπ  (
'

( ) ( )
Y Y

y yπ π≤ ) of two identical indepen-

dent symmetric  random variables X’1 and X’2 those 
equivalent possibility distributions are respectively 
more specific than those of X1 and X2.. Thus, the possibi-
lity distribution equivalent to the sum of two indepen-
dent unimodal symmetric distributions having a boun-
ded support is included in the equivalent possibility dis-
tribution of the sum of two uniform distributions having 
the same support. Indeed, the uniform distribution is the 
least specific one among the symmetric unimodal dis-
tributions with bounded support [11]. 

Symmetric Pareto distribution 

The Pareto distribution is a particular case of power 
laws which is applied in physical and social sciences. 
More precisely, we consider the following symmetric 
Pareto probability density : 

2

1
( )

2(1 )
SP

p x
x

=
+

 

Due to the exponent 2 in the denominator, this distribu-
tion has no variance (and also no mean). An analytical 
expression for the convolution product is computable 
even if it is not so easy (see some calculus elements in 
the Annex). The expression for the distribution function 
of the sum of two such symmetric Pareto distributions 
is thus : 
 

2

2 2

1 1 ln(1 ) 1 (2 ) 1
( ) . - .

2 2 4 .(1 ) 2 1

1 ln(1 ) 1 .(2 )
- . -

2 3 2 4 (1 ).(3 2 )

y y y
G y

y y y y

y y y

y y y y y

+ +
= + +

+ +

+ +

+ + + + +

 

The corresponding equivalent possibility distribution is 
then deduced according to equation (3). 
 
3.2. Comonotone random variables 

The comonotonicity of two random variables corres-
ponds to an extremal case of positive dependence which 
is defined by the existence of two increasing functions 
h1 and h2 such that X1= h1(U) and X2=h2(U); U(0,1) be-
ing an uniform distribution function on [0,1] . The co-
monotonocity implies maximal correlation coefficient if 
the later exists.  One fundamental property of the co-

monotonicity is that the quantile function of the sum is 
the sum of the quantile functions [14]: 

[ ]1 1 1

1 2
( ) ( ) ( ), 0,1G F Fα α α α− − −= + ∀ ∈ . 

This property allows to directly determine the possibili-
ty distribution equivalent to Y from its alpha-cuts by 
using equation (2). In fact, the alpha-cuts of the sum is 
the sum of the alpha-cuts that is equivalent to interval 
calculus and similar to Zadeh’s extension principle. Let 
us also note that the resulting shape invariance for dis-
tributions is larger for comonotonicity than for inde-
pendence. In particular shape invariance is satisfied for 
the four types of distribution considered in the follow-
ing illustrations. 

Uniform distribution 

In this conventional case, we obtain the same resulting 
possibility distributions as the ones obtained by apply-
ing the Zadeh’s extension principles to the sum of the 
two equivalent triangular possibility distributions. 

 
Fig. 2. Possibility distributions equivalent to the sum of two 
uniform distributions with a standard deviation of 1. 
 

Gaussian distributions 

 
Fig. 3. Possibility distributions equivalent to the sum of two 
Gaussian distributions with a standard deviation of 1. 
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In the comonotone case, the standard deviation of the 
sum is the sum of the standard deviation that corre-
sponds to a maximal correlation coefficient of 1. 

Cauchy distribution 

In this very particular case, we obtain the same distribu-
tion function, and thus the same equivalent possibility 
distribution for the sum either for independence or co-
monotonicity.  
 

 
Fig. 4. Possibility distributions equivalent to the sum of two 
Cauchy distributions with a=1 
 

Symmetric Pareto distributions 

In this case, independence leads to an equivalent possi-
bility distribution less specific that the one obtained 
with comonotonicity. 
 

 
Fig. 5. Possibility distributions equivalent to the sum of two 
symmetric Pareto distributions. 
 

Remark 

Let us note that for the first three distributions, the equi-
valent possibility distributions of the sum in the inde-
pendence case are more specific that the ones obtained 

for the comonotonic case, in fact equal for the Cauchy 
distribution.  On the other hand, it is the opposite for the 
symmetric Pareto distribution: independence leads to a 
less specific possibility distribution (i.e. larger disper-
sion intervals) than comonotonicity. Let us remark that 
the considered symmetric Pareto distribution has as 
well as the Cauchy distribution no mean nor variance, 
but it has a heavier tail.  
 
3.3. Unknown dependency 

In the case where no information about dependency is 
available, it is of value to find the possibility distribu-
tion associated to Y which contains all the equivalent 
possibility distributions issued from all the dependence 
relationships. For this purpose, Frank, Nelsen et 
Schweizer results [16] can be used. Indeed, they pro-
vide bounds on the distribution function from Fréchet 
bounds on the joint distribution [17]. These bounds con-
stitute in fact a p-box [18], from which it is possible to 
build a possibility distribution [9] (it is not mandatory 
optimal). For uniform, Gaussian and Cauchy distribu-
tions analytic expressions for the bounds of the sum of 
two identical random variables are available : 

min max
( ) ( ) ( )G y G y G y≤ ≤ , with 

min
( ) 0, 0

2 ( / 2) 1, 0

G y y

F y y

= ≤

= − ≥

max
( ) 2 ( / 2), 0

1, 0

G y F y y

y

= ≤

= ≥
 

As we have 
min

(0) 0G = and
max

(0) 1G = , we obtain the 

following expression for the equivalent possibility dis-
tribution [9] : 

max min
( ) min( ( ),1 ( ))

Y
y G y G yπ = − , and 

( ) 2 ( / 2), 0

2(1 ( / 2)), 0

Y
y F y y

F y y

π ≤ ≤

≤ − ≥
.  (4) 

 
It is important to notice that the worst dependency rela-
tionship corresponds to the comonotonicity for the uni-
form, Gaussian and Cauchy distributions with equality 
with independence for the later distribution.   
 
3.4. Discussion 

The results of the preceding sub-section are only partly 
in accordance with the idea that the extremal positive 
dependence, i.e. comonotoncity, between two random 
variables leads to the least specific possibility distribu-
tion (i.e. the most spread in terms of dispersion inter-
vals). They point out that the notion of non interactive 
variable introduced in the Zadeh’s extension principle 
fuzzy theory, and widely used in the fuzzy community, 
is indeed equivalent to the comonotonicty of random 
variables (this connection is mentioned in the Ph. D. 
thesis of Williamson [19]). Accordingly, the Zadeh’s 
extension principle is conservative for unimodal sym-
metric random variables with bounded support, but not 
necessarily if the support is indefinite. Indeed, the ex-
ample of symmetric Pareto distributions shows that co-
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monotonocity is not always the worst case. The fact that 
for the Cauchy distribution comonotonicity leads to the 
same result as independence suggest that for distribu-
tions with indefinite mean, independence is worse than 
comonotonicity. However, if we conjecture by analogy 
with the bounds of Frank et al., that the symmetric 
Pareto distribution satisfies equation (4), then inde-
pendence would not be the worst  case (see fig. 5), but 
this point has to be further studied. Finally let us also 
mention that for unimodal asymmetric random vari-
ables with bounded support, the Zadeh’s extension 
principle is not necessarily conservative as shown by an 
example described in [20]. 

4. Conclusion 

The paper has addressed the issue of probabil-
ity/possibility transformation of the sum of two identi-
cal continuous symmetric unimodal random variables   
considering either independence or comonotonicity of 
the variables. We emphasize the fact that the Zadeh‘s 
extension principle applied to possibility distribution 
propagation leads to the same result as the one obtain 
by considering comonotone random variables.  It has 
been shown that for the uniform, Gaussian and Cauchy 
distributions the worst case in terms of specificity is ob-
tained with the comonotonicity.  For the Cauchy distri-
bution, independence and comonotonicity leads to the 
same equivalent possibility distribution, and for the 
symmetric Pareto distribution, independence leads to a 
worse equivalent possibility distribution than co-
monotonicity.  When no information about dependency 
is available, Frank et al’s bounds can be used to build a 
possibility distribution that is less specific than the ones 
obtained with assuming independence or comonotonic-
ity.  
The study has considered a lot of conditions for the sum 
of distributions functions (identical, symmetric, unimo-
dal). Therefore further works have to be done to obtain 
more general results. In particular, to determine condi-
tions in order Zadeh’s extension principle leads to the 
worst case, and also to determine the most specific pos-
sibility distribution dominating the optimal distribution 
for all dependency cases. 
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Annex  

Hereafter, we present some calculus elements for the 
determination of the distribution function of the sum of 
two identical independent symmetric Pareto distribu-
tions:  

2

1
( )

2(1 )
SP

p x
x

=
+

 gives by integration : 

1
( ) , 0;

2(1 )

1
( ) 1 , 0

2(1 )

SP

SP

F x x
x

F x x
x

= ≤
−

= − ≥
+

 

The expression of the distribution function of the sum Y 
for 0x ≥  is: 

1
( ) , 0;

2(1 )

1
( ) 1 , 0

2(1 )

SP

SP

F x x
x

F x x
x

= ≤
−

= − ≥
+

. 

 
The expression of the distribution function of the sum Y 
for 0x ≥  is: 

0

0

( ) ( ) ( )

( ) ( ) ( ) ( )

Y SP SP

x

SP SP SP SP

x

G y F y x p x dx

F y x p x dx F y x p x dx

−∞

∞

= −

+ − + −

∫

∫ ∫

 

Further, each of the three integrals is computed by ma-
king a decomposition in simple elements that leads to 
the following result: 
 

2

2 2

1 1 ln(1 ) 1 (2 ) 1
( ) . - .

2 2 4 .(1 ) 2 1

1 ln(1 ) 1 .(2 )
- . -

2 3 2 4 (1 ).(3 2 )

y y y
G y

y y y y

y y y

y y y y y

+ +
= + +

+ +

+ +

+ + + + +
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