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Abstract

Information systems model parts of reality by rep-
resenting properties of real-world objects or con-
cepts. As real objects or concepts often have tem-
poral aspects, temporal notions such as time in-
tervals are often represented. However, these may
contain imperfections like uncertainties, complicat-
ing their representations. A very important pur-
pose of information systems is to be able to query
them to retrieve information, but representations of
temporal notions containing uncertainties severely
complicate querying. Thus, several soft comput-
ing techniques have been proposed to represent time
intervals subject to uncertainties in a semantically
sound way and to reason with them in a semanti-
cally sound and useful way. In the presented work,
two frameworks designed for this are compared. It
is found that, despite slight differences in the way
these frameworks represent intervals, they provide
the same results when reasoning about time inter-
vals subject to uncertainty.

Keywords: temporal representation, temporal rea-
soning, possibility theory, information systems, in-
formation retrieval, ill-known intervals, uncertainty

1. Introduction

Information systems (IS) have always tried to model
parts of reality. To achieve this modelling, IS con-
tain data representing properties of real-world ob-
jects or concepts [1], [2]. As time is an essential as-
pect of many real-world objects or concepts, IS often
contain data representing temporal notions which
describe such temporal properties [3], [4]. Such
temporal notions usually take the form of either in-
stants [5], which can informally be seen as infinitely
short ‘moments’ or ‘points’ in time, or time inter-
vals [5].

Data are often produced by humans, but
human-made data are prone to imperfections:
some data may be vague, imprecise, incomplete,
contradictory or uncertain. Data representing
temporal notions may contain such imprecisions
too [1], [2], [4], [6], [7]. Although The work pre-
sented in this paper is specifically concerned with
time intervals (and as a special case: instants) sub-
ject to uncertainty.
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Generally, one of the most important purposes
of an IS is to allow the retrieval of information or
knowledge deduced from its data. Such retrieval
is usually done by querying the IS and examin-
ing or analyzing the query results or by visualizing
the contents of the IS, querying this visualization
and examining or analyzing the resulting visualiza-
tion(s).

Of course, when temporal information is repre-
sented in an IS, querying this IS may have a tem-
poral aspect too. Usually, querying such an IS is
conceptually done by specifying one or more time
indications and requesting information that is in a
specific relationship with these indications, where
the semantics of these relationships are specifically
temporal [1], [2], [8]. Thus, some existing propos-
als have considered groups of basic relationships be-
tween time indications used to construct and ex-
press specific temporal relationships [9], [10], [11].
Notably, Allen [12] presented a reasoning frame-
work containing all semantically useful basic tem-
poral relationships between time intervals (and as a
special case instants) and subsequently used these
in a framework to represent and reason with time-
related actions [13] and compared them with other
approaches [14]. The resulting relationships are
shown in figure 1. These Allen relationships are
used in the presented work.

Relation
| Before J ! J
| Equal J J
| Meets J J
| Overlaps J d

J

| During J
| Starts J )
| Finishes J )

) time

Figure 1: The Allen relationships between two crisp
intervals I and J.



To be able to query IS containing data repre-
senting time indications subject to uncertainty, a
framework is necessary, able to represent uncertain-
ties in time indications in a semantically sound way,
without (much) information loss and able to tempo-
rally reason with such time indications in a semanti-
cally sound and useful way [7], [11], [15]. Although
more proposals for such frameworks exist, the work
presented in this paper focusses on just two: the
ill-known constraint (IKC) framework [16] and the
triangular model (TM) framework [17].

The work presented in this paper consists of
a comparison of both frameworks, about the ap-
proaches they use to represent time intervals sub-
ject to uncertainty and to reason about the tem-
poral relationships between such intervals and time
intervals without uncertainty.

The structure of this paper is as follows: section
2 presents some general preliminaries and naming
and notation conventions used in this paper. Sec-
tions 3 and 4 introduce the IKC and TM frameworks
respectively: both sections first introduce some spe-
cific preliminary concepts and techniques, then ex-
plain how the representation of time intervals by the
framework is done and finally show how the evalua-
tion of Allen relationships between an interval sub-
ject to uncertainty and one without uncertainty is
done. In section 5, both frameworks are compared:
first their approaches to representing time intervals
are compared, next their approaches to evaluating
Allen relationships. Also, an example is given. Fi-
nally, section 6 presents the principal conclusions of
the presented work and some possible future work.

2. General Preliminaries, Notations and
Nomenclature

Often, time is thought of as following an axis (a
time axis) and thus it is often seen as an ordered
set of infinitely short ‘moments’ or ‘points’ in time,
called instants [5]. This is also the case in the pre-
sented work. A time interval is then an interval
subset of this ordered set of instants. In this paper,
instants are noted using lowercase letters and time
intervals using uppercase letters. Also, a time in-
terval I starting at (and containing) instant s and
ending at (and containing) instant e is noted using
square brackets: I = [s, €.

The presented work allows time intervals to be
subject to uncertainties. These uncertainties are al-
ways seen as caused by a (partial) lack of knowledge:
the exact, intended time interval is not known, even-
though there is only one correct intended time in-
terval and as such no variability. Confidence about
exactly which interval is the intended one in the
context of such uncertainties is modelled using pos-
sibility theory [15]. In the presented work, possi-
bility is always interpreted as plausibility given a
(partial) lack of knowledge.

To be able to distinguish easily, time intervals
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not subject to uncertainties will be called crisp time
intervals (CTT) in the presented work.

3. The Ill-known Constraint Framework

In [16], the ill-known constraint framework is intro-
duced. In this section, its main aspects concerning
interval representation and Allen relationship eval-
uation are briefly presented.

3.1. Preliminary Concepts

The IKC framework relies on the concepts of pos-
sibilistic variables, ill-known values and ill-known
intervals [1], [2], [15], [16]. These are introduced
below.

Definition 1. A possibilistic variable X on a uni-
verse U is defined as a variable taking exactly one
value in U, but for which this value is (partially)
unknown. The variable X’s possibility distribution
mx on U models the available knowledge about the
value that X takes: for each u € U, wx(u) repre-
sents the possibility that X takes the value u.

As mentioned above, possibility is interpreted as
plausibility in the presented work and thus the pos-
sibility that possibilistic variable X on U takes the
value u € U is interpreted as a measure of how plau-
sible it is that X takes the value u, given (partial)
knowledge about the value X takes.

Now consider a set U containing single values
(and not collections of values). When a possibilistic
variable X, is defined on such a set U, the unique
value X, takes, which is (partially) unknown, will
be a single value in U and is called an ill-known
value (IKV) in U in this work [2], [16], [18].

In this paper, possibilistic variables will be de-
noted using uppercase letters and IKV using lower-
case letters.

3.2. Representation of Time Intervals
Subject to Uncertainty

The IKC framework allows uncertainty in in-
tervals by supporting a kind of ill-known inter-
vals [1], [2], [15], [16]:

Definition 2. Consider an ordered set U. An ill-
known interval (IKI) in U is an interval in U of
which both boundary values are ill-known values in

U.

Specifically with regards to time, an IKI in an
ordered set of instants representing time is called
an ill-known time interval (IKTT) in the presented
work. In this paper, an IKTI with starting instant
s and ending instant e will be noted [s, ¢].

3.3. Evaluation of Allen Relationships

At the base of the framework’s approach to
evaluating Allen relationships are ill-known con-
straints [16]:



Definition 3. Given an ordered set U, an ill-known
constraint (IKC) C on U is specified by means of a
binary relation R C U? and a fixed IKV v in U
defined by its possibilistic variable V on U, i.e.:

C = (R,v)

Any set A C U now satisfies IKC C' = (R
only if:

,v) if and

Va € A: (a,v) € R

The satisfaction of an IKC C by a set A will be
noted C(A) in this paper.

Consider an ordered set U, an IKC C £ (R, v) on
U and a set A C U. Due to the uncertainty about
the exact value of v, it is uncertain whether A satis-
fies C' or not. Confidence about the plausibility that
A satisfies C' can be expressed using a possibility de-
gree Pos(C(A)) and a necessity degree Nec(C'(A4)),
which are shown to be calculated as follows:

sup 7y (w)
(a,w)ER
= min ((a}wn)ngl — Ty (w)> (2)

Given an ordered set U, possibility and necessity
degrees expressing confidence about the plausibility
that a set A C U satisfies a boolean aggregation of
IKC on U can be found by using the possibilistic ex-
tensions of boolean operators ‘and’ (A), ‘or’ (V) and
‘not’ (—) and can be calculated using the following
expressions:

Pos(C(A)) = min

(1)

Nec(C(A))

Pos ((C1(4)) A .. A (Ca(4)) = min (Pos (C4(4)))
Nec (C1(A)) A~ A (Cu(4)) = min_(Nee (Ci(4)))
Pos ((C1(4)) V..V (Ca(A))) = max (Pos (Ci(4)))
Nee (C1(A)) V ...V (Cu(4)) = max (Nee (Ci(4)))
Pos (=C(A)) =1 — Nec (C (A))
Nec (-C(A)) =1 —Pos (C (A4))

Here, C and all C; for which7 € Ngand 1 <i<mn
denote IKC on U.

The IKC framework now allows evaluating a
given Allen relationship AR between a given CTI
I and a given IKTI J = [s,e] by allowing to cal-
culate the possibility and necessity that I AR J
holds. For this, the combination of AR and J is
translated to a specific boolean aggregation of spe-
cific IKC. These translations are shown in table 1.
Every row of this table corresponds to an Allen re-
lationship. The Allen relationships the rows corre-
spond to, are shown in the ‘Allen Relationship’ col-
umn, the collections of specific IKC for given Allen
relationships are shown in the ‘Constraints’ column
(every C;,i € {1,2,3,4} denotes an IKC) and the
specific aggregation of these IKC used for evalua-
tion of the Allen relationships are shown in column
‘Aggregation’. Finally, the possibility and necessity
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degrees expressing confidence about the plausibility
that I AR J holds are then the possibility and ne-
cessity expressing confidence about the plausibility
that I satisfies the specific aggregation of specific
IKC found as translation of the combination of AR
and J.

Using the formulas shown above, the requested
possibility and necessity degrees can be calculated
from these.

Allen Relationship | Constraints | Aggregation
I before J C, 2 (< (<,s) Ci (1)
G2z | o
I equal J C, 2 (#, 5) ~Co(I)A
032( <€) Cs(I)N
Ci = (#e) | ~Cul)
I meets J & % (<,9) Cr(I)A
Ca=(#35) | —Co(I)
Gy 2 (<€) Cy(I)A
I overlaps J Cy = (<,s) ~Co(I)A
G2 (25) | ~Cs(l)
G = (>,s) (01(1)/\
I during J Co 2 (<,e) I))\/
C3=(25) | (Gs(DA
CiZ(<,e) Cu(I))
I starts J i % (2,5) Cr(I)A
Cy = (#5) | —Co(I)
I finishes J 1 %( e) | CuDA
=(#e) | ~C(I)

Table 1: The translations of Allen relationships to
the IKC framework.

4. The Triangular Model Framework

n [19], the TM framework for crisp intervals is in-

troduced, based on [20]. In [17], the framework is
generalized to allow the representation of and rea-
soning with time intervals subject to uncertainty.
In this section, this generalization’s main aspects
towards interval representation and Allen relation-
ship evaluation are briefly presented.

4.1. Preliminary Concepts

In the triangular model framework, the approaches
to interval representation and Allen relationship
evaluation are closely related to the approach to in-
terval visualization. Usually, different time intervals
are visualized as different parallel line segments in
the same image plane. However, as this linear ap-
proach introduces a few issues, time intervals are
visualized as points in the image plane in the TM
framework [17], [19]. To achieve this, a horizontal
line segment visualizing the used (part of the) time



axis is drawn in the image plane (this is called the
time line). Then, a triangle is drawn, using this line
segment as a side of which the angles with the other
two sides have sizes v and —a respectively. The area
contained in this triangle is called the interval space
and will contain all visualizations of intervals. Now,
the procedure used to visualize a CTI [s,¢] in the
interval space is the following [17], [19]:

1. s is visualized as a point on the time line.

2. A straight half-line L; is constructed from this
point, having, in this point, an angle of size «
with the time line.

3. e is visualized as a point on the time line.

4. A straight half-line L. is constructed from this
point, having, in this point, an angle of size —«
with the time line.

5. The intersection point of Ly and L, is the in-
tended visualization of interval [s, e].

A similar point visualizing an interval is generally
called an interval point [17], [19]. In this work, as
it is usually done, the size of « is chosen to be 45°.
An example of such construction is shown in figure
2.
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Figure 2: The visualization of several CTT using the
TM framework.

4.2. Representation of Time Intervals
Subject to Uncertainty

The TM framework allows uncertainty in time in-
tervals by supporting uncertain time intervals [17]:

Definition 4. Given an ordered set of instants T,
an uncertain time interval (UTI) J in T is here a
time interval defined by a pair

J = (7s,7e)

where 75 and 7, are two convex [15] possibility dis-
tributions on 7.

Consider an ordered set of instants 7" and an UTI
J in T, defined by the pair (7, 7). Given an in-
stant x € T, 75(x) now expresses the possibility that
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x is the starting instant of J and m.(z) expresses the
possibility that x is the ending instant of J. Thus,
J intends to indicate just one CTI, but it is (par-
tially) unknown exactly which time interval this is.
The possibility 7;(I) that a given CTI I = [s;, €;]
is the exact time interval intended by J can now be
uniquely determined by [17]:

my(I) = min (7(s;), me(e;)), if s; <e;
I 0, otherwise

Now consider an ordered set of instants 7" and a
visualization of this in an image plane, using the TM
framework. An UTI J in T defined by a pair (75, 7.)
is now visualized as an area in the image plane. This
area is constructed as follows: for every CTI K for
which the possibility 7;(K) of K being the CTI
intended by J is higher than zero, the interval point
is drawn and is given a color. This color is part of
a linear single-color greyscale and its saturation is
linearly related to the degree of possibility that K
is the CTI intended by J. Together, these drawn
interval points form the visualization of J [17]. An
example of such construction is shown in figure 3. In
this figure, a darker color of interval point indicates
a higher and a lighter color a lower possibility that
the corresponding CTT is the intended interval.
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Figure 3: The visualization of one UTI defined by
a pair (ms, m.) using the TM framework.

4.3. Evaluation of Allen Relationships

At the base of the framework’s approach to evalu-
ating Allen relationships is the concept of uncertain
relational zones [17]:

Definition 5. For a given UTI J, the uncertain
relational zones (URZ) are fixed areas in the interval
space.

Now, given an UTI J and its visualization in an
interval space, the procedure to visualize its URZ is
the following [17]:



1. The visualizations (the points) on the time line
of both the smallest and greatest instant with
a non-zero possibility of being the starting in-
stant of J are determined.

2. Two straight half-lines are constructed from
each of these points: one having, in the point,
an angle of size a with the time line and one
having, in the point, an angle of size —a with
the time line.

3. The visualizations (the points) on the time line
of both the smallest and greatest instant with a
non-zero possibility of being the ending instant
of J are determined.

4. Two straight half-lines are constructed from
each of these points: one having, in the point,
an angle of size o with the time line and one
having, in the point, an angle of size —a with
the time line.

5. The lines constructed this way divide the in-
terval space in at most fifteen different areas,
including the area corresponding to the visual-
ization of J itself. These areas are the intended
visualizations of J’s URZ.

In this procedure, « is the same angle size as in
the procedure for the visualization of CTI. The re-
sults of this procedure for an example UTI J (as wel
as the visualization of J itself) are shown in figure
4.

visualization using the TM framework

time

Figure 4: The visualization of the URZ for a given
UTI J, using the TM framework.

Given an UTI J and its URZ, every URZ is as-
signed a symbol and a name and corresponds to
a set of Allen relationships [17]. These symbols
and names are used to uniquely identify each of
J’s URZ. The set of Allen relationships correspond-
ing to an URZ contains every Allen relationship in
which any interval visualized by one of the URZ’s
interval points could be with the interval intended
by J, depending on exactly which CTI J actually
intends to represent. In figure 4, the URZ’s symbols
are noted inside the areas visualizing their respec-
tive URZ’s. In table 2, every different row corre-
sponds to a different URZ. In the first two columns,
the symbol and name of the URZ are given, the last
column contains the set of corresponding Allen re-
lationships. For these, the following notations are
used:
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e ‘E’ denotes ‘equals’.

e ‘S’ denotes ‘starts’.

e ‘SB’ denotes ‘started by’

e ‘F’ denotes ‘finishes’.

e ‘FB’ denotes ‘finished by’

e ‘M’ denotes ‘meets’.

e ‘MB’ denotes ‘met by’

e ‘O’ denotes ‘overlaps’.

e ‘OB’ denotes ‘overlapped by’.

e ‘D’ denotes ‘during’.

e ‘C’ denotes ‘contains’.

e ‘B’ denotes ‘before’.

e ‘A’ denotes ‘after’.

Symbol | Name Relationships

B Before B

O Overlaps (0]

C Contains C

D During D

OB Overlapped By OB

A After A

PM Possibly Meets M, B, O

PS Possibly Starts 0,5, D

PFB Possibly Finished By | O, FB, C

PE Possibly Equal E, FB, SB, F,
S, C,D,0,0

PSB Possibly Started By | C, OB, SB

PF Possibly Finishes OB, F, D

PMB Possibly Met By OB, MB A

UB Uncertain Beginning | B, M, O, S, D

UE Uncertain Ending D, F, OB, MB, A

Table 2: The fifteen possible URZ for a given UTIL.

The TM framework now allows evaluating the Allen
relationships a given CTI I = [s,e] could be in
with a given UTI J, depending on the exact CTI
intended by J. This is done as follows. First, J and
its URZ are visualized in an interval space. Next,
I'’s interval point, its construction half-lines L, and
L. and the visualization of its starting and ending
instants on the time line are drawn in the same in-
terval space. Then, evaluation is a matter of posi-
tion (in the following, the possibility that I is the
interval intended by .J is denoted 7 ;(I) and the pos-
sibility that I is in Allen relationship AR with J is
denoted Pos(I AR J)) [17]:

e if I’s interval point is located in an URZ corre-
sponding with a singleton of Allen relationships
{R}, it is in relationship R with the interval in-
tended by J, whichever this interval is. Thus:
Pos(I AR J)=1.

e if I’s interval point is located in an URZ corre-
sponding to a non-singleton set of n Allen rela-
tionships {R1, Ra, ..., Ry}, two more half-lines
are drawn: one (denoted L) from the visual-
ization of s on the time line, having, in this
point, an angle of size —«a with the time line
and one (denoted L) from the visualization of
e on the time line, having, in this point, an an-
gle of size o with the time line. Now, some of




these half-lines Lg, L., L, and L/ may intersect
with the area visualizing J. These intersection
line segments will divide the area visualizing J
in n area parts p;, 1 <14 < n (intersection line
segments also count as area parts), each con-
taining only interval points visualizing intervals
with a non-zero possibility of being the interval
intended by J. Each of these parts p; will now
correspond to an Allen relationship R;. Now,
for each R;:

Pos(I R; J) = sup 7;(K)
Kep;

(4)

Here, the intervals K are CTI and the expression
‘K € p;’ is a notation to express that K is visualized
by an interval point contained in area part p;.

5. Comparison of Both Frameworks

In this section, first the approaches of the IKC and
TM frameworks towards interval representation are
compared. Next, their approaches towards the eval-
uation of Allen relationships between a crisp interval
and an interval subject to uncertainty are compared.

5.1. Comparison of Approaches to Interval
Representation

The IKC framework uses IKTI to represent time
intervals subject to uncertainty, whereas the TM
framework uses UTI for this. In both approaches, to
consider uncertainty about the exact CTI which is
intended, uncertainty about the exact starting and
ending instants of the intended interval is considered
and confidence in the context of this uncertainty is
expressed using two possibility distributions. In an
IKTI, these possibility distributions each define one
IKV. One of these then defines the IKTI’s start-
ing instant and the other defines its ending instant.
In an UTI, one of these possibility distributions is
directly meant to define the UTI’s starting instant
and the other is directly meant to define the UTI’s
ending instant. It is obvious that the concepts of
IKTI and UTT are exactly the same, except for the
explicit usage of the concept of IKV in IKTI to de-
fine and describe uncertainty about starting and
ending instants. This equality implies that both
approaches have the same basic restriction: they
cannot represent every kind of interval subject to
uncertainty imaginable. For example, imagine an
ordered set of instants coinciding with Ny and imag-
ine an interval subject to uncertainty in this set,
where the intended interval is either [2,4] (possi-
bility 1) or [3,7] (possibility 1). This interval can
not be modelled by a combination of possibility dis-
tributions defining the starting and ending instants
without making [2,7] and [3,4] also possible as in-
tended intervals to some extent. This issue was first
suggested about IKTI in [2].

Now, a major difference between the two frame-
works, concerning their approaches towards the rep-
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resentation of time intervals in general, is that
the TM framework includes visualization in its ap-
proach.

A first consequence of this is that the TM frame-
work allows the visualization of multiple CTT in the
same image plane. In theory, it should also allow
the visualization of multiple UTT in the same image
plane. However, if the interval space area’s visualiz-
ing these UTT overlap, it is not yet researched which
greyscale (or other) color and intensity each inter-
val point in this overlapping area should have, as the
appearance of such interval point should both reflect
the possibility of it being the interval intended by
the one UTI and the possibility of it being the in-
terval intended by the other UTI. The advantage of
the ability to visualize multiple time intervals in the
same image plane is that a human observer could
easily assess certain characteristics of a distribution
of time intervals from an image containing their vi-
sualization. The IKC framework, on the other hand,
doesn’t incorporate any form of visualization and
doesn’t allow such human assessments.

A second consequence of this is that the TM
framework requires that an UTI can be visualized,
using a visualization method which actually visu-
alizes the possibility of a CTI of being the interval
intended by this UTT for every CTI that has a non-
zero possibility of this. Thus, a method is required,
to calculate the possibility of a given CTI of being
the interval intended by an UTI based on the possi-
bility distributions defining this UTI. This method
is found by demanding that the given CTT’s start-
ing instant is the intended interval’s starting instant
and that the given CTI’s ending instant is the in-
tended interval’s ending instant and by determining
the possibility of the conjunction of both demands
using the standard possibility theory conjunction
operator ‘minimum’ Although not necessary for
the correct and consistent functioning of the TM
framework, it appears to be the intention of the TM
framework that possibility about the exact starting
or ending instant of the interval intended by the
UTTI could be derived from the possibility distribu-
tion defining the possibility that a given CTT is the
interval intended by the UTI. For this derivation to
be consistent, the possibility distributions defining
the UTT must be convex [15]. Given an ordered set
T and an UTI J = (7,7, ) in T with possibil-
ity my(I) that a given CTI I = [s;,¢;] is the exact
time interval intended by J, the derivations can be
calculated as follows:

N — K
s (SZ) K:[si,/IcI]l,%)E(T,k>3i(7rJ( ))
i (e)=  max  (m(K))

K=[k,e;],keT,k<e;

With respect to this convexity demand, the IKC
framework is similar: the possibility distributions
defining the starting and ending IKV of an IKTT are
also demanded to be convex by the IKC framework,
although this appears not to be necessary for the



framework to function correctly and consistently.

5.2. Comparison of Approaches to Allen
Relationship Evaluation

As mentioned before, a major difference between
the two frameworks, concerning their approaches
towards the representation of time intervals in gen-
eral, is that the TM framework includes visualiza-
tion in its approach. As a result, it also includes
visualization in its approach towards the evaluation
of Allen relationships between a CTI and an UTI.

A first consequence of this is that, given a CTI, an
UTI, its URZ and their visualizations in the same
image, the TM framework allows a visual, human
assessment of the degree of possibility of this CTI
being in an Allen relationship with this UTI, for ev-
ery Allen relationship with a non-zero such degree,
based on this image. Moreover, those with possibil-
ity degree equal to zero can be easily found before
any calculation is done: they are the relationships
not contained in the set corresponding to the URZ
containing the CTT’s interval point. On the other
hand, to examine the respective possibilities of a
given CTI of being in several different Allen rela-
tionships with a given IKTI using the IKC frame-
work, a new collection of specific IKC and a spe-
cific aggregation of these should be constructed for
every Allen relationship under consideration, allow-
ing to calculate its exact possibility and necessity.
In contrast to the TM framework, using the IKC
framework a human assessment before any calcula-
tion is not possible and it is not known before any
calculation which Allen relationships will result in
a possibility degree equal to zero.

A second consequence is that, given an UTI and
its URZ, multiple CTI can be visualized in the same
image as the UTT and its URZ. Thus, the same im-
age could provide a visual, human assessment of the
possibilities with which multiple CTI are in Allen
relationships with the UTI, before any calculation
is done. Again, the IKC framework would need a
different collection of specific IKC and a specific ag-
gregation of these for every Allen relationship un-
der consideration, but calculating the possibilities
for several CTI to be in a given Allen relationship
with a given IKTI would not provide much extra
work.

A third consequence is that, in the TM frame-
work, given an UTI, its URZ and a visualization of
these in the same image, a given Allen relationship
could correspond with several URZ. Thus, given a
distribution of CTI, it is not easy to visually assess
which CTI have a non-zero possibility of being in
the given Allen relationship with the given UTI. On
the other hand, assessing this using the IKC frame-
work is impossible without any calculation, but the
necessary calculations are pretty straightforward.

Although this has not been rigorously researched
yet, it is the conviction of the authors that a great
strength of the IKC framework lies in its modular
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approach towards the evaluation of temporal re-
lationships, resulting in a flexibility and an easy
handling of complex temporal relationships, while
the visualization of these using the TM framework
could become complex and heavy. This would give
the IKC framework a major advantage over the TM
framework, when used in reasoning systems like e.g.
decision support systems. Moreover, in some cases
the visualization step used in the TM framework
could be a redundant step.

5.3. An Example

In this section, some of the comparison results pre-
sented above will be illustrated using a simple ex-
ample.

Example 1. Consider an ordered set of instants
T coinciding with R, a CTI I = [1,3] and a time
interval J of which the starting instant is defined
by a triangular possibility distribution on T with
core {5} and support [2,7] and of which the ending
instant is defined by a triangular possibility distri-
bution on T" with core {12} and support [9,15]. In
a real-life situation, such distributions could be de-
cided by experts or deduced from existing evidence.
The visualization of this example situation using the
TM framework is shown in figure 5. The interval
point for I lies in the URZ ‘PM". Thus, possibility is
higher than zero for I to be in a ‘meets’, ‘before’, or
‘overlaps’ relationship with J. As the darkest point
in the ‘overlaps’ area part is very light, the dark-
est point in the ‘meets’ line segment is of almost
exactly the same lightness and the darkest point in
the ‘before’ area part is perfectly black, it can be
estimated that I overlaps J with a low possibility,
I meets J with the same low possibility and I is
before J with possibility 1. Calculation using the
IKC framework now learns that:

Pos(IoverlapsJ) = min(1,1/3,1) =1/3
Pos(ImeetsJ) = min(1,1/3) = 1/3
Pos(IbeforeJ) = min(1) =1

6. Conclusions

In this paper, a comparison is presented between
two different frameworks designed to represent time
intervals subject to uncertainty and evaluate tempo-
ral relationships between such intervals and crisp in-
tervals: the triangular model (TM) framework and
the ill-known constraint (IKC) framework. It is con-
cluded that:

e With respect to representation, both frame-
works differ only slightly, with the TM frame-
work allowing easier human assessments, due
to its approach including visualization.

e With respect to temporal relationship evalu-
ation, the TM framework allows easy human
assessments in several situations, but the IKC
framework seems more fitted for complex rea-
soning, due to its modular build.
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Figure 5: The visualization of the example using
the TM framework.

Future research will deal with the evaluation of tem-
poral relationships between several time intervals
subject to uncertainty and with querying aspects in
both frameworks.

Acknowledgements

Part of the research is supported by the grant BES-
2009-013805 within the research project TIN2008-
02066: Fuzzy Temporal Information treatment in re-
lational DBMS.

References

[1] J. E. Pons, C. Billiet, O. Pons Capote, and
G. De Tré. A possibilistic valid-time model.
In Communications in Computer and Informa-
tion Science, volume 297, pages 420-429, 2012.
C. Billiet, J. E. Pons, O. Pons Capote, and
G. De Tré. Evaluating possibilistic valid-time
queries. In Communications in Computer and
Information Science, volume 297, pages 410—
419, 2012.

A. Bolour, T. L. Anderson, L. J. Dekeyser, and
H. K. T. Wong. The role of time in information
processing: a survey. ACM SIGMOD Record,
12(3):27-50, 1982.

B. Van der Cruyssen, R. De Caluwe, and
G. De Tré. A theoretical fuzzy time model
based on granularities. FEUFIT 97, pages 1127—
1131, 1997.

M. H. Bohlen et al. The Consensus Glossary
of Temporal Database Concepts-February 1998
Version. In Lecture Notes in Computer Science,
volume 1399/1998, pages 367405, 1998.

F. Devos, N. Van Gyseghem, R. Vandenberghe,
and R. De Caluwe. Modelling vague lexical
time expressions by means of fuzzy set theory.
Journal of Quantitative Linguistics, 1(3):189—
194, 1994.

633

[7] D. Dubois, A. Hadjali, and H. Prade. Fuzziness
and uncertainty in temporal reasoning. Jour-
nal of Universal Computer Science, 9(9):1168—
1194, 2003.

J. E. Pons, N. Marin, O. Pons, C. Billiet,
and G. De Tré. A relational model for the
possibilistic valid-time approach.  Interna-
tional Journal of Computational Intelligence
Systems, 5(6):1068-1088, 2012.

J. M. Medina, O. Pons, and M. Amparo Vila.
Gefred. a generalized model of fuzzy relational
databases. Information Sciences, 76:87-109,
1994.

S. Schockaert, M. De Cock, and E. E.
Kerre. Fuzzifying allen’s temporal interval re-
lations. Fuzzy Systems, IEEE Transactions on,
16(2):517 —533, 2008.

D. Dubois, A. Hadjali, and H. Prade. A Pos-
sibility Theory-Based Approach to the Han-
dling of Uncertain Relations between Tempo-
ral Points. International Journal of Intelligent
Systems, 22(2):157-179, 2007.

J. F. Allen. Maintaining knowledge about tem-
poral intervals. Communications of the ACM,
26(11):832-843, 1983.

J. F. Allen. Towards a General Theory
of Action and Time. Artificial Intelligence,
23(2):123-154, 1984.

J. F. Allen. Time and time again: The many
ways to represent time. International Journal
of Intelligent Systems, 6(4):341-355, 1991.

D. Dubois and H. Prade. Ranking fuzzy num-
bers in the setting of possibility theory. Infor-
mation Sciences, 30(3):183-224, 1983.

J E. Pons, A. Bronselaer, G. De Tré, and
O. Pons. Possibilistic evaluation of sets. Inter-
national Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 2012. Accepted for
publication.

G. De Tré et al. Visualising and handling un-
certain time intervals in a two-dimensional tri-
angular space. In Proceedings of the 2nd World
Conference on Soft Computing, pages 585—592,
2012.

D. Dubois and H. Prade. Incomplete conjunc-
tive information. Computers & Mathematics
with Applications, 15(10):797-810, 1988.

N. Van de Weghe, R. Docter, P. De Maeyer,
B. Bechtold, and K. Ryckbosch. The triangu-
lar model as an instrument for visualising and
analysing residuality. Journal of Archaeological
Science, 34(4):649 — 655, 2007.

Z. Kulpa. Diagrammatic representation of in-
terval space in proving theorems about interval
relations.  Reliable Computing, 3(3):209-217,
1997.

[12]

[13]

[14]

[18]

[19]





