
Efficient GCD functions in SQL
Joachim Nielandt1 Antoon Bronselaer1 Guy de Tré1

1 Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract

Querying a database in an intuitive way is becom-
ing more important. Users expect their tools to
present an easy-to-use interface that can interpret
complex search criteria. These criteria can be op-
tional, mandatory, unwanted or grouped together,
according to what the developer of a tool wishes
to offer to the user. This research focuses on mak-
ing it possible to interpret a complex aggregation
of criteria and retrieve results in the standard lan-
guage of the target database. The translation of
user query to database query is presented and some
experiments regarding performance are given.

Keywords: PostgreSQL, criteria aggregation,
weighted preferences, GCD, LSP, SQL

1. Introduction

Flexible querying. When a user wants to query a
database using SQL in a non-trivial way he is faced
with a couple of problems. Traditionally, a user will
build a query where he/she filters out what is not
needed, using a WHERE clause. This clause will
contain a couple of expressions which are aggre-
gated with conjunctions (∧), disjunctions (∨) and
negations (¬).

This causes problems on a fundamental level
when the user needs to specify something intuitive
(and thus more closely related to human reasoning).
How would the user for example specify houses with
a price that is acceptable (e.g. between 200k and
300k, the lower the better), with at least 2 bedrooms
(the more the better), yet preferably not close to a
train station (the farther away the better). When
the preferences are nested (i.e., an aggregation is
needed to combine some attributes and some results
of other aggregations), building a binary logical fil-
ter becomes even more difficult. Intuitively it is
readily apparent that there is a strong need for or-
dering the results, in order to show the best match
first, followed by results that respectively degrade
in the quality of their match with the query.

Ordering results is especially important these
days, as most tools that retrieve data according to
a user’s query have to present their results quickly
and accurately. Users do not look far down the list
of results and expect to see the desired result at the
top of the list. A strong example for this behaviour
is an internet search engine, where people pay most

of their attention to the first page and, more specif-
ically, the area around the first result[1, 2].

This is why flexible querying has become a strong
tool that has sparked a healthy interest. In what fol-
lows we will use a property database as a working
example, containing over 200.000 records detailing
houses (properties) and their characteristics (e.g.
price, construction year, renovation year, number
of bedrooms ...). This is our own dataset and not
publicly available.

Objectives. Because of the fact that building flexi-
ble queries using standard logical operators is non-
intuitive and complex, there is a strong need for sim-
plification in that regard. We propose, as a first step
in our research regarding this topic, a grammar that
allows specifying fuzzy queries. These queries can
then be translated into the language of the database
of choice, allowing for fine-grained control over the
test conditions and manipulation and optimization
of the query.

Improving the performance is a strong goal, as
aggregating preferences can take a lot of computa-
tional power. Usually, this entails a full scan of the
considered table, which is expensive, timewise. One
of the objectives is to avoid this full scan and see
whether we can optimize any way we can.

Overview. In Section 2 a couple of concepts are
given that are needed throughout the paper. Fuzzy
querying is situated and methods for scoring compo-
nents are given, with special attention given to GCD
functions as they will take a central role. In Section
3 the problem we are facing is described, compris-
ing the aggregation of preferences using GCD from
within a database. Afterwards, Section 4 handles
the proposed solution to the problem, which de-
tails the composition of a custom query grammar
and query preprocessing. Results are presented in
Section 5, giving performance measurements using
various queries and parameters. To finish, Sections
6 and 7 handle prospects for future work and con-
clusions respectively.

2. Preliminaries

In the following preliminaries attention is given to
the field of fuzzy querying and how scores are used
and aggregated to allow ranking components of a
system. More specifically, GCD (Generalised Con-
junction / Disjunction) functions are situated and

8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

© 2013. The authors - Published by Atlantis Press 655

the advantage they could bring to fuzzy querying is
highlighted.

2.1. Fuzzy querying

Querying any regular database can become difficult
when considering complex needs of a user. Fuzzy
querying offers tools to alleviate these difficulties,
and is a useful concept to explain what follows in the
paper (for an overview, see [3]). A regular database
consists of rows (tuples of the relation) and columns
(attributes of the relation), together forming the ta-
ble (relation). We can write this relation R as the
following schema:

R(A1 : T1, ..., An : Tn)

with R the relation, Ai the ith attribute and Ti

the datatype of Ai. Ti determines the allowed val-
ues, or domain domTi , for attribute Ai. A single
tuple can then be described as follows:

tj(A1 : v1, ..., An : vn)

with tj the jth tuple and vi ∈ domTi , 1 ≤ i ≤ n
the value for the ith attribute.

What fuzzy querying allows is to define a query
using linguistic terms, which makes it intuitive to
use and reason about. These linguistic terms are
expressed in terms of fuzzy sets, which are defined
on one single attribute A : T . They express the
desirability of values of the domain domT , using a
membership function µ, so we can determine how
desirable a given value is. This desirability can later
be used to aggregate and process.

Example 2.1. An example of a fuzzy set, in the
context of our example concerning properties (see
5.1), could be the fuzzy set with membership func-
tion µcheap, shown in Figure 1. This example shows
the desirability of a house according to a user , based
on its price, where any house cheaper than 100k is
perfect and any house more expensive than 200k
is unacceptable. Values in between show a gradual
decrease in desirability.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

Price

µ
cheap

Figure 1: Example membership function µcheap for
property price

2.2. Scoring components

Traditional scoring. In traditional databases, scor-
ing records is done by assigning a boolean value

to every considered attribute. 0, 1 and NULL re-
spectively indicate that the attribute is unwanted,
wanted and that there is no opinion about it (un-
known). Aggregating these scores can be done with
ternary logic, which falls out of the scope of this
paper.

Fuzzy querying. Evaluating a system that con-
sists of n components, using fuzzy querying, is ap-
proached as follows. Each component ci is given
a score ei, with 1 ≤ i ≤ n and ei ∈ [0, 1]. A
weight wi ∈ [0, 1] can be given to ci, to differen-
tiate between the importance of individual com-
ponents. Weights are normalized and sum to 1
(w1 + w2 + ... + wn = 1). A possible global score
can than be calculated as follows:

e = w1e1 + w2e2 + ... + wnen, 0 ≤ e ≤ 1 (1)

GCD-based fuzzy querying. GCD functions are, for
example, used in the LSP (Logic Scoring of Prefer-
ence) [4] method. The LSP soft computing tech-
nique is used for multi-criteria decision support and
allows evaluating a system during all phases of its
lifecycle. This generally means that evaluation oc-
curs from the moment the initial feasibility study
is performed, up until the final acceptance tests.
What we need, specifically, from this method, is the
specification of the preference aggregation structure
[5], which is performed using GCD.

The above mentioned traditional way of aggregat-
ing scores into a global score (see Equation 1) does
not allow an important aspect which is present in
LSP: modelling a mandatory requirement, a com-
ponent that is essential to the system, which means
that, if component ci does not qualify at all (ei = 0),
the overall score of the system will be 0 as well, re-
gardless of the other components [5].

This results in GCD being a tool that allows mak-
ing decisions in a flexible and natural (as a human
would reason) way: it is possible to define a complex
array of components with individual scores, and ag-
gregate everything with a high degree of control.
This makes it a valuable tool to be applied in the
field of fuzzy querying.

GCD functions allow modelling a broad range
of aggregators, and form a superset for bipolar
queries with mandatory and optional requirements.
This makes it a powerful tool, which influenced the
choice to investigate this approach first. A detailed
comparison and discussion about definitions can be
found in literature [6, 7].

GCD functions. In its most general form, the ag-
gregation function is the so-called weighted power
mean (WPM) [5, 8, 9]:

656

E r Name
min(e1, e2) −∞ Minimum

1/(w1/e1 + w2/e2) -1 Harmonic Mean
(e1)w1 · (e2)w2 0 Geometric Mean
w1e1 + w2e2 1 Arithmetic Mean√
w1e2

1 + w2e2
2 2 Square Mean

max(e1, e2) + ∞ Maximum

Table 1: Special cases for value r in WPM

e =


(
∑n

i=1 wie
r
i)1/r , if |r| ∈]0, +∞[∏n

i=1 ewi
i , if r = 0

min(e1, . . . , en) , if r = −∞
max(e1, . . . , en) , if r = +∞

(2)

with r ∈ [−∞, ∞] a parameter (real number) that
influences the characteristics of the aggregation the
WPM will perform and {ei ∈ [0, 1]|1 ≤ i ≤ n} the
set of criteria that will be aggregated by the WPM.

The more r approaches −∞, the more the WPM
will aggregate the criteria in a conjunct fashion.
The reverse is also true; the more r approaches +∞,
the more the aggregation will be performed in a dis-
junct fashion.

As an illustration of the method, a couple of spe-
cial cases for the value r are useful, more specifically
in the case of n = 2 (as defined by [9]), shown in
Table 1.

The cited authors also proposed the following val-
ues for r (see Table 2), to indicate different grada-
tions between conjunction and disjunction. These
values were calculated by relating a quantity c ∈
[0, 1], called the conjunction degree, to r, for cer-
tain values of n. Variable c indicates the degree
of conjunctivity of an aggregate function [9], where
c = 0 and c = 1 will respectively result in a disjunc-
tion (i.e., the maximum) and conjunction (i.e., the
minimum).

Aggregating multiple criteria is intuitively done
in small steps. Small groups of preferences are each
aggregated into an aggregated preference. These
can be grouped again, in an analogue way, creat-
ing a tree with preferences as leaves and aggregated
preferences as inner nodes. Approaching the prefer-
ences in this way makes sense, as it is hard to reason
about an aggregation that takes into account a high
number of preferences, without grouping them and
making the problem more manageable [10].

3. Problem description

Consider the database we used for tests (see Sec-
tion 5.1), containing over 200k records describing
houses, with a large number of attributes (numbers,
booleans, text ...):

{aj |1 ≤ j ≤ m}

property nearschool e
p1 true 1
p2 false 0
p3 true 1

Table 3: Example boolean preference

property price e
p1 140000 0.6
p2 90000 1.0
p3 250000 0.0

Table 4: Example property prices and preferences

Our aim is to launch a query on this database,
which expresses a number of preferences of a user
(in the context of this paper we are targetting a de-
veloper, not an end-user of a commercial product).

Consider a subset of attributes in which the user
is interested in:

{ai|1 ≤ i ≤ n ∧ n < m}

As the columns of the property database contain
data of different types, formats and restrictions, a
first step is to preprocess the data into n preferences
ei|ei ∈ [0, 1] ∧ 1 ≤ i ≤ n, one for each attribute ai

the user has an opinion about.

Example 3.1. As a most simple example, we can
calculate a preference e based on the boolean at-
tribute nearschool as shown in Table 3.

Example 3.2. It becomes more interesting when
we are dealing with more complex preferences. If
we for example base ourselves on the membership
function of the fuzzy set that is shown in Figure
1 to calculate preference e, it is apparent there is
a gradual nuance between liking the price and not
liking the price. Everything below 100k is perfect,
everything above 200k is unacceptable.

Based on the membership function µcheap shown
in Figure 1 it is now possible to calculate preferences
based on prices, with some examples shown in Table
4.

After transforming attributes {ai|1 ≤ i ≤ n} into
preferences {ei|1 ≤ i ≤ n}, we can start consider-
ing the importance of each preference (by adding
weights) and how they relate to one another (by
determining a conjunctive degree, thus influencing
the parameter r in the WPM).

4. Proposal

In this section we propose the use of a novel query
grammar to describe the aggregation of preferences
in a database. Queries that implement this gram-
mar are transformed in the native language of a
target database, enabling a user to execute complex
fuzzy queries. More importantly, optimizations are
suggested and implemented that take advantage of

657

Mandatory
requirement Name of Operation Symbol of

operation
Conjunctive
degree (c)

Value of r
n = 2 n = 3 n = 4 n = 5

No Disjunction D 0.000 +∞ +∞ +∞ +∞
No Strong QD D+ 0.125 9.52 11.09 12.28 13.16
No Medium QD DA 0.250 3.93 4.45 4.82 5.09
No Weak QD D- 0.375 2.02 2.19 2.30 2.38
No Arithmetic Mean A 0.500 1.00 1.00 1.00 1.00
No Weak QC C- 0.625 0.26 0.20 0.17 0.16
Yes Medium QC CA 0.750 −0.72 −0.73 −0.71 −0.67
Yes Strong QC C+ 0.875 −3.51 −3.11 −2.18 −2.61
Yes Conjunction C 1.000 −∞ −∞ −∞ −∞

Table 2: GCD functions [9]

the properties of the required aggregation technique
(in this paper, GCD is considered).

4.1. Query grammar

Why is it needed?. It is difficult for a user to vi-
sualize and build complex fuzzy queries in standard
SQL. There is however a lot to say for the use of
the language: it can be optimized by whichever
database it implements, it is portable and it is easy
to debug and understand.

More specifically, by using a custom query lan-
guage that translates in a target language of choice,
it is easy to add optimizations with regards to
the execution of the query, according to the tar-
get database. This is important, as one of the main
goals of this research is to find faster ways to per-
form the aggregation of preferences in a database.

To investigate the use of GCD functions in a
database we decided to use, as a first step, a loosely
coupled [11] preprocessing step. In this preprocess-
ing step a custom defined query is transformed into
the target database’s SQL syntax, after which the
query is executed. In future work this will be inte-
grated more closely into the database itself, result-
ing in better performance.

Input / Output. First off, we consider what input
we need to process and what we want as output. As
far as the input is considered it can be limited to
the following:

1. A table ti containing preferences and weights
(ei and wi), and other optional data that might
be useful for interpretation.

2. References to columns in ti that contain val-
ues in the unit interval [0, 1], that should be
aggregated as preferences.

3. Optional minimum / maximum limit to be im-
posed on the results. This allows for further
optimisations.

4. A value for the parameter r, dictating the con-
junctive degree to which the aggregation will
be performed.

For output we expect a result table, containing
at least the following data:

1. Every row from ti, unless it was filtered out by
MIN / MAX.

2. The minimum set of columns should at least
contain the preferences passed as input, to-
gether with a column that contains the aggre-
gated preference (to be used in the ranking of
the records) for the considered row.

BNF notation. The above information was com-
piled into the notation shown in Fragment 1. It is
concise, allows for nesting and makes a rudimen-
tary filter (MIN and MAX values to dictate which
results have to be shown in the result of the query)
possible. This filter can be used in later research to
define optimizations. For the sake of compactness,
atomic types have been assumed as defined and are
shown in capital letters.

< gcd > := “GCD” < source >

“(” < wplist > “)” < r >

[< min >][< max >]
< wplist > := < wp > “, ” < wplist > | < wp >

< wp > := “(” < pref > “, ” < weight > “)”
< source > := < tablename > | < subquery >

< min > := “MIN(” < F LOAT > “)”
< max > := “MAX(” < F LOAT > “)”
< tablename > := < ST RING >

< subquery > := < ST RING >

< preference > := < F LOAT COLUMN > | < gcd >

< weight > := < F LOAT >

< source > := < ST RING >

< r > := < F LOAT >

Fragment 1: BNF notation for GCD query

Example queries. To make the previous syntax
easier to digest, a couple of examples are given in
Listing 1.

658

GCD (SELECT 1 AS T, 0 AS F FROM t a b l e)
((T, 0 . 3) , (F , 0 . 7)) 9 .52 MIN(0 . 1) ;

GCD
(SELECT

CASE WHEN near s choo l THEN 1 ELSE 0 END
AS n e a r s c h o o l p r e f ,
1 − CASE WHEN p r i c e > 300000 THEN 0

WHEN p r i c e < 100000 THEN 1 ELSE (
p r i c e − 100000 .0) / 200000.0 END

AS p r i c e p r e f
)
((n e a r s c h o o l p r e f , 0 . 2) , (p r i c e p r e f , 0 . 8))

−0.72;

Listing 1: 2 example GCD queries

4.2. Query preprocessing

General. Now that we have defined a grammar for
our custom GCD query we can describe our trans-
formation. Transforming the following GCD query
(with preferences {e1, e2} and weights {w1, w2} and
n = 2, ignoring optional parameters for now):

GCD subquery ((e1, w1), (e2, w2)) r

assumes that subquery is a string that contains
an SQL query, which, when executed, will return
a temporary relation that contains, at minimum,
attributes e1 and e2. In our test relation property
there are available, among others, the following at-
tributes: price and nearschool.

Preprocess data. As we can not use an integer
(price) or a boolean (nearschool) as a preference we
need to preprocess this data into preferences. This
process needs to be performed, at one point or an-
other, as it describes the opinion of the user about
the considered attributes. As an example we give
the elementary query shown in Listing 3.

This query results in all the preferences {ei|ei ∈
[0, 1], 1 ≤ i ≤ n} that we are interested in: we
like prices under 100k and dislike prices above 300k,
while being near a school is described as positive.

Transformation. Now we have valid input for our
problem we can use it to complete it (subquery is
the SQL query we have constructed above):
SELECT sub . ∗ , power (

weight1 ∗power (e1 , r)+
weight2 ∗power (e2 , r) ,
1/ r)

FROM (subquery) as sub

Optimizations. Because of the automatization of
the query construction we can ensure that users get
a couple of optimizations for free (in the sense that,
if the conditions are right, they do not have to do
anything extra to get a benefit). A couple of situa-
tions can be easily optimized when constructing the
target query:

1. If r = 1 we can remove all power calculations
from the select clause. This reduces calcula-
tion time (what is essentially calculated is the
weighted mean).

2. If r = 1 ∧ ∀i ̸= j|wi = wj we can replace the
weighted power mean by avg(e1, e2).

3. If r = +∞ or r = −∞ we can replace
the weighted power mean by max(e1, e2) or
min(e1, e2) respectively

4. If r < 1 we have a mandatory situation: if
∃ei ∈ [0, 1]|1 ≤ i ≤ n ∧ ei = 0 then the result
of the WPM is always 0.

Some optimizations can only be done when the
desired resultset should be filtered. There are two
identified cases studied here:

1. If ∀i ∈ {1, ..., n} : r = +∞ ∧ MAX < 1 ⇒ ei ̸=
1, with MAX a value that dictates the upper
limit of desired preference in the given results,
n the amount of preferences e to aggregate, we
can filter on the base preferences in advance:
no preference should be equal to 1.

2. If ∀i ∈ {1, ..., n} : r = −∞ ∧ MIN > 0 ⇒
ei ̸= 0. Analogous to the previous case, for r =
−∞, no preference should be equal to 0 when
demanding a minimum aggregated preference
in the resultset.

Optimizations are not restricted to this method
alone. Other operators with similar properties can
benefit from this approach too, such as the OWA
operators or the Sugeno integral. Generally, op-
timizing is possible if special cases can be defined
that can be handled in a more efficient way.

5. Results

In this section experimental results are given. The
used test platform is explained and results are
given with regard to the execution times for various
queries, as well as improvements that were made by
applying optimalizations.

5.1. Test platform

In all tests and investigations performed in this pa-
per a PostgreSQL database was used with a single
relation, property, containing over 200 thousand tu-
ples. The relation contains a large number of at-
tributes (58) and is thus reasonably useful to see
how real-life queries are handled by the system.

5.2. Measurements of optimizations

In this subsection we will report some experiments
with regard to optimizations we have done. Two
subqueries (see Listings 2 and 3) have been used as
a source for the aggregation. The first one focuses
on boolean preferences only (3, in this case), which
should lead to fast processing due to the fact that
only ones or zeros are possible values. The second

659

s e l e c t property id ,
CASE WHEN near s choo l

THEN 1 ELSE 0
END as n e a r s c h o o l p r e f ,
CASE WHEN nearshops

THEN 1 ELSE 0
END as nearshopspre f ,
CASE WHEN newestate

THEN 1 ELSE 0
END as newes ta tepre f

from property

Listing 2: Query q1: 3 boolean preferences

s e l e c t property id ,
CASE WHEN near s choo l

THEN 1 ELSE 0
END as n e a r s c h o o l p r e f ,
CASE WHEN p r i c e > 300000

THEN 0 WHEN p r i c e < 100000
THEN 1 ELSE (p r i c e − 100000 .0) /

200000.0
END as p r i c e p r e f

from property

Listing 3: Query q2: 1 boolean preference + 1
gradual preference

query however contains, apart from a boolean pref-
erence, a gradual preference as well (with possible
values between 0 and 1), allowing to demonstrate
the computational complexity that arises when not
only boolean values have to be considered.

Impact datatype. The difference between queries
q1 and q2 lies of course in the data being gener-
ated: the first only creates boolean values while the
latter also creates a gradual value between 0 and 1.
Calculating the WPM for this gradual value will be,
intuitively, slower, as tested below. To allow nega-
tive r values in this test the CASE optimization was
added (to prevent the following power calculations
in the WPM: xy|y = 0 ∧ x < 0).

To put things in perspective the execution times
of q1 and q2 were respectively 337ms and 417ms.
Timing results can be found in Table 5. Here it
is still clear that q2 takes more time to compute
than q1, which becomes obvious when calculating
the WPM with a negative r: the optimization that
builds on ei = 0 has less of an impact, as the gradual
preference in q2 is almost never equal to 0.

Infinity optimization. When dealing with r = +∞
and r = −∞ the WPM can be deduced [9] to the
functions MAX and MIN respectively. This offers a
quick and easy optimization in the SQL query, es-
pecially when taking into account query q2, which
contains a non-boolean value as one of the prefer-
ences. Execution times can be found in Table 6.
For r ∈ {−∞, +∞}, the time gained is substantial
with regards to r /∈ {−∞, +∞}.

r Query time (ms)

+∞ q1 421
q2 582

0.25 q1 1235
q2 11802

1 q1 873
q2 951

−3.51 q1 417
q2 14256

−∞ q1 366
q2 565

Table 5: Execution times for varying r and query

r Query time (ms)

0.25 q1 1132
q2 11682

+∞ q1 392
q2 568

−∞ q1 334
q2 567

Table 6: Infinity optimization: execution times

6. Future work

This work was a first step in the process of looking
for a generic framework that can process any aggre-
gation function into a SQL query, in a user friendly
way. The target audience of this framework are de-
velopers, of whom can be expected to understand
the inner workings of the system. Once we have
established this developer framework we can work
towards an interface that allows users from all levels
to operate the system. This includes investigating
presets for the framework that sacrifice functional-
ity for transparancy.

When the framework is finished it will be interest-
ing to see how it can be integrated into an existing
database system in a tightly coupled way [11], by
implementing it on a lower level. Statistical analy-
sis will be performed in a following step as well, to
check the impact of the nature and structure of the
data on execution times.

Investigation of other methods within this frame-
work will be performed, such as the OWA operators,
the Sugeno integral, PostgreSQLf etc.

7. Conclusions

A query grammar was suggested that allows a user
to formulate aggregations of preferences using GCD
functions, according to the way the LSP method
aggregated preferences. This grammar gets inter-
preted and translated to PostgreSQL, which can be
executed on a standard database install. Nested ag-
gregation was made possible, which allows the tech-
nique to perform complex aggregations. Optimiza-
tions were suggested and tested out, which show
a definite improvement with respect to execution

660

times.

8. Thanks

This work is supported by the Flemish Fund for
Scientific Research (FWO-Vlaanderen).

References

[1] Lorigo, L., Haridasan M., Brynjarsdóttir, H.,
Xia L., Joachims T., Gay G., Granka L., Pel-
lacini F. and Pan B. Eye tracking and online
search: Lessons learned and challenges ahead.
J. Am. Soc. Inf. Sci. Technol., 59(7):1041–
1052, May 2008.

[2] Jansen B.J. and Spink A. How are we search-
ing the world wide web?: a comparison of nine
search engine transaction logs. Inf. Process.
Manage., 42(1):248–263, January 2006.

[3] Zadrozny, S., De Tré, G., De Caluwe, R.,
Kacprzyk, J. Handbook of Research on Fuzzy
Information Processing in Databases, chapter
An Overview of Fuzzy Approaches to Flexible
Database Querying. In [12], 2008.

[4] Dujmović, J.J. Continuous preference logic
for system evaluation. Fuzzy Systems, IEEE
Transactions on, 15(6):1082–1099, 2007.

[5] Dujmović, J.J. A method for evaluation and se-
lection of complex hardware and software sys-
tems. In CMG 96 Proceedings, pages 368–378,
1996.

[6] De Tré, G., Dujmovic, J.J., Bronselaer, A.
and Matthé, T. On the applicability of multi-
criteria decision making techniques in fuzzy
querying. In Salvatore Greco, Bernadette
Bouchon-Meunier, Giulianella Coletti, Mario
Fedrezzi, Benedetto Matarazzo, and Ronald R.
Yager, editors, Communications in Computer
and Information Sciences, volume 297, pages
130–139. Springer-Verlag, 2012.

[7] Bosc, P. and Pivert, O. On three fuzzy con-
nectives for flexible data retrieval and their ax-
iomatization. In Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC ’11,
pages 1114–1118, New York, NY, USA, 2011.
ACM.

[8] Dujmović, J.J. Characteristic forms of gen-
eralized conjunction/disjunction. In Fuzzy
Systems, 2008. FUZZ-IEEE 2008. (IEEE
World Congress on Computational Intelli-
gence). IEEE International Conference on,
pages 1075–1080, 2008.

[9] Su, S.Y.W., Dujmović, J.J., Batory, D.S., Na-
vathe, S.B. and Elnicki, R. A cost-benefit de-
cision model: analysis, and selection of data
management. ACM Trans. Database Syst.,
12(3):472–520, September 1987.

[10] Dujmović, J.J., De Tré, G. and Dragicevic, S.
Comparison of multicriteria methods for land-
use suitability assessment. In JP Carvalho,

DU Kaymak, and JMC Sousa, editors, Proceed-
ings of the joint 2009 International Fuzzy Sys-
tems Association world congress and 2009 Eu-
ropean Society for Fuzzy Logic and Technology
conference, pages 1404–1409. European Society
for Fuzzy Logic and Technology (EUSFLAT),
2009.

[11] Urrutia, A., Tineo L. and Gonzalez C. Hand-
book of Research on Fuzzy Information Process-
ing in Databases, chapter FSQL and SQLf: To-
wards a Standard in Fuzzy Databases. In [12],
2008.

[12] J. Galindo. Handbook of Research on Fuzzy
Information Processing in Databases. Informa-
tion Science Reference - Imprint of: IGI Pub-
lishing, Hershey, PA, 2008.

661

