8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013)

Hidden functional dependencies found by the
technique of F—transform

Jiti Kupka Iva Tomanova

Centre of Excellence IT4Innovations - Division University of Ostrava - IRAFM,
30. dubna 22, 701 03 Ostrava, Czech Republic

Abstract

In this contribution we provide an application of the
technique of F—transform. We demonstrate that by
using a simple density-based preprocessing, the ap-
plicability of F—transform in data analysis can be
significantly improved. Despite of the fact that our
procedure is demonstrated by a well-known DB-
SCAN algorithm and the technique of F—transform,
the ideas are general enough to be applied for other
density-based clustering algorithms and regression
techniques, respectively.

Keywords: Density-based cluster analysis, F—
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1. Introduction and motivation

A fuzzy transform is an approximation technique in-
troduced by I. Perfilieva in [1]. This soft computing
method has been recently used in many applications
(e.g. in data analysis [2], image processing [3], [4],
[5], partial differential equations [6], fuzzy control
[7], time series processing [8] etc.). Additionally,
in [2] the use of the F—transform in data analysis
has been demonstrated. The use of this technique
was twofold - first, it can be used to mine linguis-
tically expressible associations between attributes
and, secondly, it can be considered as some kind of
regression analysis.

In this contribution we demonstrate that, in the
latter case, the procedure can be further general-
ized. While, by using the original method, one can
approximate any functional dependence with arbi-
trary precision (see Theorem 1), the same procedure
can fail for a slightly more complex data set despite
of the fact that some dependence between attributes
can be easily seen. For a toy example, depicted on
Figure 1, the data set might be represented by two
linear maps, but cannot be represented by a single
continuous function (e.g. by the dashed line). In
this contribution we introduce a procedure which is
capable to find arbitrary dependence expressible by
finitely many continuous functions (see Theorem 2).

Several useful side effects of our simple procedure
can be easily obtained. For instance, our prepro-
cessing acts as a simple noise reduction. Moreover,
parts of the data set which cannot be represented
by a continuous function can be found and specified
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Figure 1: Experimental data 2 (dots).

and, finally, output of our procedure can be easily
used as, say, a probabilistic classifier.

Within our procedure probably the best known
density-based clustering technique (the DBSCAN
algorithm) with the standard two dimensional Eu-
clidean metric is used. Consequently, users of our
procedure should be conscious of the well-known
"curse of dimensionality", i.e. of the fact that re-
sults need not be so convincing for high-dimensional
data sets. We used the DBSCAN algorithm and the
F-transform technique just for demonstration pur-
poses. Our simple ideas might be used for other
density-based clustering and regression techniques.

The structure of this contribution is common:
within the next section we recall some basic notions,
then the procedure itself is in Section 3 followed by
a simple theoretical result in Section 4 and illustra-
tive examples in Section 5. As usual, the paper is
finished by several concluding remarks.

2. Preliminaries

Below the set of natural numbers is denoted by N,
the set of real numbers is denoted by R. Further,
I denotes the closed unit interval [0,1]. We also
need some basic notions from fuzzy mathematics. A
fuzzy set A on [a,b] C R (resp. universum, universal
space) is a map A : [a,b] — I. As a fuzzy set
A is defined as a map, all notions related to maps
(such as continuity, uniform continuity, upper semi-
continuity etc.) may be considered for fuzzy sets as



well. Further, for any « € (0,1], an a-cut [4], of A
is defined by

[A]lo = {x € [a,b] | A(z) > a}.

It should be mentioned that if A is upper semi-
continuous then every a-cut is a closed subset of
[a,b]. A support supp(A) of a given fuzzy set A is
usually defined as

supp(A) = {z € [a,b] | A(z) > 0}

where {...} denotes a topological closure.

A data set D is in the form of a table (see Table 1)
consisting of two columns X; and X5, where ele-
ments f; and e; are real numbers, i.e. f;, e; € [a,b]
for every i. In this contribution X; represents an
independent and X5, represents the dependent vari-
able. Occasionally, we will use the fact that D can
be considered as a set of points in R%. Then it makes
sense to work with canonical projections 7y, w9 de-
fined by

m1(2) = e;, ma(2) = fi

for an i-th row z € D and i € {1,2,...,N}.

X1 | Xo
er | fi
ez | fo
en | fn

Table 1: A data set D.

The best known algorithm based on the notion
of density (namely, DBSCAN) was first suggested
in [9]. Its main idea is very simple and natural.
Roughly speaking, for a given metric on R? (we con-
sider the standard Euclidean metric dg2) and £ > 0,
this algorithm searches for objects z := (e;, f;) € D
such that the number of its neighbors lying e-close
to z is sufficient enough. Such points are then put
to the same cluster if they are mutually density-
connected, i.e. for any pair 2y, , 25, € D there exists
a finite sequence of points {zx, }1; € D such that
dr2 (2, 2k;y,) < € forany i =1,2,...,w—1. Points
of D, which do not have enough neighboring points,
are marked as NOISE.

A nicely written pseudocode of DBSCAN can be
found e.g. in [10]. In order to make this pseudocode
more legible, we explain some abbreviations:

e regionQuery returns the points of D contained
in the e-—neighborhood of a point p € D,

e ¢ > 0 specifies the maximal distance between
two neighboring points,

e min_points € N specifies how many neigh-
bors must have any cluster point in its e-
neighborhood.

algorithm DBSCAN
DBSCAN(D, &, min_ points)
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C=0
for each unvisited point p € D mark p as visited
NeighborPts = regionQuery(p, )
if size(NeighborPts) < min_ points

mark p as NOISE

else

C' = next cluster

expandCluster(p, NeighborPts, C, e, min__points)
end

expandCluster(p, NeighborPts, C, €, min__points)
add p to cluster C'
for each point p’ € NeighborPts
if p’ is not visited
mark p’ as visited
NeighborPts’ = regionQuery(p’, )
end
if size(NeighborPts’) > min_ points
NeighborPts = NeighborPts U NeighborPts’
end
if p’ is not yet member of any cluster
add p’ to cluster C
end

regionQuery(p, )
return all points within p’s e-neighborhood

Leta=zg<x1 < --- <z, =b, n>2, be fixed
nodes within [a,b] such that xp = zo + (k — 1)A,
k = 1,...,n, where the number h = (b — a)/(n)
specifies the distance between nodes. Fuzzy sets
Ao, ..., An ¢ [a,b] — [0,1] establish an h-uniform
fuzzy partition of [a,b] if they fulfill the following
conditions:

1. for every k =0,...,n, Ag(z) =0 if z € [a,b] \
[@h—1, Tpy1] Where zg = x_1, Tpy1 = Tp;

2. for every k = 0,...,n, A is continuous on

[Th—1,Tp41] Where zg = x_1, Tpy1 = Tp;

for every z € [a,b], D)o Ar(z) = 1;

for every k =1,...,n, Ag(zr) = 1;

5. for every kK = 1,...,n — 1, Ay is symmetrical
with respect to the line z = x.

= o0

Let a function f be given at finitely many points
p1,...,PN € [a,b] and Ag, ..., A, be basic functions
which form a fuzzy partition of [a, b]. The following
vector of real numbers

F[f] = [Fo, ...

is the (direct) F-transform of f w.r.t. Aq,...
where the k—th component F}, is defined by

_ sz\; Ak(pi)f(pi)
- N

>iz1 Ak(pi)
The F-tranform with respect to a fixed fuzzy par-

tition is, in fact, a linear map from the space of
continuous maps on [a, b] to R™ satisfying

, )

By

, k=0,...,n.

(2)

Fylaf + Bgl = aF,[f] + BF,[G]



for any a, 8 € R and continuous maps f, g on [a, b].
For more details and basic properties we again refer
to [11]. Now we only recall that, under some as-
sumptions, components of F—transform can be con-
sidered as weighted mean values of f with weights
given by the basic functions.

The inverse F—transform (with respect to a par-
tition Ao, ..., A,) represents the inverse process of
F). It takes an n-dimensional vector v of real num-
bers and creates a linear combination of basic func-
tions with coeflicients given by v. In such a way
a continuous map on the interval [a, b] can be con-
structed. Thus, by using an inversion formula (i.e.
an inverse F—transform fg,(z))

fon(@) = FAp(x), i=1,...,N, z € [a,b].
k=
’ (3)

we can approximately reconstruct the function f
from the vector of components of its direct F—
transform. The following theorem was shown in
[11].

Theorem 1 Let f(z) : [a,b] = R be a continuous
function. For every € > 0 there exists an integer
n(e) and a related fuzzy partition Ag, A, ..., An)
of [a,b] such that the inverse F-transform fp (.
of the function [ with respect to the partition
Ag, A, ..., Ay ey satisfies

|f(@) = frne (@) <el
3. Algorithm

Before we present the main algorithm, some other
notions should be introduced for any cluster C. We
say that a cluster C' is inappropriate if there are two
points z1, 29 € C and an interval J; such that are
not density-connected on C' N (J; x R). Otherwise
we say that the cluster is appropriate.

Finally, an accuracy coefficient can be specified
for any interval J; and a cluster C. Let fLi de-
notes the diameter of the set {ma(z) € R|z €
(C N (J; x R))}. Then this coefficient is defined
as a ratio cq(J;) := h; /h, which is still acceptable
in further approximations.

Steps of the algorithm:

Let us describe the algorithm linguistically first:

1. INPUT: (D, min_points, €, h), where

(a) D is a data set,

(b) min_points is an integer which denotes
minimal number of points in a particular
cluster,

(¢) € > 0 is a number representing the re-
quired precision,

(d) h specifies the h-uniform fuzzy partition
of the interval [a, b].
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2.

. For every cluster C[i]

The algorithm DBSCAN is used to determine
the number of clusters in D (Let K € N be
this number and C[i] denote i-th cluster, i =
1,2,...,K.) and the set C of clusters in D.

. For every i € {1,2,..., K}, the appropriate-

ness of the cluster C[¢] is checked by the algo-
rithm AppChecking and two sets of clusters are
constructed - namely the set AC of appropriate
clusters and its complement NC :=C\ AC. In
this step, the algorithm AppChecking is used.
(Without loss of generality, we may assume
that there exists K/ < K such that NC con-
sists of the first K’ clusters.)

€ NC, ie. 1 =
1,2,...,K’, the algorithm FindSubclusters
finds a finite number k; € N of appropriate
subclusters in the cluster C[i]. Let, for ev-
ery i as above, C;[i] denote such clusters for
i=1,2,... k.

. For every cluster C[i], i = K’ +1,...,K, and

for every subcluster C;[4], for i = 1,2,..., K’,
7 = 1,2,...,k;, approximations by using F-
transform are calculated by the algorithm
FTransform.

. OUTPUT: a finite number of e-approximations

of D.

Algorithm
Input: D, min_points, €, h

1. DBSCAN (D, min_ points, )
specifies K clusters of D.

2. For each cluster CJi] € C,
AppChecking(C; ) checks the appropriateness
of C[i], the sets AC and NC' are specified.

3. For every cluster C[i] € NC,
FindSubclusters (C]i]) finds the set ASC;
of all appropriate subclusters of C[i].

4. For any C := C[i] € AC and
for any C € ASC; of C € NC,

(i) check the accuracy of C,

(if necessary, specify a part of D which cannot be
approximated by a continuous function (see Figure 7))
modify C' if necessary,

(it) approximate C by the inverse F—transform;

FTransformsCLUSTER (C]i])

Outputs:

(i) appropriate parts (clusters) of D

approximated by F-transform,

(i) noise removement,
(i) parts of D without functional

dependence are detected.




Algorithm AppChecking

For any cluster C[i] the set J[i] := {J; | J;N71(2) #
() for some z € C[i]} is nonempty and the union of
its elements forms a closed subinterval of [a, b] by
the choice of €. Thus, if J[i] consists of s intervals
Ji, then there exists a node x; such that

EZEI T

JieJi

(4)

Then for any k = j,...,j+s—1the numberl; € N
of clusters of C[i] over Jy is calculated by the algo-
rithm DBSCAN(C[i] N (Jx x R), min__points,e).
Then the following decision is made:

If max{lglk =74,...,j+s—1} > 1 then

Cli]e NCandi=i+1

else Ci] € AC and i =i+ 1.

Algorithm FindSubclusters
For an inappropriate cluster C[i] we can use the no-
tation introduced above - namely, for C' € NC there
exists an interval [}, z;1] by (4). Furthermore, for
any k = j,...,j+s—1 there exist l; clusters of C[]
over Ji. We use the following notation - C}; de-
notes the I-th cluster of C[i] over the interval Jj.
It is easy to see that there exists an oriented
graph representation of the cluster C[i] where the
oriented graph Gy is defined by:

(i) Ck, denotes a vertex of Gy representing the
I-th cluster of C[i] over the interval Jy,

(ii) if there exist z € Cyy,2" € Cry1 so that
dr2(z,2") < e, there exists an oriented arrow
C’k,l — C’k+17l'~ Thus the oriented arrows spec-
ify whether or not the subclusters C, ;, Cy41,10
are neighboring.

By wusing this graph notation, the rest of
this algorithm searches for all maximal ori-
ented paths in Ggp). Just to recall, an ori-
ented path of Ggpj is a sequence of vertices
{Cij,Crvrjity- s C~’t+kkt+k} such that there exists
an oriented arrow from Ctyg414 t0 Crp(g41),64(g+1)
for every ¢ = 0,1,...,k — 1. A maximal oriented
path is an oriented path which is not a proper sub-
set of another oriented path.

Directly from the definition of the graph Ggyy
it can be seen that every maximal oriented path
P ={C;,Ctt1,j+1, - Ciqr,t+k} represents a sub-
cluster C € ASC; of C[i] defined by

c:= |

G, €P

and consisting of mutually density-connected
points. The output of this algorithm is the set ASC;
of subclusters of C[i].

Algorithm FTransformsCLUSTER
Let either C := CJi] € AC or C € ASC; for some
i =1,2,...,K’. As above, C lies over the interval
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L := [zj,2;4,] defined by (4) and C}j denotes the
subcluster of C' over the interval Jj.

(i) For any Ji, k=1,2,...
of C} is calculated by

,j+s—1, the accuracy

max,ec, {me(2)} — min,ec, {m2(2)} .
h

If ¢,(Jk) is greater than some user-specified
threshold then C := C\C}, and L := L\int(Jy),
where int(Jy) means the interior of the inter-
val.

The F-transform can be computed for the h-
uniform fuzzy partition restricted to L and
points from C. Without loss of generality we
may assume that L is still a closed interval.
Then, the vector of components F =
[Fj,Fji1,..., Fj;s] is computed for each subin-
terval according to (2). By the inverse
F-transform (see (3)) an approximate value
(F'f.n(e;)) of each point e; can be computed.
OUTPUT: Approximations by F—transform of
relevant points e; € D.

Ca(Jk) =

(i)

4. Results

In this section we show a result demonstrating that
our procedure extends applicability of the technique
of F—transform in data analysis. Before stating this
result we describe outputs of our procedure. We
would like to emphasize that neither crisp partition
{Jx} nor fuzzy partition {Ax} of the interval [a, b] is
changed within our procedure. Therefore, although
F-transforms are calculated for finitely many clus-
ters, they are always calculated over the same fuzzy
sets of the same fuzzy partition (possibly restricted
to some subinterval) of [a, b].

Consequently, because the ordinary F-transform
is represented as n-dimensional vector (1), the result
of our procedure can be written as

F[f] = [Fo, ... (5)

where F; is a finite number of i-th components F} of
F—transforms calculated for some appropriate clus-
ters or subclusters of D.

aFn]7

Remark 1 It is obvious that this output may in-
clude some additional information about the data
set D - for instance, a relative cardinality of sub-
clusters over the interval J; etc.

Theorem 2 Let D be a subset of R? which can be
expressed as the union of finitely many continuous
functions f; : [a,b] — [a,b]. Then for every e > 0
there exists an integer n(e), a related fuzzy partition
Ag, Ar, ..., Ape) of [a,b] and such that the inverse
F—transforms of F—transforms given by (5) are e-
close to the graphs of f;’s'.

1We realize that this statement is not as mathematically
precise as it should be. However, the idea and all the con-
structions are so straightforward that we expect that we can
afford it in this contribution.



Proof. The sketch of this proof is natural and fol-
lows the procedure from Section 3. Because graphs
of continuous functions are topologically connected
in R%, the whole graph of each function f; is always
(i.e. for any ¢ > 0) found as a part of some clus-
ter by the algorithm DBSCAN. Consequently, if the
number of found clusters is strictly smaller than the
number of graphs of f;’s, then clearly two (or more)
graphs have a nonempty intersection.

This feature is checked by the algorithm Ap-
pChecking. Then, for all inappropriate clusters C’s
their oriented graphs G¢’s can be constructed and
maximal oriented paths can be found by the algo-
rithm FindSubclusters. Without loss of generality
we can assume that maximal oriented paths coin-
cide with graphs of f;’s. Because there is no need
to check the accuracy of graphs of f;’s, the algo-
rithm FTransformsCLUSTER finds approximations
which are e-close to graphs of relevant functions
fj’S. ]

5. Illustrative examples

Two short demonstrations of our approach are pre-
pared in this section.

The experimental data and their approximation
by the F—transform are shown in Fig. 2. The inverse
F—transform is highlighted as the dashed line.

300 - q

250 q

200 13%, A BT

150 . . . . . . .
0 50 100 150 200 250 300 350 400

Figure 2: Experimental data 1.

By using the procedure from Section 3 with pa-
rameters min_ points = 30, € = 50 and h = 10 we
obtain approximations represented in Fig. 3. Here,
particular clusters are denoted by different marks
(stars etc.). All the clusters are appropriate and can
then approximated by inverse F—transforms. All ap-
proximations are highlighted by dashed lines. Re-
maining points marked as circles denote a noise.

In Figure 4 one can see another experimental
data set that is approximated by the "ordinary" F—
transform represented by the dashed line. By us-
ing our procedure (min_points = 3, ¢ = 1 and
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Figure 3: Approximation of Experimental data.

h = 0,65) just one inappropriate cluster C is ob-
tained.
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Figure 4: Experimental data 2.

Consequently, the proposed algorithm provides
an oriented graph approximation of the cluster C
shown in Figure 5. Then two subclusters (i.e. two
maximal oriented paths of the graph in Figure 5) of
the cluster C are found and approximated by dashed
lines in Figure 6. The noise is again denoted by cir-
cles.

Finally, just to illustrate that fact, in Figure 7 one
can see an example of a single cluster for which the
subcluster over the interval (143, 192) is not suitable
for any approximation for some accuracy coeflicient.

6. Conclusion

Within this contribution we presented a simple pro-
cedure expanding applicability of the technique of
F-transform in data analysis. It is known that the
original technique can approximate any continuous
function with arbitrary precision. Our procedure
acts as a preprocessing step as well as automatically
provides several advanced features. Namely, our
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Figure 5: Graph representation of Experimental
data 2.

Figure 6: Approximation of Experimental data 2.
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Figure 7: Cluster which cannot be well approxi-
mated by a single function.

procedure provides a fast outliers detection (resp.
denoising) and also detects functional dependencies
which can be represented by a finitely many con-
tinuous functions, and finally, such functional de-
pendencies can be represented in the form which
allows simpler classification than ordinary regres-
sion methods. Linguistic expressions of found re-
sults of the form mentioned in [11] are also avail-
able. Just for completeness, due to the compactness
of the product space it does not make any sense to
consider data sets represented by infinitely many
continuous functions.

As we highlighted in the introduction of this con-
tribution, the users should be careful about using
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this method for high-dimensional data sets due to
the dimensionality problem. And we recall once
more - we demonstrate this procedure for the most
known density-based clustering algorithm and the
technique of F—transform, but our ideas can be eas-
ily used for other density-based clustering and re-
gression techniques. Our future research in this
topic will lead especially to classification tasks for
high-dimensional data sets.
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