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Abstract
We prove the existence of a Lax pair for the Calogero Korteweg-de Vries (CKdV)
equation. Moreover, we modify the T operator in the the Lax pair of the CKdV
equation, in the search of a (2 + 1)-dimensional case and thereby propose a new
equation in (2+1) dimensions. We named this the (2+1)-dimensional CKdV equation.
We show that the CKdV equation as well as the (2+1)-dimensional CKdV equation are
integrable in the sense that they possess the Painlevé property. Some exact solutions
are also constructed.

1 Introduction

In this paper we attempt to extend the Calogero Korteweg-de Vries (CKdV) equation to
a (2 + 1)-dimensional equation. The CKdV equation is a (1 + 1)-dimensional nonlinear
equation [1] of the form

wt +
1
4
wxxx +

3wx

8w2
+
3w3

x

8w2
− 3wxwxx

4w
= 0. (1.1)

Pavlov constructed (1.1) using the new method for the description of an infinite set of
differential substitutions and the KdV modifications [2]. We briefly describe how the
CKdV equation was constructed by Pavlov. The Lax pair of the KdV equation

ut +
1
4
uxxx +

3
2
uux = 0 (1.2)

has the form

L = ∂2
x + u, (1.3)

T = ∂xL+
1
2
u∂x − 1

4
ux + ∂t. (1.4)
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Pavlov obtained an infinite set of differential substitutions and the KdV modifications
from the Taylor expansion of the linear system for (1.3) and (1.4) respectively (see [2]).
The first order of an infinite set of differential substitutions is the Miura transformation

u = v2 + σvx, (σ = ±i). (1.5)

After substitution of the Miura transformation (1.5) into the first order KdV modifica-
tions, we obtain the modified KdV (mKdV) equation

vt +
1
4
vxxx +

3
2
v2vx = 0. (1.6)

This equation admits the Lax representation

L = ∂2
x + 2σv∂x, (1.7)

T = ∂xL+ σv∂2 −
(
3
2
v2 +

1
2
σvx

)
∂x + ∂t. (1.8)

The representation (1.7), (1.8) can be obtained from the Lax pair of the KdV equa-
tion (1.3), (1.4) by the gauge transformation [3]. In the second order, an infinite set of
differential substitutions and the KdV modifications, lead to the Miura type transforma-
tion

v = − 1
2w
(1 + σwx) (1.9)

and the CKdV equation (1.1). Hamiltonian structures for the CKdV equation are dis-
cussed in [2].
This paper is organized as follows. In Section 2, we construct a Lax pair of the CKdV

equation (1.1) and propose a new equation in (2 + 1) dimensions by the extension of
the T operator for the CKdV equation. We named it the (2 + 1)-dimensional CKdV
equation. Moreover, another dimensional extension is performed by changing the L oper-
ator [4, 5, 6] as follows:

L �→ L+ ∂y. (1.10)

A (2 + 1)-dimensional equation obtained by the abovemethod is, however, reduced to
the KP equation. In Section 3, the CKdV equation and the (2 + 1)-dimensional CKdV
equation are proved to be integrable in the sense that they possess the Painlevé property.
The solutions to these equations are constructed by the Miura transformation in Section 4.
Section 5 is devoted to discussions.

2 The Lax pairs of the CKdV equation
and the (2 + 1)-dimensional CKdV equation

We conjecture that a Lax pair of the CKdV equation (1.1) is of the form

L = ∂2
x + g[w]∂x + h[w], (2.1)

T = ∂xL+ T ′ + ∂t, (2.2)
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where g[w], h[w] are functions of w and its x-derivatives, and T ′ is an unknown operator.
We can fix the form of g[w], h[w] and T ′ by the condition that the Lax equation

[L, T ] = 0 (2.3)

gives the CKdV equation. The result is

g[w] =
σ

w
, (2.4)

h[w] = − 1
4w2

− σwx

2w2
, (2.5)

T ′ =
σ

2w
∂2

x − 1
2w2

∂x − 3σ
16w3

+
wx

4w3
− σw2

x

16w3
+
σwxx

8w2
. (2.6)

Hence the Lax pair of the CKdV equation is expressed as

L = ∂2
x +

σ

w
∂x − 1

4w2
− σwx

2w2
, (2.7)

T = ∂xL+
σ

2w
∂2

x − 1
2w2

∂x − 3σ
16w3

+
wx

4w3
− σw2

x

16w3
+
σwxx

8w2
+ ∂t. (2.8)

Next we construct a new equation in (2 + 1) dimensions. For that, we modify the
above T operator to include another spatial dimension as follows

T = ∂zL+ T ′′ + ∂t, (2.9)

where L is the same L operator (2.7) for the CKdV equation. The Lax equation (2.3)
gives not only the form of T ′′ but also a new equation. They are

T ′′ =
1
2
σ∂−1

x

(
1
w

)
z

∂2
x − 1

2w
∂−1

x

(
1
w

)
z

∂x +
σwxz

8w2
− σwxwz

8w3

− σ

8w2
∂−1

x

(
1
w

)
z

+
wx

4w2
∂−1

x

(
1
w

)
z

− σ

16w
∂−1

x

(
1
w2

)
z

+
σ

16w
∂−1

x

(
w2

x

w2

)
z

(2.10)

and

wt +
1
4
wxxz +

wz

4w2
+
1
8
wx∂

−1
x

(
1
w2

)
z

+
w2

xwz

2w2
− 1
8
wx∂

−1
x

(
w2

x

w2

)
z

− wxwxz

2w
− wxxwz

4w
= 0,

(2.11)

respectively. We name the above equation the (2 + 1)-dimensional CKdV equation. It
follows from (2.9) and (2.10) that the Lax pair of (2 + 1)-dimensional CKdV equation is
given by

L = ∂2
x +

σ

w
∂x − 1

4w2
− σwx

2w2
, (2.12)
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T = ∂zL+
1
2
σ∂−1

x

(
1
w

)
z

∂2
x − 1

2w
∂−1

x

(
1
w

)
z

∂x +
σwxz

8w2

−σwxwz

8w3
− σ

8w2
∂−1

x

(
1
w

)
z

+
wx

4w2
∂−1

x

(
1
w

)
z

− σ

16w
∂−1

x

(
1
w2

)
z

+
σ

16w
∂−1

x

(
w2

x

w2

)
z

+ ∂t.

(2.13)

Equation (2.11) and the Lax pair (2.12), (2.13) are reduced to the CKdV equation and
the Lax pair of the CKdV equation in the case of x = z. In [7, 8, 9], we developed
the construction method for higher-dimensional integrable equation. For example, we
considered the Calogero–Bogoyavlenskij–Schiff (CBS) equation [10, 11, 12, 13, 14, 15, 16],

ut +
1
4
uxxz + uuz +

1
2
ux∂

−1
x uz = 0, (2.14)

and the modified Calogero–Bogoyavlenskij–Schiff (mCBS) [15],

vt +
1
4
vxxz + v2vz +

1
2
vx∂

−1
x

(
v2

)
z
= 0. (2.15)

These equations admit the Lax representations, respectively [8, 9],

L = ∂2
x + u, (2.16)

T = ∂zL+
1
2
∂−1

x uz∂x − 1
4
uz + ∂t, (2.17)

and

L = ∂2
x + 2σv∂x, (2.18)

T = ∂zL+ σ∂−1
x vz∂

2
x +

(
1
2
∂−1

x

(
v2

)
z
− 2v∂−1

x vz − 12σvz

)
∂x

+
σ

4
vxz +

σ

2
v

(
∂−1

x

(
v2

)
z

)
+ σ∂−1

x vt + ∂t,

(2.19)

respectively. We obtained the mCBS equation from the CBS equation using the same
Miura transformation (1.5) that connects the KdV equation with the mKdV equation
[7, 8, 9]. We checked that the transformation (1.9) connects the mCBS equation (2.15)
and the (2 + 1)-dimensional CKdV equation (2.11), i.e.,

vt +
1
4
vxxz + v2vz +

1
2
vx∂

−1
x

(
v2

)
z

=
(
1
2w2

(1 + σwx)− σ

2w
∂x

) {
wt +

1
4
wxxz +

wz

4w2
+
1
8
wx∂

−1
x

(
1
w2

)
z

+
w2

xwz

4w2
− 1
8
wx∂

−1
x

(
w2

x

w2

)
z

− wxwxz

2w
− wxxwz

4w

}
.

(2.20)

These results are depicted in Fig. 1.
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(1.5) (1.9)

(1.5) (1.9)

KdV(1.2) ✲ mKdV(1.6) ✲ CKdV(1.1)

❄ ❄ ❄
CBS(2.14) ✲ mCBS(2.15) ✲ (2 + 1) CKdV(2.11)

Figure 1: The dimensional extensions are indicated by broken arrows. These broken arrows
indicate the modification of T operators for the search of the (2+1)-dimensional case. Full arrows
mean the Miura transformations. The mKdV equation (6) and the mCBS equation (25) are induced
by the Miura transformation (5) from the KdV equation (2) and CBS equation (24). We construct
exact solutions of the CKdV equation (1) and the (2 + 1)-dimensional CKdV equation (21) from
the solution of the mKdV equation (6) and the mCBS equation (25), by using using the Miura
type transformation (9).

We also extend the CKdV equation via (1.10) [4, 5, 6]. Namely we consider

L = ∂2
x +

σ

w
∂x − 1

4w2
− σwx

2w2
+ ∂y. (2.21)

The T operator corresponding to (2.21) should be of the form

T = ∂3
x +

3σ
2w

∂2
x +

{
− 3
4w2

− 3σwx

2w2
− 3
4
σ∂−1

x

(
1
w

)
y

}
∂x − σ

8w3

+
3wx

4w3
+
3σw2

x

4w3
− 3σwxx

8w2
+
3σwy

8w2
+
3
8
∂−1

y

{
1
w
∂−1

x

(
1
w

)
yy

}
+ ∂t.

(2.22)

We can construct the following equation from the Lax equation with (2.21) and (2.22),

wt +
1
4
wxxx +

3w3
x

2w2
− 3wxwxx

2w
− 3σwy

4w
− 3
4
w2∂−1

x

(
1
w

)
yy

−3
4
σwx∂

−1
x

(
1
w

)
y

− 3
4
σw2

(
∂−1

y

{
1
w
∂−1

x

(
1
w

)
yy

})
x

= 0.

(2.23)

However, the above equation is reduced to the KP equation(
ut +

1
4
uxxx +

3
2
uux

)
x

+
3
4
uyy = 0 (2.24)

by the transformation

w = − σ

2∂−1
y ux

. (2.25)

It follows that we cannot construct a new (2 + 1)-dimensional equation by this method.
In the previous papers [8, 9] we modified both L and T operators for the KdV equation

in searching for a (3 + 1)-dimensional equation. However, the Lax equation was reduced
to the (2 + 1)-dimensional equation. This equation separated the first and second order
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equations for the KP hierarchy [17]. Let us apply the same procedure to the CKdV
equation and search for a (3 + 1)-dimensional Lax pair. That is, we consider the Lax
pair (2.21) and

T = ∂zL+ T ′′′ + ∂t. (2.26)

However, we cannot fix the form of T ′′′ by the Lax equation and, therefore, cannot con-
struct a new equation in (3 + 1) dimensions from the Lax pair (2.21) and (2.26).

3 Painlevé analysis for the CKdV equation
and the (2 + 1)-dimensional CKdV equation

To prove the Painlevé property [18, 19] of the CKdV equation (1.1) and the (2 + 1)-
dimensional CKdV equation (2.11), we rewrite these equations by the change of of variable

W =
1
w
, (3.1)

so that

W 2Wt +
1
4
W 2Wxxx +

3
8
W 3

x +
3
8
W 4Wx − 3

4
WWxWxx = 0, (3.2)

W 3WxWxt −W 3WxxWt +
1
4
W 3WxWxxxz − 14W

3WxxWxxz +
3
4
WW 2

xWxxWz

+
3
4
WW 3

xWxz − 34W
4
xWz +

3
4
W 4W 2

xWz +
1
4
W 5WxWxz − 14W

5WxxWz

−1
2
W 2W 2

xWxxz − 14W
2WxWxxxWz − 14W

2WxWxxWxz +
1
4
W 2W 2

xxWz = 0.

(3.3)

The solutions to (3.2) and (3.3) have the form

W ∼ W0γ
α. (3.4)

Here γ is single valued about an arbitrary movable singular manifold and α is a negative
integer (leading order). By using leading order analysis, we obtain

α = −1, W 2
0 + γ2

x = 0. (3.5)

Substituting

W =
∑
j=0

Wjγ
j−1 (3.6)

into (3.2) and (3.3), leads to the resonances of (3.2), namely

j = −1, 1, 3, (3.7)

and the resonances of (3.3), namely

j = −1, 1, 2, 3. (3.8)
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The resonance j = −1 corresponds to the arbitrary singularity manifold γ. We used
MATHEMATICA [20] to handle the calculation for the existence of arbitrary functions
at the above resonances (except for j = −1). We find that W1, W3 are arbitrary for
equation (3.2), andW1,W2,W3 are arbitrary for equation (3.3). Thus the general solution
W to (3.2) and (3.3) admits a sufficient number of arbitrary functions, thus satisfying the
Painlevé property. Therefore the CKdV equation and the (2 + 1)-dimensional CKdV
equation are integrable.

4 Exact solutions to the CKdV equation
and the (2 + 1)-dimensional CKdV equation

In the previous section, the integrability of the CKdV equation and the (2+1)-dimensional
CKdV equation was shown by the use of the Painlevé test. In this section we shall construct
exact solutions of the CKdV equation and the (2 + 1)-dimensional CKdV equation.
The mKdV equation (1.6) has the solutions [21]

vN = σ

{
log

(
fN

gN

)}
x

, (4.1)

where fN and gN can be expressed as

fN = 1 +
N∑

n=1

∑
NCn

ηi1···in exp(λi1 + · · ·+ λin), (4.2)

gN = 1 +
N∑

n=1

∑
NCn

(−1)nηi1···in exp(λi1 + · · ·+ λin), (4.3)

λj = pjx+ rjt+ sj , rj = −1
4
p3

j , (4.4)

ηjk =
(pj − pk)2

(pj + pk)2
, (4.5)

ηi1i2···in−1in = ηi1,i2 · · · ηi1,in · · · ηin−1,in . (4.6)

Here NCn indicates summation over all possible combinations of n elements taken from N ,
and symbols sj always denote arbitrary constants. We can solve the Miura type trans-
formation (1.9) for w using solutions to the mKdV equation (4.1). The solutions to the
CKdV equation (1.1) are

wN = σ

(
fN

gN

)2 ∫ (
fN

gN

)−2

dx+ c

(
fN

gN

)2

, (4.7)

where c is an integration constant. The above integral factor is rewritten as∫ (
fN

gN

)−2

dx = x+
HN

fN
, (4.8)
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where

HN = 4
N∑

n=1

fN−1(n̂)
pn

(4.9)

and

fN−1(ĵ) = 1 + eλ1 + · · ·+ eλj−1 + eλj+1 + · · ·+ eλn + η12e
λ1+λ2 + · · ·

+η1j−1e
λ1+λj−1 + η1j+1e

λ1+λj+1 + · · ·+ η1Ne
λ1+λN + · · ·

+ηj−1j+1e
λj−1+λj+1 + · · ·+ ηj−1Ne

λj−1+λN + · · ·+ ηj+1j+2e
λj+1+λj+2 + · · ·

+ηj+1Ne
λj+1+λN + · · ·+ ηN−1Ne

λN−1+λN + · · ·
+η12···j−1j+1···N−1Ne

λ1+···+λj−1+λj+1+···+λN ,

(4.10)

that is, fN−1 is of the same structure as fN , except for the j index. Equation (4.8) is
differentiated with respect to x, i.e.,

HN,xfN −HNfN,x + f2
N − g2

N = 0. (4.11)

We checked equation (4.11) up to N = 6 by the use of MATHEMATICA. Fig. 2 shows
the solution (4.7) with N = 1, p1 = 1, s1 = 2 and c = 0. In Fig. 3, we depict the case of
N = 2, p1 = 1, s1 = 2, p2 = 0.5, s2 = 5 and c = 0.
We obtain solutions of the (2+1)-dimensional CKdV equation (2.11) using the identical

procedure as with the construction of solutions (4.7). Therefore, the form of the solutions
are the same as (4.7). The difference between solutions of the (2 + 1)-dimensional CKdV
equation and the CKdV equation, is the dimensional extension of (4.4):

λj = pjx+ qjz + rjt+ sj , rj = −1
4
p2

jqj . (4.12)

The propagation of the solution to the (2 + 1)-dimensional CKdV equation with N = 1,
p1 = 1, q1 = 3, s1 = 2 and c = 0 is shown in Fig. 4. Fig. 5 shows the solution with N = 2,
p1 = 1, q1 = 3, s1 = 0, p2 = 0.5, q2 = −3, s2 = 0 and c = 0.

5 Conclusions

In this paper, we obtained the Lax pair of the CKdV equation and searched for the Lax
pair of the higher dimensional CKdV equation using three methods. The first method is
to modify the T operator for the Lax pair of the CKdV equation. We then have obtained
the (2 + 1)-dimensional CKdV equation (2.11) and the Lax pair (2.12) and (2.13). The
second method is to modify the L operator. We constructed the Lax pair (2.21), (2.22)
and the equation (2.23). Equation (2.23) is, however, reduced to the KP equation by
the transformation (2.25). In the last method, we unified the first and second methods.
Using this method we can expect a new (3 + 1)-dimensional equation. It, however, gives
no consistent Lax equation, unlike the first and second methods. We also discussed the
Painlevé property and exact solutions of equation (1.1) and equation (2.11), which proves
that the equations are integrable.
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Figure 2:
w1(x, t)

σ
with N = 1, p1 = 1, s1 = 2 and c = 0.
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Figure 3:
w2(x, t)

σ
with N = 2, p1 = 1, s1 = 2, p2 = 0.5, s2 = 5 and c = 0.
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Figure 4: Time evolution of
w1(x, z, t)

σ
with N = 1, p1 = 1, q1 = 3, s1 = 2 and c = 0.
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Figure 5:
w2(x, z, t)

σ
with N = 2, p1 = 1, q1 = 3, s1 = 0, p2 = 0.5, q2 = −3, s2 = 0, c = 0

and t = 0.
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