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Abstract— This paper presents a method of designing PID 
controller for both middle frequency range with typical signals 
input and high frequency range with ramp input.  Based on the 
principle of approximate model matching, the design of PID 
controller can be converted into the problem of calculating 
optimal solution of a particular norm with the form of 
inequality for restricted frequency ranges.  With the help of 
Kalman-Yakubovic-Popov (KYP) lemma, the frequency 
domain inequalities are transformed to linear matrix 
inequalities (LMIs) in the state space realization. Finally, a 
simulation example is provided to illustrate the effectiveness of 
the main results. 
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I. INTRODUCTION 
As is well-known, H∞  norm is one kind of performance 

index in the entire frequency domain, which is established by 
Zames [1] and Dolye et al. [2]. In 2005, Iwasaki and Hara  [3] 
stated that a certain frequency range rather than the entire 
frequency range is usually requested in practical design. As a 
consequence, the standard H∞ norm and the generalized 
bounded-realness theorem are not well compatible with 
practical requirements. 

Recently, Iwasaki et al. [4] presented the generalization 
of Kalman-Yakubovic-Popov (KYP) lemma for restricted 
frequency inequalities. Specifically, they considered the 
frequency intervals characterized by two quadratic forms, 
which encompassed low/middle/high frequency conditions 
for continuous-time systems. Based on their results, Ma et al. 
gave out certain forms of bounded-realness theorem and its 
dual version for low frequency range (LFR). However, to 
best of the author’s knowledge, results on the design of PID 
controller for both middle frequency range (MFR) with 
typical signals input and high frequency range (HFR) with 
ramp input do not seem available in the literature. 

In this paper, according to the method of approximate 
matching model [6], we convert the optimization design of 
PID controller into the optimal solution of a certain H∞  
norm for middle and high frequency ranges. The parameters 
of PID controller are obtained through solving some linear 
matrix inequalities (LMIs) with MATLAB. We find that the 
method is well applicable for middle frequency range of a 
system with different typical inputs and high frequency rang 
of a system with ramp input. 

II. PRELIMINARIES 

A. Approximate Model Matching 
A standard feedback arrangement is shown in Fig.1. 

( )D s ( )cG sr e u y
( )D s ( )cG sr e u y

 
FIG..1 STANDARD FEEDBACK CONFIGURATION 

In this figure, ( )D s  stands for the transfer function of 
controller in the complex plane and ( )cG s  stands for the 
transfer function of controlled objects. Then, according to the 
matching model approach, a reference model should be 
chosen firstly.  Its open-loop transfer function can be denoted 
as ( )rG s .  Thus the problem of controller design equates 
with attempting to derive ( )D s  by sovling the inequality 

( ) ( ) ( )c rD s G s G s ε
∞

− <                     (1) 
where ε  is a given positive real number. The smaller ε  

is, the better model matching one can get [7]. 

B. Generalization of KYP Lemma 
For a matrix M , its transpose and complex conjugate 

transpose are denoted by TM and *M , respectively. For a 
Hermitian matrix M , 0M >  and 0M < denote positive 
definiteness and negative definiteness, respectively. For 
matrices Φ  and P , their Kronecker product is denoted by 

PΦ⊗ . 
Lemma 1 [4] Let complex matrices A , B , Π = ∗Π , and 

( , )Φ Ψ ∈Ω  be given where 

2 2 *

*

0
: ( , ) , , such that ,

0

1
det( ) 0, .

1

IR M C M M

M M M

α
α β

α

β
α

β

×⎧ ⎡ ⎤⎪Ω = Φ Ψ ∃ ∈ ∈ Φ =⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

− ⎫⎡ ⎤ ⎪≠ Ψ = ⎬⎢ ⎥
⎪⎣ ⎦ ⎭  

Define { }: ( , ) 0, ( , ) 0Cλ σ λ σ λΛ = ∈ Φ = Ψ ≥ . Suppose 
( A , B ) is controllable and A  has no eigenvalues λ  such 
that ( , ) 0σ λ Φ = . Then the following statements are 
equivalent. 

1) The following frequency domain condition 
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1( )jwI A B
I

∗−⎡ ⎤−
⎢ ⎥
⎣ ⎦

Π
1( )jwI A B

I

−⎡ ⎤−
⎢ ⎥
⎣ ⎦

0≤            (2) 

holds for all λ ∈Λ  
2) There exist Hermitian matrices P  and Q 0≥ , such 

that  

0
A B
I

∗
⎡ ⎤
⎢ ⎥
⎣ ⎦

( , )L P Q
0

A B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

+Π 0≤ , 

( , ) :L P Q P Q= Φ⊗ +Ψ⊗ .                         (3) 
 
By choosing appropriate Φ  and Ψ , the set Λ  can be 

specialized to define a certain range of the frequency variable 
λ .  For the continuous-time setting  

Φ =
0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, Λ ={ }:j Fω ω∈  

where F  is a subset of real numbers specified by an 
additional choice of Ψ , as shown in TABLE I. 

TABLE I.  CORRESPONDING RELATIONSHIP BETWEEN F AND Ψ  

 LFR MFR HFR 

F  ω ϖ≤ l  1 2ϖ ω ϖ≤ ≤  hω ϖ≥  

Ψ  2

1 0
0 ϖ
−⎡ ⎤
⎢ ⎥
⎣ ⎦l

 
1 2

1 c

c

j
j

ϖ
ϖ ϖ ϖ
−⎡ ⎤

⎢ ⎥− −⎣ ⎦
 2

1 0
0 hϖ
⎡ ⎤
⎢ ⎥−⎣ ⎦

 

where cϖ := 1 2( ) / 2ϖ ϖ+ . 

III. MAIN RESULTS 
We give out the main results in this section.  Theorem 1 

and Corollary 1 are suitable for middle frequency range.  
Theorem 2 and Corollary 2 are suitable for high frequency 
range. 

Theorem 1: Let real matrices , , ,A B C D  with 
appropriate dimensions, and real scalars 1 2ϖ ϖ≤  be given. 
Suppose ( A , B ) is controllable.  Then the following 
statements are equivalent. 

1) With F := { }1 2: det( ) 0,R j I Aω ω ϖ ω ϖ∈ − ≠ ≤ ≤  
we have 

1( )
F

C sI A B D ε−

∞
− + <   .Fω∀ ∈                  (4) 

2) There exist real symmetric matrices P and 
Q satisfying Q 0>  and 

0

TA B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦ 1 2

c

c

Q P j Q
P j Q Q

ϖ
ϖ ϖ ϖ

− +⎡ ⎤
⎢ ⎥− −⎣ ⎦ 0

A B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

+ 

2

T T

T T

C C C D
D C D D Iε
⎡ ⎤
⎢ ⎥−⎣ ⎦

0<                                      (5) 

where cϖ := 1 2( ) / 2ϖ ϖ+ . 
Proof. According to the definition of H∞  norm of 

1( ) ( )G s C sI A B D−= − +  and maxσ : 

max( ) sup ( ( ))
R

G s G j
ω

σ ω
∞

∈
=                     (6) 

where maxσ  stands for the largest singular value [8]. 

( ) FG s ε
∞
<  equates with 

2( ) ( ) , .G jw G jw I Fε ω∗ < ∀ ∈              (7) 
Since 1( ) ( )G jw C jwI A B D−= − + , we have 

1 1 2( ( ) ) ( ( ) ) 0 .C jwI A B D C jwI A B D I Fε ω− ∗ −− + − + − < ∀ ∈   (8) 
Then for a real matrix M  with *M = TM , we obtain 

1 1 1

1 2

(( ) ) (( ) ) (( ) )
(( ) ) 0

T T

T T

jwI A B C C jwI A B jwI A B C D
D C jwI A B D D I Fε ω

− ∗ − − ∗

−

− − + − +

− + − < ∀ ∈
      (9) 

It can be written in the form of multiplication of matrices 

1 1

2

( ) ( )
0

T T

T T

C C C DjwI A B jwI A B
F

I ID C D D I
ω

ε

∗− −⎡ ⎤⎡ ⎤ ⎡ ⎤− −
< ∀ ∈⎢ ⎥⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (10) 

By Lemma 1, it is equivelent with the statement: there 
exist P  and Q  satisfying Q >0, and  

0

TA B
I
⎡ ⎤
⎢ ⎥
⎣ ⎦ 1 2

c

c

Q P j Q
P j Q Q

ϖ
ϖ ϖ ϖ

− +⎡ ⎤
⎢ ⎥− −⎣ ⎦ 0

A B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

+ 

2

T T

T T

C C C D
D C D D Iε
⎡ ⎤
⎢ ⎥−⎣ ⎦

0< .                                      (11) 

The proof is completed. 
The dual version of Theorem 1 is stated as follows. 
Corollary 1: Let real matrices , , ,A B C D  with 

appropriate dimensions, and real scalars 1 2ϖ ϖ≤  be given. 
Then the following statements are equivalent. 

1) With F := { }1 2: det( ) 0,R j I Aω ω ϖ ω ϖ∈ − ≠ ≤ ≤  we 
have 

1( )
F

C sI A B D ε−

∞
− + <   .Fω∀ ∈               (12) 

2) There exist real symmetric matrices P  and Q  
satisfying Q 0>  and 

0
A I
C
⎡ ⎤
⎢ ⎥
⎣ ⎦ 1 2

c

c

Q P j Q
P j Q Q

ϖ
ϖ ϖ ϖ

− −⎡ ⎤
⎢ ⎥+ −⎣ ⎦ 0

TA I
C
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ 

2
0

T T

T T

BB BD
DB DD Iε

⎡ ⎤
<⎢ ⎥

−⎢ ⎥⎣ ⎦
                                    (13) 

where cϖ := 1 2( ) / 2ϖ ϖ+ . 
Theorem 2: Let real matrices , , ,A B C D  with 

appropriate dimensions be given. Suppose ( A , B ) is 
controllable.  Then the following statements are equivalent. 

1) With F := { }: det( ) 0, hR j I Aω ω ϖ ω∈ − ≠ ≤  we 
have 

1( )
F

C sI A B D ε−

∞
− + <   .Fω∀ ∈                (14) 

2) There exist real symmetric matrices P and 
Q satisfying Q 0>  and 

0

TA B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

2
h

Q P
P Qϖ
⎡ ⎤
⎢ ⎥−⎣ ⎦ 0

A B
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

+ 
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2

T T

T T

C C C D
D C D D Iε
⎡ ⎤
⎢ ⎥−⎣ ⎦

0.<                              (15) 

 
Theorem 3: Let real matrices A , B  and C with 

appropriate dimensions, and real scalars 1 2ϖ ϖ≤  be given. 
Then the following statements are equivalent. 

1) With F  := { }1 2: det( ) 0,R j I Aω ω ϖ ω ϖ∈ − ≠ ≤ ≤  
we have 

1( )
F

C sI A B ε−

∞
− <   Fω∀ ∈                     (16) 

2) There exist real symmetric matrices P and Q satisfying 
Q 0>  and 

2

0

0

0

T T T

c

T T

c

T

AQC PC j QC B

CQA CP j CQ CQC I

B I

N ϖ

ϖ ε

− + +

− + − − −

−

⎡ ⎤
⎢ ⎥ <⎢ ⎥
⎢ ⎥⎣ ⎦

(17) 

where  
N := 1 2 .T T T

c cAQA PA j A AP j AQ Qϖ ϖ ϖ ϖ− + + + − −  

Proof. By Corollary 1, 1( )
F

C sI A B ε−

∞
− <  if and only 

if there exist real symmetric matrices P  and Q satisfying 
Q 0>  and 

0

TA I
C
⎡ ⎤
⎢ ⎥
⎣ ⎦ 1 2

c

c

Q P j Q
P j Q Q

ϖ
ϖ ϖ ϖ

− −⎡ ⎤
⎢ ⎥+ −⎣ ⎦

 

0
A I
C
⎡ ⎤
⎢ ⎥
⎣ ⎦ 2

0
0

0

TBB
Iε

⎡ ⎤
<⎢ ⎥

−⎢ ⎥⎣ ⎦
                  (18) 

It is then further equivalent to 
 

1 20 - 0

T
c

c

Q P j QA I A I
C P j Q Q C

ϖ
ϖ ϖ ϖ
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2

0 0
+ 0 0

00
TB

I B
Iε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ <⎢ ⎥ ⎢ ⎥ ⎣ ⎦− ⎣ ⎦⎣ ⎦
               (19) 

Since 

2
1 2

0 0
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T
c

c

Q P j QA I A I
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ϖ
ϖ ϖϖ ε
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+⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1
2

T T T
c

T T
c

AQC PC j QC
CQA CP j CQ CQC I

ϖ
ϖ ε

⎡ ⎤Ω − + +
= ⎢ ⎥− + − − −⎣ ⎦

(20) 

where 1 1 2
T T T

c cAQA PA j A AP j AQ Qϖ ϖ ϖ ϖΩ = − + + + − − , 
we can simply obtain the final result by the Schur lemma. 

Theorem 4: Let real matrices A , B  and C with 
appropriate dimensions be given. Suppose ( A , B ) is 
controllalbe.  Then the following statements are equivalent. 

1) With F  := { }: det( ) 0, hR j I Aω ω ϖ ω∈ − ≠ ≤  we 
have 

1( )
F

C sI A B ε−

∞
− <   .Fω∀ ∈                   (21) 

2) There exist real symmetric matrices P and Q  
satisfying Q 0>  and 

2

2 0 0.
0

T T T T
h

T T

T

AQA PA AP Q AQC PC B

CQA CP CQC I
B I

ϖ

ε

⎡ ⎤+ + − +
⎢ ⎥

+ − <⎢ ⎥
⎢ ⎥−⎣ ⎦

(22) 

IV. NUMERICAL SIMULATIONS 

A. The Plant 
Consider a controlled object with the transfer function 

1( ) ( )c c c cG s C sI A B−= − , where 
 

0 1 0
0 0 1
-1 -4 -2

cA
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ , 

0
0
1

cB
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

[ ]1 3 0cC = , 0DD =  
The aim is to design a PID controller such that there is no 

static error for middle frequency range with step signal 
inputs and high frequency range with ramp signal inputs.  
Additionally, the overshoot σ  has to be no more than 10%.  
The rise time rt  and regulation time st  are both asked to be 
no more than 1s. 

B. Design of PID controller 
The controller is given by 

1( ) ( )
1

I D
P D D D D

D

K K sD s K C sI A B D
s T s

−= + + = − +
+

 

where 

0 0
11D

D

A
T

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

I

D
D

D
I

D

K
T

B
KK
T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎣ ⎦

 

[ ]0 1 , .D D P D DC D K K T= = +  
The transfer function of reference model is  

1( ) ( ) .r r r rG s C sI A B−= −  
Denote 1( ) ( ) ( ) ( ) ( ) .c rG s D s G s G s C sI A B−= − = − Then 

the matrices A , B and C  can be derived  

[ ]
0

0 0 , , 0 .
0 0

C C D C D

D D C r

r r

A B C B D
A A B B C C C

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The problem of optimization design of PID controller for 
middle and high frequency ranges is converted into 
computing the parameters of controller through ( ) FG s ε

∞
< , 

where F  := { }: det( ) 0, hR j I Aω ω ϖ ω∈ − ≠ ≤        or 

F := { }1 2: det( ) 0,R j I Aω ω ϖ ω ϖ∈ − ≠ ≤ ≤ . 
According to the request of the performance index, we 

can choose the reference model as 2( ) 36 ( 6 2 ).rG s s s= +  
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Then, we can compute the practical parameters of the 
PID controllers for the middle frequency rang (MFR) and 
high frequency rang (HFR). 

1) PID controller designed for MFR . Given 
that F := { }:1.32 8.22Rω ω∈ ≤ ≤ , 0.05DT s= , and the 
error limit 0.05ε = , we can obtain by solving LMI (20) 

PK =2.5, IK =3.8, DK =1.0. 
Therefore, the step response curve is shown in Fig.2, and 

the bode graphs are shown in Fig.3. As is seen, the closed-
loop control system is stable. 
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FIG.2 STEP RESPONSE CURVES 
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FIG.3  BODE GRAPH 

The solid line stands for the response curve of the system 
with PID controller. The dot dash line stands for the response 
curve of the original system without controller, and the 
dashed line stands for that of reference model. 

2) PID controller designed for HFR. Similarly, when 
the input is a ramp signal and F  := { }:16.5Rω ω∈ ≤ , we 
can design a PID controller for high frequency range of the 
system. Similarly, we can obtain that PK =12, IK =4, 

DK =0.001. Therefore, the corresponding ramp response 
curve is shown in Fig.4, and the bode graphs are shown in 
Fig.5. As is seen, the closed-loop control system is also 
stable. 

V. CONCLUSION 
This paper has proposed a method of designing PID 

controller for middle and high frequency ranges.  Since the 
design of PID controller for low frequency range has been 
studied in [5], we only focus on PID controller design in 
middle and high frequency ranges. Simulation results has 

illustrated the effectiveness of the proposed method. 
However, how to switch the parameters of the PID controller 
for different frequency ranges still needs further research. 
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FIG.4 RAMP RESPONSE CURVES 
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