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Abstract —Orthogonal transformation has been used for State 
Estimation, since it is hard to solve by normal WLS method 
when weights of some measurements differ much from others. 
Though the numerical stability of orthogonal transformation 
has been generally accepted, it is reported that the efficiency 
might be another problem for Orthogonal SE. An efficient 
engine for orthogonal SE has been proposed in this paper, 
which is based upon fast Givens rotation and sparse matrix 
techniques. Further considerations including column & rows 
ordering, block matrix, and fixed factor table are also explain-
ed in order to further improve the performance of this engine 
especially on large-scale systems. Performance testing has been 
made on a desktop computer using multiple power systems of 
different sizes, and the feasibility and efficiency of this engine 
has been verified. 

Keywords - Power Systems, Orthogonal SE, Efficient 
Engine, Givens Transformation, Sparse Matrix, Block Matrix  

I. INTRODUCTION 
For a group of measurement data at a certain time, State 

Estimation (SE) is used to determine the estimated values of 
state variables (usually nodal voltages), and then perform 
bad data detection and identification. Weighted Least Square 
(WLS) is the fundamental method of SE, which has a good 
convergent capability and high quality of estimation, but 
needs a large quantity of computation and memory. When 
weights of some measurements differ from others as much 
as 100 multiples or more, the SE problem becomes hard to 
solve. The improvement forms of WLS are: (1) Fast De-
coupled method, and (2) Orthogonal Transformation method. 
The later is chosen to be the topic of this paper trying to 
make it more efficient while still maintaining the stability 
and simplicity at the same time. The relationship between 
cross angle and measuring errors of two vectors is shown 

visually in Fig 1.1, where the area of shadow part denotes 
the error of the solution. When V1 and V2 are orthogonal, 

the error of the solution will become the minimum. During 
the past years, significant progress has been achieved on 
orthogonal transformation, whose numerical stability has 
been generally accepted compared with WLS, hybrid 
method, normal equations with constraints, and etc[1-7]. How 
to improve computational efficiency is the target of this 
paper. 

II. MODEL DESCRIPTION 

A. WLS-Based Formulation 
Measurement equations of a measuring system can be 

formulated as[8]: 
vxhz += )(   (2-1) 

In which, 
z – measurement vector 
x   – state variables 
v   – error vector 
h(x) – measurement functions 
The objective function of state estimation, based on 

Weighted Least Square method, is as follows: 
)]([)]([)(min 1 xhzRxhzxJ T −−= −  (2-2) 

In which, 
R-1  – weights matrix 
x – state variables 

B. Orthogonal SE 
In order to increase the numerical stability, orthogonal 

transformation technology is introduced into SE program. 
Expand the measurement equation of h(x) into Taylor series, 
preserving the linear term: 

xHxhxh Δ+= )()( 0         (2-3) 
In which, H is called Jacobian matrix of measurement. 

And then the objective function can be rewritten as: 
)]([)]([)(min 1 xhzRxhzxJ T −−= −  

])([])([ 0
2/1

0
2/1 xHxhzRxHxhzR T Δ−−Δ−−= −−

 
)]([)]([ 2/12/1 xHrRxHrR T Δ−Δ−= −−

 
2|| xHr ww Δ−=   (2-4) 

Where 
)( 0xhzr −= , which is called Residual Error Vector 

rRrw
2/1−=  
HRH w

2/1−=  
Supposing there is an orthogonal matrix Qmm, it brings 

FIG 1.1  CROSS OF TWO VECTORS WITH MEASURING 
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Where, S is an upper triangle matrix. The objective 

function then comes into 
2||)( xHrxJ ww Δ−=Δ  

2|| xQHQr ww Δ−=    
2

2
2

1 |||| bxSb +Δ−=                   (2-6) 
To minimize the objective function, there must be 

01 =Δ− xSb    (2-7) 
So ∆x can be obtained by solving a group of linear 

equations, and the solution will be used to update the state 
variables. 

III. ORTHOGONAL TRANSFORMATION 

A. Standard Givens Rotation 
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where 
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For a 2-row matrix 
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Where, 

),...2,1(ˆ njsbcaa jjj =+=  (3-6) 

jjj cbsab +−=ˆ   (3-7) 
One element is eliminated a time, until there are no 

nonzero elements on the left side of the diagonal line. Since 
there needs four times of multiplication for an iteration, the 
standard Givens rotation is also called 4-multiplication 
scheme. 

B. Fast Givens Rotation 
Let us assume for a moment that c≠0. Then the Givens 

rotator Q can be factorized as 
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where t=s/c (the c-transformation). If c=0 (or very small), 
the s-transformation can be used instead: 
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where k=c/s 
Consider an m×n matrix B with full rank and m>n. A 

sequence of rotations can be used to triangularize B as 
indicated below: 
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For a certation row to be rotated, fast Givens can be 
performed by either c- or s-transformation, provided the 
orginal matrix to be factorized has a full rank. 

The c-transformation can be formulated as 
jlilil pbbb +=   (3-11) 

iljljl qbbb −=   (3-12) 
And the s-transformation is formulated as follows 

jlilil bpbb +=    (3-13) 

iljljl bqbb −=    (3-14) 
Where, p and q are intermediate variables, and detailed 

description can be found in the reference[9,10]. 

IV. FURTHER CONSIDERATIONS 

A. Column Ordering 
Since the columns of Jacobian matrix are corresponding 

to state variables, i.e. nodal voltages, the Minimum Degree 
criterion should be followed for column ordering, so that 
there will be less nonzero fill-in’s during orthogonal trans-
formation. Additionally, columns for voltage magnitude and 
angle should be arranged alternately, in order to keep the 
sparsity on the upper-left part of the matrix. 

B. Rows Ordering 
The scheme of dynamic pivot selection is suggested to 

deal with dynamic nonzero fill-in in the process of fact-
orization. For i-step shown in Fig 4.1, the row with mini-
mum number of nonzeros is selected as the pivot row, and 
then all the rows below with nonzero bji will be rotated by 
ascending order of number of nonzero elements. 

     
FIG 4.1 ROTATION OF A ROW       FIG 4.2 STRUCTURE OF SPARSE MATRIX 

C. Sparse Matrix 
A structure of sparse matrix[11] has been designed for 

large-scale sparse matrix storage and operation, as shown in 
Fig 4.2. Basically, there are two compact vectors for each 
row of the matrix, which are Value and Index for nonzero 
elements only (either original or new fill-in), whose memory 
has been allocated dynamically. All the addresses of rows 
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are saved in another vector with the name of the matrix to 
make it easy and efficient to use. 

D. Block Matrix 
With the development of orthogonal rotations, the lower-

right part of matrix is becoming denser more and more. 
Taking the 14 nodes system as an example, the changing 
process on the sparsity of Jacobi matrix is shown in Fig 4.3. 
Numerical experiments on large systems showed that 
orthogonal operation will be slowing down distinctly when it 
comes to 6000 and more steps. Inspired by the thought of 
block decomposition[12,13], the lower-right part is regarded as 
a dense submatrix and rotated seperately until the upper-
right triangular matrix is formed. 

 
FIG 4.3  EVOLUTION OF THE SPARSE MATRIX 

(a) The Original Sparse Matrix 
(b) The Early Stage of Orthogonal Transformation 
(c) The Later Stage, Dense/Block Matrix formed 

(d) The Final Triangular Matrix 

E. Fixed Factor Table 
Usually there will be multiple iterations of orthogonal 

transformation to reach a convergent SE solution. To im-
prove the performance further, the weighted Jacobi matrix 
Hw in equation (2-5) can be factorized into a Fixed Factor 
Table saving the information of the whole rotation process, 
which is just similar to that in Fast Decoupled Power Flow. 
For the varying residual error vector in certain iteration, only 
a single fast forward & back substitution is necessary to 
obtain the solution of voltage correction. Additionally, orth-
ogonal SE converges on a solution after fewer iterations[14]. 

V. TESTING CASES 

A. System Information 
 Case #4 Case #5 Remarks 

Node_num 3,898 15,166  

Branche_num 5,441 18,591  

Nonxf_branch 4,263 12,421  

Xformer_num 1,142 5,764  

Gener_num 789 2,970  

Load_num 3,069 7,606  

Shunt_num 23 805  

DCline_num 0 1  

Multi_dc 0 2  

PIJ_measNum 5,441 18,241 
for all branches

QIJ_measNum 5,441 18,241 

PI_measNum 1,943 7,870 

for all nonzero 
injection nodes

QI_measNum 1,943 7,870 

VV_measNum 1,943 7,870 

VA_measNum 0 0 

B. Performance Testing 
Performance testing has been made on a desktop 

computer, whose machine information is Dell Optiplex 990 
(2011) with Intel CPU i5-2400 @3.10GHz and 3.23GB 
memory. Running time is counted to finish a complete 
orthogonal transformation on Jacobian matrix based on 
several power systems of different sizes. Considering the 
high redundancy of measurements, three schemes of 
measurement configuration, which are Branches-only, 
Branches & Nodal Voltages, and Full Measurements, have 
been applied to Cases 4 and 5 respectively. The performance 
of this engine is summarized as follows (Fig 5.1), which 
shows an approximate linear trend. 

Case 1: nodes=14  time=0.00 sec. 
Case 2: nodes=771 time=0.05 
Case 3: nodes=1,432  time=0.10 
Case 4: nodes=3,898  time=0.75 (1.3) (4.00) 
Case 5: nodes=15,166 time=4.80 (8.0) (18.0) 

 
FIG 5.1  PERFORMANCE ON DIFFERENT SYSTEMS 

  
FIG 5.2  EFFECT OF BLOCK MATRIX TECHNIQUE 

A specific testing case has also been made on 4000 nodes 
model, to show the effect of block matrix technique, 
especially when orthogonal rotation comes to 6000 rows and 
more, as shown in Fig 5.2. In order to show the advantage of 
the engine proposed in this paper, a comparison has been 
made on performance of various testing cases from both the 
references and our own resource, as shown in Tab 5.1. 
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TAB 5.1  COMPARISON ON TESTING CASES 

Year Nodes Meas. Redun. Nonzero Time[s] Remark 
1985 118 540 2.30 N/A 1.0-2.2 Hybrid[2] 
1985 99 542 2.75 1500+ 1.0-3.1 Hachtel[3] 
1999 1,044 7,194 3.45 35,720 10.0 FastGivens[7]

2008 
300 1,000 1.67 4,000 8.8 

Parallel 
QR[15] 600 2,000 1.67 8,000 76.9 

1,200 4,000 1.67 16,000 738.0 

2013 

14 96 3.56 452 0.00 

This paper 
771 3,758 2.44 18,420 0.05 

1,432 5,063 1.77 27,121 0.10 
3,898 10,882 1.40 50,786 0.75 

15,166 36,482 1.20 162,159 4.80 

VI. CONCLUSION 
An efficient engine for orthogonal SE has been proposed, 

which is based upon fast Givens rotation and sparse matrix 
techniques. Further considerations including column & rows 
ordering, block matrix, and fixed factor table, are also 
explained in order to improve the performance of the engine 
especially on large-scale systems. Performance testing has 
been made on a desktop computer using power systems of 
different sizes, and the feasibility and efficiency of this 
engine has been verified. This orthogonal SE/engine can 
works as an alternative function where equations are solved 
in normal WLS product. 
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DISCUSSION WITH ALI 
1. References[5,6] have extensively investigated the 

effect of sparse vector method and the enhanced version of 
Givens rotation in addition to row ordering schemes that 
speed up solutions of power network equations. 

Tom: Only when the solution is a sparse vector, in other 
words bus voltages on a part of the power system (island) 
needs to be modified, the sparse vector method applies. As 
for column & row ordering schemes, Minimum Degree (MD) 
and Increasing order of row count (R1) are used in this paper. 

2. Hybrid state estimation has been proposed[2]. In 
their approach they combined numerical robust orthogonal 
method with desirable sparsity feature close to WLS. 
Description and the implementation of a fast version of the 
Givens rotations are presented for orthogonal state 
estimation[7]. 

Tom: As an enhancement to WLS, the hybrid method 
handles those ill-conditioning equations by orthogonal 
transformation. But a simple and separate orthogonal 
SE/engine based on fast Givens is involved in this paper. 

3. What is the novel approach and contribution of this 
paper? 

Tom: An orthogonal SE/engine based upon fast Givens 
transformation has been described in this paper, where 
fundamental techniques on sparse matrix, block matrix, and 
etc. are used to realize this engine. The better efficiency has 
been proven by testing cases compared with the results of 
previous studies. 

4. Case study is not clearly explained on block matrix. 
More detail specification is required for the large complex 
system, if there is any novel approach is presented. 

Tom: As you know, the lower-right part of the matrix 
will become much denser with the progress of orthogonal 
transformation, so it is an efficient and simple way to handle 
this submatrix as a traditional dense/full matrix. Additional 
information has been added to Section 5.2. 

5. Figure 4.3, sparse matrix does not have any citation 
or reference system. 

Tom: It is drawn to show the changing process of the 
sparse Jacobi matrix, which comes from an internal test-ing 
system of 14 nodes given by OSI US. 

6. Although the graph shows improvement, but there 
is no comparison provided for the systems with same 
number of nodes. 

Tom: Additional information on comparison has been 
added to Section 5.2 

7. The research should show not only the concerns 
with the speed of orthogonal state estimation versus normal 
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form of WLS, but also the connectivity of state estimation 
core engine with observability and bad data analysis. 

Tom: In system integration, orthogonal SE/engine works 
as an alternative function where equations are solved in 

normal WLS product. All the peripheral functions are shared 
including observability analysis and bad data detection. 
Related information has been added to Section 4.6.
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