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Abstract—In this article, a delay dependent memory robust 
model predictive control (RMPC) algorithm was proposed 
for uncertain polytopic state delay systems with input 
constraints. The state delay is time-varying with an upper 
and lower bound. We minimize a cost function by 
minimizing its upper bound for the proposed RMPC 
algorithm. A new sufficient condition, in accordance with 
LMI, is presented for cost monotonicity. We show that the 
memory feedback controller obtained by the RMPC 
approach stabilizes the closed-loop system and reduces the 
conservativeness. Finally, the effectiveness of the proposed 
algorithm is illustrated by a numerical example. 

Keywords- delay dependent; robust model predictive 
control; uncertain polytopic systems; time delay; memory state 
feedback control 

I.  INTRODUCTION  
Model predictive control (MPC) is a control strategy, 

which can cope with many constraints, such as input 
constraint, state constraint and time delay etc. It has been 
widely used in many practical applications and also 
studied by the research community [1-5]. 

Since the system model is actually an approximation of 
the actual system, it is essential to be robust to 
uncertainties and disturbances. The classes of model 
uncertainty that are most adopted in the robust MPC 
literatures are the polytopic uncertainty [6] and the 
multiplant uncertainty [7]. As the polytopic description of 
model uncertainty is more general than the multi-plant 
description, it becomes important to clearly define what 
sort of uncertainty can be tolerated by the robust controller. 
Kothare proposed an RMPC strategy employing linear 
matrix inequalities for coping with model uncertainty and 
constraints on the controlled and output variables [6]. In [8] 
it was assumed that the time-varying parameters could be 
measured online and developed with feedback control for 
improving performance. Gautam presented nominal and 
min-max RHC strategies for a class of linear systems with 
a polytopic system and bounded disturbances by 
employing an uncertainty-based dynamic control policy 
[9]. Jones and Morari proposed an algorithm to exploit 
approximate explicit control, which trade off complexity 

against approximation error, to the optimal cost function 
and barycentric interpolation [10]. 

By nature, the industrial processes, especially in 
network conditions, continually experience uncertainties 
and time-delays. As is well known, uncertainties and 
delays are the main causes of performance deterioration 
and even system instability, it is essential to study systems 
with both uncertainties and delays. In recent years, the 
investigation of RMPC for these systems has been 
attracting more and more attention in the MPC literature 
[11-15].  Jeong and Park presented MPC algorithm for 
uncertain polytopic time-varying systems with input 
constraints and state delay [11]. A fascinating feature of 
this algorithm is that the delay is unknown but with a 
known upper bound. [13] put the ideas of Jeong and Park 
[11] into detail and then extended relevant results from 
types of system delays [12, 13]. [14] proposed the 
sufficient condition for the cost monotonicity and robust 
MPC algorithm for linear parameter varying system by 
relaxation matrices. However, most of the existing results 
treated with time-varying delay of the form 0 Md d≤ ≤   In 
some practical situations, the delayed systems are stable 
with some nonzero delay, such as the wireless network 
systems. And latency-free is impossible in practical 
situations. Therefore, it is essential to investigate the 
stability of systems with nonzero lower bound of time-
delay in many practical cases. On the other hand, one 
designed the controllers based solely on the information 
coming from the current system state, but did not take into 
account the impact of delay state. As a result, it is quite 
conservative for designing the controller.  

Motivated by these considerations, we proposed a new 
delay dependent memory RMPC for uncertain polytopic 
time varying systems with input constraint and state delays. 
The delay is unknown but with a known upper and lower 
bound. The infinite-horizon min-max optimization 
problem is formulated as a minimization of the upper 
bound of cost function to design a memory state feedback 
MPC law. At the end, we derive sufficient conditions, 
which guarantee the asymptotic stability of the closed loop 
system, including not only the input condition but also a 
new condition for the cost monotonicity. 
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II. PROBLEM STATEMENTS 
Consider the uncertain polytopic time-varying discrete 

time system with delayed state given by [11] as following 
form 

( 1) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ), [ ,0]

d

M

x k A k x k A k x k d B k u k
x k k k d

+ = + − +

= Φ ∈ −
        (1) 

     s.t. ( ) , 0M M Mu u k u u− ≤ ≤ >  for [0, )k ∈ ∞  
where ( ) nx k ∈R   is the state, ( ) mu k ∈R  is the control 

and ( ) nkΦ ∈R   is the initial condition.  
the assumptions about the system is made as following: 
A1: there is an interval upper bound between two 

successive measurements. 
A2: d  is an unknown constant representing state delay, 

but being m Md d d≤ ≤  with the known upper and lower 
bound Md  , md  . 

A3: the system matrices [ ]( ) ( ) ( )dA k A k B k  is 
unknown but lie within a polytope Ω  , that is to say,  

[ ] { }( ) ( ) ( ) Co , 1, ,l l l
d dA k A k B k A A B l p⎡ ⎤∈Ω ≡ =⎣ ⎦ K       (2) 

where the convex hull is denoted as Co  
and l l l

dA A B⎡ ⎤⎣ ⎦ , l = 1,� , p  is the vertices of the convex 
hull and precisely known. 

A4: the state is available at every sampling instant k.  
Remark1: in many practical applications, it is feasible 

that the measurement ( )x k d−  is received at a time instant 
k. Because the delays are time varying and A1, it is 
possible that the controllers may receive delay state 

( )x k d− at a time k, which does not provide new 
information. It implied that it is reasonable for the 
unknown and bounded time delay. 

To design a memory feedback controller 
1 2( ) ( ) ( ) ( ) ( )u k i k K k x k i k K k x k i d k+ = + + + −         (3) 

by the MPC strategy to stabilize (1), the optimization 
problem are considered at each time k. 

( ), 0
( ) ( ) ( )

min max ( )
d

u k i k i
A k A k B k

J k
+ ≥ ∈Ω⎡ ⎤

⎢ ⎥⎣ ⎦

                       (4) 

subject to  
2 2

0
( ) ( ( ) ( ) )

R S
i

J k x k i k u k i k
∞

=

= + + +∑                 (5) 

( 1 ) ( ) ( ) ( ) ( ) ( ) ( )dx k i k A k x k i k A k x k i d k B k u k i k+ + = + + + − + +      (6) 
( ) , [0, )M Mu u k i k u i− ≤ + ≤ ∈ ∞                       (7) 

where 0TR R= >  and 0TS S= > , ( )x k i k+  and 
( )u k i k+  denote predicted the state and the input, 

respectively. ( ) ( )x k k x k= , ( ) ( )x k i k x k i− = −  for 1i ≥ . 
Let us present the following lemma, 
Lemma 1[16]: Let M, N be real constant matrices and 

P be a positive matrix of compatible dimensions 
Then  

1T T T TM PN MPN M PM N PNε ε −+ ≤ +  
hold for any 0ε > . 

III. MAIN RESULTS 
Consider a delay-dependent quadratic function 

3

1
( ( )) ( ( ))v

v
V x k i k V x k i k

=

+ = +∑                       (8) 

with 1( ( )) ( ) ( ) ( )TV x k i k x k i k P k x k i k+ = + + , 

2 1
( ( )) ( ) ( ) ( )d T

j
V x k i k x k i j k Q k x k i j k

=
+ = + − + −∑ , 

1
3 1
( ( )) ( ) ( ) ( )M

m

d l T
l d j

V x k i k x k i j k Q k x k i j k−

= =
+ = + − + −∑ ∑  

where ( ) ( ) 0TP k P k= > , ( ) ( ) 0TQ k Q k= > . 
At time k, suppose the inequality is obtained  

2 2
( ( 1 )) ( ( )) ( ) ( ))

R S
V x k i k V x k i k x k i k u k i k+ + + ≤ + + +          (9) 

which is used to derive the sufficient condition of the 
objective monotonicity. 

A. The Cost Monotonicity 
In order to propose stabilization RMPC algorithm, we 

first derive a new sufficient condition for cost 
monotonicity. The condition is presented in the following 
Theorem 1. 

Theorem 1: the inequality (9) is satisfied 
for [ ]( ) ( ) ( )dA k A k B k ∈Ω , if there exist 1( )Y k , 2 ( )Y k , 

1 1( ) ( ) 0TQ k Q k= >  and 2 2( ) ( ) 0TQ k Q k= > , satisfying the 
following conditions: 

1

1 1
1
2

1
1
2

1

1 2

( ) * * * *
(1 ) (1 ) ( ) * * *

0(1 ) ( ) 0 (1 ) * *

(k) 0 0 *
(k) 0 0 0 ( )

Q k
M Q k

S Y k I

R Q I
rQ rQ k

ε ε

ε ε

−⎡ ⎤
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥

≤+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥⎣ ⎦

     (10) 

2
1 1

2 2
1

1 12
2

( ) * *
(1 ) ( ) (1 ) ( ) * 0

(1 ) ( ) 0 (1 )

Q k
M k Q k

S Y k I

ε ε

ε ε

− −

− −

⎡ ⎤
−⎢ ⎥

⎢ ⎥+ − + ≤⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

      (11) 

where 1
1( ) ( )Q k P k−= , 1

2 ( ) ( )Q k Q k−=  , 1 1 1( ) ( ) ( )Y k K k Q k=  
, 2 2 2( ) ( ) ( )Y k K k Q k=  , ( ) ( )

1 1 1( ) ( )l lM A Q k B Y k= +  ,  
and ( ) ( )

2 2 2( ) ( )l l
dM A Q k B Y k= +  with 1, ,l p= K . 

Proof: For notational simplicity, let us 
define ( )x x k i k= + , ( )dx x k i d k= + − , and ( )jx x k i j k= + − .  
Using ( )V x  defined in (8), we have 

1 ( ( ) ( ) ( ) ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T T
d d

T T T T
d d d d d d

V x A k P k A k P k x x A k P k A k x

x A k P k A k x x A k P k A k x

Δ = − +

+ +
      (12) 

1

2 ( ) ( ) ( )
M

m

d
T T T

d d j j
j d

V x Q k x x Q k x x Q k x
−

=

Δ ≤ − + ∑               (13) 

And 
1

3 ( ) ( ) ( )
M

m

d
T T

M m j j
j d

V d d x Q k x x Q k x
−

=

Δ = − − ∑               (14) 

where 1( ) ( ) ( ) ( )A k A k B k K k= + , 2( ) ( ) ( ) ( )d dA k A k B k K k= + . 
So, the following inequality can be obtained 
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( ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) ( ) ( ) ( ))

T T T T
d d

T T T T
d d d d d d

V x A k P k A k P k Q k x x A k P k A k x

x A k P k A k x x A k P k A k Q k x

Δ ≤ − + +

+ + −
  (15) 

where 1M mr d d= − + . 
Applying the state feedback 1 2( ) ( ) ( ) du k K k x K k x= + , 

and considering lemma 1, we can obtain the inequality as 
following form 

1 1

1
2 2

(1 )( ( ) ( ) ( ) ( ) ( )
( ) ( )

0

0
(1 )( ( ) ( ) ( ) ( ) ( ) ( ))

T T
T

d

T T
d d d

A k P k A k K k SK k
x

R P k rQ kx

x
A k P k A k K k SK k Q k x

ε

ε −

⎡ + +
⎡ ⎤ ⎢

+ − +⎢ ⎥ ⎢
⎣ ⎦ ⎢⎣

⎤ ⎡ ⎤
⎥ ⎢ ⎥+ + − ⎦ ⎣ ⎦

      (16) 

After pre-and post-multiplying 1 2( ( ), ( ))diag Q k Q k in the 
left hand sides of (16), respectively, and   applying the 
Schur complement, then we obtain 

1

1 1
1
2

1
1
2

1

1 2

( ) * * * *
(1 ) (1 ) ( ) * * *

0(1 ) ( ) 0 (1 ) * *

(k) 0 0 *
(k) 0 0 0 ( )

Q k
M Q k

S Y k I

R Q I
rQ rQ k

ε ε

ε ε

−⎡ ⎤
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥

≤+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥⎣ ⎦

      (17) 

2
1 1

2 2
1

1 12
2

( ) * *
(1 ) (1 ) ( ) * 0

(1 ) ( ) 0 (1 )

Q k
M Q k

S Y k I

ε ε

ε ε

− −

− −

⎡ ⎤
−⎢ ⎥

⎢ ⎥+ − + ≤⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

      (18) 

where 1 1 1( ) ( ) ( ) ( )M A k Q k B k Y k= + ,and 2 2 2( ) ( ) ( ) ( )dM A k Q k B k Y k= + .
Since (17), (18) are affine. The inequalities (17), (18) are 
satisfied for all [ ]( ) ( ) ( )dA k A k B k ∈Ω  if and only if there 
exist 1 1( ) ( ) 0TQ k Q k= > , 2 2( ) ( ) 0TQ k Q k= >  , 1 1 1( ) ( ) ( )Y k K k Q k=
 , and 2 2 2( ) ( ) ( )Y k K k Q k=  satisfying (10), (11), respectively. 
This proof is completed. 

B. The proposed RMPC algorithm 
To obtain the upper bound of the objective function, 

we obtain ( ( )) ( ( )) ( )V X k V X k k J k∞ − ≤−  
i.e. ( ( )) ( )V X k k J k− ≤ − , by summing (9) from 

0j = to j = ∞ . 
So we have  

[ ]( ) ( ) ( ) , 0
max ( ) ( ( )) ( )

dA k A k B k i
J k V x x x kγ

∈Ω ≥
≤ ≤              (19) 

where   γ (k) is the nonnegative upper bound of V. 
Then, the original min-max problem (4) can be turned 

into minimization of the upper bound of the original cost 
function,  

( ), ( )
min ( )

P k Q k
kγ                             (20) 

subject to (8), (10) 
Thus, we complete the algorithm with theorem 2 
Theorem 2: For the time-delay system (1), if there exist 

matrices 1 1( ) ( ) 0TQ k Q k= > , 2 2( ) ( ) 0TQ k Q k= > , 1( )Y k   , 2 ( )Y k   , 
( )G k , a scalar ( ) 0kγ >   and a given scalar ε   such that 

the following optimization problem is solvable 

1 2 1 2( ), ( ), ( ), ( ), ( ), ( )
min ( )

Q k Q k k Y k Y k G k
k

γ
γ  

subject to  
1 * * L * *

x(k k) Q1(k ) * L * *

rx(k −1 k ) 0 rQ2 (k) L * *

M M M O M M

rx(k − dm k) 0 0 L rQ2(k) *

(r −1)x(k − dm −1 k ) 0 0 L 0 (r −1)Q2 (k)

M M M L M 0
(dM − d +1)x(k − d k ) 0 0 L 0 0

(dM − d −1)x(k − d −1 k) 0 0 L 0 0

M M M L M M

x(k − dM +1 k) 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

 

* * * * *
* * * * *
* * * * *
M M M M M

* * * * *
* * * * *
O * * * *
0 (dM − d +1)Q2(k ) * * *

0 0 (dM − d −1)Q2(k ) * *

M M M O M

0 0 0 0 Q2(k)

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

≥ 0

        (21) 

1

1 1
1
2

1
1
2

1

1 2

( ) * * * *
(1 ) (1 ) ( ) * * *

0(1 ) ( ) 0 (1 ) * *

(k) 0 0 *
(k) 0 0 0 ( )

Q k
H Q k

S Y k I

R Q I
rQ rQ k

ε ε

ε ε

−⎡ ⎤
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥

≤+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥⎣ ⎦

    (22) 

2
1 1

2 2
1

1 12
2

( ) * *
(1 ) (1 ) ( ) * 0

(1 ) ( ) 0 (1 )

Q k
H Q k

S Y k I

ε ε

ε ε

− −

− −

⎡ ⎤
−⎢ ⎥

⎢ ⎥+ − + ≤⎢ ⎥
⎢ ⎥

+ − +⎢ ⎥⎣ ⎦

     (23) 

1 1

2 2

( ) * *
( ) ( ) * 0, , 1,2, ,
( ) 0 ( )

T
ii Mi

T

G k
Y k Q k G u i m
Y k Q k

⎡ ⎤
⎢ ⎥ ≥ ≤ =⎢ ⎥
⎢ ⎥⎣ ⎦

L      (24) 

where ( )iiG k is the ith diagonal entry of ( )G k  and Miu  
is the ith element of Mu , ( ) ( )

1 1 1( ) ( )l lH A Q k B Y k= + , 
( ) ( )

2 1 2( ) ( )l l
dH A Q k B Y k= + , 1, ,l p= K  .Then the MPC 

law 1 1
1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )u k i k Y k Q k x k i k Y k Q k x k i d k− −+ = + + + − ,

[0, )i∈ ∞  , minimizes the upper bound ( ( ))V x k k  of the 
robust performance index.  

Proof:  Minimisation of ( ( ))V x k k is equivalent to  

1 2( ), ( ), ( )

1

1

1

min ( )

. .

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
M

m

k Q k Q k

d
T T

j

d l
T

l d j

k

s t

V x k k x k k P k x k k x k j k Q k x k j k

x k j k Q k x k j k k

γ
γ

γ

=

−

= =

= + − −

+ − − ≤

∑

∑ ∑   (25) 

 
Let us define 1

1( ) ( ) ( )P k k Q kγ −= , 1
2( ) ( ) ( )Q k k Q kγ −= . 

Then by the Schur complement, the conditions (22) and 
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(23) are derived with performing some procedure as in 
Theorem 1 and from the constraints of (25), respectively. 

an invariant ellipsoid is denoted as following 
{ }( 1) 1 1Mn d Tz z z+ −= ∈ Φ ≤Γ R                          (26) 

where
Φ = diag[Q1(k),Q2 (k),� ,(dM − d −1)−1Q2 (k),

(dM − d +1)−1Q2 (k),� ,(r −1)−1Q2 (k),� ,r −1Q2 (k)]
,

[ ( ), ( ), , ( 1 ),

( ), , ( 1 ), , ( 1 )]

T T T
M

T T T T
m

z x k i k x k i d k x k i d k

x k i d k x k i d k x k i k

= + + − + − +

+ − + − + + −

K

K K
. 

It is proved that 
2

0
2

1
21 1` 1

10
2 2`

max ( ( ))

( ) ( ) ( )
max max ( )

( ) ( ) ( )

ji

ji z
j

u k i k

Y k Q k x k i k
Y z

Y k Q k x k i d k

≥

−
−

−≥ ∈

+

⎛ ⎞+
⎜ ⎟= ≤ Φ
⎜ ⎟+ + −⎝ ⎠

Γ

     (27) 

where [ ]1 2( ) ( ) 0 0Y Y k Y k= L . 
By the Cauchy-Schwarz inequality, we 

obtain 2 21 1 2 1

2
max ( ) ( ) ( )T

j j jjz
Y z Y Y Y− −

∈
Φ ≤ Φ = Φ

Γ
. Then there 

exist a symmetric matrix G  such that  

0, , 1, ,
* jj Mj

G Y
G u j p

⎡ ⎤
≥ ≤ =⎢ ⎥Φ⎣ ⎦

K                 (28) 

Form definitions of Y  andΦ , it is easily proved that 
(28) is equivalent to (15). This completes the proof. 

C. Feasibility and the Closed-Loop Stability 
In addition, we prove the feasibility and closed-loop 

stable of the proposed MPC algorithm. 
Theory 3: If the prime problem (4) is feasible, then the 

proposed control law (3) can asymptotically stabilizes the 
system. 

Proof: Support that a control sequence is feasible at 
time k, then at next time, the control sequence is as 
following forms 

*( 1 1) ( 1 ), 0u k i k u k i k i+ + + = + + ≥            (29) 

where u*(k + i +1 k)  is a solution of the prime problem at 
k. the constraint (7) is satisfied at time k+1, which implies 
that the problem is feasible at time k+1. Then, the 
optimization problem is feasible at all-time instants t>k. 

The optimal values are *( )P k , *( )Q k  and *( 1)P k + , 
*( 1)Q k +  at time k and k+1, respectively. Consider a 

quadratic function 
* *

1

1
*

1

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
M

m

d
T T

j

d l
T

l d j

V x k k x k k P k x k k x k j k Q k x k j k

x k j k Q k x k j k

=

−

= =

= + − −

+ − −

∑

∑∑
(30) 

Since *( 1)P k + , *( 1)Q k +  are optimal, while *( )P k , 
*( )Q k  are only feasible at time k+1, then  

* *

*

1

1
*

1

( ( 1 1)) ( 1 1) ( ) ( 1 1)

( 1 ) ( ) ( 1 )

( 1 ) ( ) ( 1 )
M

m

T

d
T

j

d l
T

l d j

V x k k x k k P k x k k

x k j k Q k x k j k

x k j k Q k x k j k

=

−

= =

+ + ≤ + + + +

+ − + − +

+ − + − +

∑

∑∑

 

Besides, it follows from (11) that 
( ( 1 )) ( ( )) 0V x k k V x k k+ − ≤ for any [ ]( ) ( ) ( )dA k A k B k ∈Ω . 

Then it is obtained as following 
* *( ( ( 1 1)) ( ( ( ))V x x k k V x x k k+ + ≤                (31) 

In conclusions, the objective function is a 
monotonically decreasing and bounded function. That is a 
say, the proposed algorithm asymptotically stabilizes the 
closed-loop system. 

IV. NUMERICAL EXAMPLES 
In this section, a backing up control of a computer-

simulated truck-trailer example [17] was presented to 
illustrate the performance of the proposed method. Using 
the Euler first-order approximation and sampling time 

0.1T = sec. the system is 
1 ( ) ( ) ( )k k d k d kx A x A x B uα α α+ −= + +  

with { }1 1 1 2 2 2,d dA A B A A B⎡ ⎤ ⎡ ⎤Ω∈ ⎣ ⎦ ⎣ ⎦ . 

where 1

1.0509 0 0
0.0509 1 0

0.0509 0.4 1
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1

0.0218 0 0
0.0218 0 0

0.0218 0 0
dA

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

2

1.0509 0 0
0.0509 1 0

0.0810 0.6366 0
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 2

0.0218 0 0
0.0218 0 0

0.0347 0 0
dA

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

     1 2

0.1429
0
0

B B
−⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Simulation parameters are as follows: 
4d = , 1S = , 0.0064ε = , and (101010)R diag= .  

The angle difference between the truck and the trailer 
is denoted as 1x . 2x is the angle of the trailer, 3x is the y-
coordinate of the rear end of the trailer, and u  denotes the 
steering angle. For the sake of comparison, we show 
simulation with CMPC-UDS [11], the proposed robust 
MPC algorithm and the proposed robust MPC without 
input constraint in this example.  

Fig. 1 presents a comparison of the set point tracking 
performance. The proposed RMPC algorithm shows better 
set-point tracking performance and faster response 
compared to those of CMPC-UDS. 

 
FIG.1 COMPARISON OF THE SET POINT TRACKING PERFORMANCE 

Although the proposed MPC without input constraint 
achieves better performance than two others’, these 
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properties are achieved at the cost of larger input, as 
showed in Fig.2.  

 
FIG.2 COMPARISON OF THE CONTROL INPUT 

It is not feasible in many practical cases. Moreover, the 
convergence of the control input from the proposed 
algorithm is faster, smoother and smaller amplitude than 
these of CMPC-UDS. Fig.3 shows comparison of the 
upper bound of objective function among three situations. 
It is evident that the upper bound of the proposed method 
is smaller than that obtained with the method in CMPC-
UDS. 

 
FIG.3 COMPARISON OF THE UPPER BOUND OF THE OBJECTIVE FUNCTION 

V. CONCLUSIONS 
The paper proposed a improved delay-dependent 

RMPC algorithm for delay uncertain polytopic systems. 
State delay with an upper and lower bound is unknown 
and time varying. Minimizing the upper bound of the 
objective function, we solved the original optimization 
problem. Moreover, we designed the memory feedback 
controller from the min-max optimization problem. With 
the newly proposed sufficient condition of the cost 
monotonicity, the less conservative MPC algorithm 
asymptotically stabilized the polytopic delayed system 
with input constraints. A numerical example demonstrates 
its effectiveness. 
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