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Abstract
The notion of classical r-matrix is re-examined, and a definition suitable to differential
(-difference) Lie algebras, – where the standard definitions are shown to be deficient, –
is proposed, the notion of an O-operator. This notion has all the natural properties
one would expect form it, but lacks those which are artifacts of finite-dimensional
isomorpisms such as not true in differential generality relation End (V ) � V ∗ ⊗ V for
a vector space V . Examples considered include a quadratic Poisson bracket on the
dual space to a Lie algebra; generalized symplectic-quadratic models of such brackets
(aka Clebsch representations); and Drinfel’d’s 2-cocycle interpretation of nondegenate
classical r-matrices.
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1 From Artin relation to Quantum Yang–Baxter equation
to Classical Yang–Baxter equation

Hier ist kein Warum.

This paper is written with a non-expert in mind, and the text is purposedly self-contained
apart from a few references to basic properties of the algebraic calculus of variations and
Hamiltonian formalism. In this section we derive the Classical Yang–Baxter equation
(CYBE) as the quasiclassical limit of the Quantum Yang-Baxter equation (QYBE); the
latter will be seen in a moment as a special form of the Artin relation for the generators
of the braid group.

We thus start from a purely finite-dimensional view-point; finite-dimensional Lie al-
gebras will come in later on through an interpretation of the CYBE, and differential Lie
algebras will appear later still. Have I mentioned that most, if not all, of the results in this
Section are gleamed from the confidential list of examination questions given annually to
all low-level NSA employees?

Let’s fix a vector space V and let

S : V ⊗ V → V ⊗ V (1.1)

be an operator. S induces the operators S12 = S⊗1 and S23 = 1⊗S acting on V ⊗V ⊗V
in an obvious way. The operator S13 acts on V ⊗ V ⊗ V in an equally natural way:

S13(ei ⊗ ej ⊗ ek) =
∑
ab

Sabik ea ⊗ ej ⊗ eb, (1.2)

where

S(ei ⊗ ej) =
∑
cd

Scdij ec ⊗ ed, (1.3)

and (ei) is a basis in V .
Denote by P : V ⊗ V → V ⊗ V the permutation operator,

P (v1 ⊗ v2) = v2 ⊗ v1, ∀ v1, v2 ∈ V, (1.4)

and let M : V ⊗ V ⊗ V → V ⊗ V ⊗ V be the operator of mirror symmetry:

M(v1 ⊗ v2 ⊗ v3) = v3 ⊗ v2 ⊗ v1. (1.5)

It’s immediate to see by inspection that

M = P 23P 12P 23 = P 12P 23P 12. (1.6)

The Artin equation for an arbitrary operator S : V ⊗ V → V ⊗ V is then

S23S12S23 = S12S23S12. (1.7)

That’s all there is to it. We now proceed to massage this equation in various directions.
Set

S = PR ⇔ R = PS. (1.8)
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The Artin equation (1.7) will become then

P 23R23P 12R12P 23R23 = P 12R12P 23R23P 12R12. (1.9)

Let A, U , V, W be arbitrary operators V ⊗ V → V ⊗ V . The following identities are
easy to check and are left for the reader to verify:

A12P 23 = P 23A13, (1.10a)

A13P 23 = P 23A12, (1.10b)

A23P 12 = P 12A13, (1.10c)

A13P 12 = P 12A23; (1.10d)

U23V12W23 = W12V23U12 (1.11)

whenever at least two out of three operators U , V, W are equal to P .
Notice that each one of the formulae (1.10) can be taken as an invariant definition of

the operator A13, thus avoiding the coordinate definition (1.2).
Now let us transform separately each side of the equation (1.9). For the LHS we get

P 23R23P 12R12P 23R23 [by (1.10c,a)]
= P 23P 12R13P 23R13R23

[by (1.10b)]
= P 23P 12P 23R12R13R23 = MR12R13R23,

(1.12L)

while for the RHS of the equation (1.9) we obtain

P 12R12P 23R23P 12R12 [by (1.10a,c)]
= P 12P 23R13P 12R13R12

[by (1.10d)]
= P 12P 23P 12R23R13R12 = MR23R13R13.

(1.12R)

Equating the expressions (1.12L) and (1.12R) we find

R12R13R23 = R23R13R12. (1.13)

This is called QYBE. Since Artin equation (1.7) is satisfie by S = P , the QYBE
equation (1.13) is satisfied by R = 1 . Let’s look for perturbations of this solution: set

R = 1+ hr + h2ρ+O
(
h3

)
(1.14)

with some formal parameter h. Then

R12R13R23 =
(
1+ hr12 + h2ρ12

) (
1+ hr13 + h2ρ13

) (
1+ hr23 + h2ρ23

)
+O

(
h3

)
= 1+ h

(
r12 + r13 + r23

)
+ h2

(
ρ12 + ρ13 + ρ23

)
+h2

(
r12r13 + r12r23 + r13r23

)
+O

(
h3

)
,

(1.15L)

R23R13R12 =
(
1+ hr23 + h2ρ23

) (
1+ hr13 + h2ρ13

) (
1+ hr12 + h2ρ12

)
+O

(
h3

)
= 1+ h

(
r23 + r13 + r12

)
+ h2

(
ρ23 + ρ13 + ρ12

)
+h2

(
r23r13 + r23r12 + r13r12

)
+O

(
h3

)
.

(1.15R)
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Comparing the expressions (1.15L) and (1.15R), we see that they differ in h2-terms; these
yield

c(r) :=
[
r12, r13

]
+

[
r12, r23

]
+

[
r13, r23

]
= 0. (1.16)

This is called CYBE. As a quaslassical approximation to a noncommutative QYBE (1.13)
in an associative framework, CYBE should have Poisson-brackets-related proprties and/or
interpretations. This is known to be true, and we shall see more of such presently.

The first step in this direction is to realize that since only commutators are involved
in the CYBE (1.16), the operator r, – called a classical r-matrix, – can be considered not
just as an element of the tensor square of the Lie algebra End (V ):

End (V )⊗ End (V ) ≈ End (V ⊗ V ), (1.17)

but as an element of G ⊗ G for arbitrary Lie algebra G:
r ∈ G ⊗ G. (1.18)

The CYBE (1.16) is then understood as an identity in G ⊗ G ⊗ G: If

r =
∑
i

ai ⊗ bi, ai, bi ∈ G, (1.19)

then (temporarily stepping outside G into the Universal enveloping algebra U(G))[
r12, r13

]
=

∑
ij

[ai, aj ]⊗ bi ⊗ bj , (1.20a)

[
r12, r23

]
=

∑
ij

ai ⊗ [bi, aj ]⊗ bj , (1.20b)

[
r13, r23

]
=

∑
ij

ai ⊗ aj ⊗ [bi, bj ], (1.20c)

so that the CYBE (1.16) becomes

0 = c

(∑
i

ai ⊗ bi

)
=

∑
ij

([ai, aj ]⊗bi⊗bj+ai⊗[bi, aj ]⊗aj⊗bj+ai⊗aj⊗[bi, bj ]).(1.21)

(Finding out the proper Lie-algebraic object to which the CYBE (1.16) in G⊗3 is the
quasiclassical approximation is far from easy; this is done in Drinfel’d’s paper [3].)

Remark 1.22. Had we considered the quasiclassical approximation to the Artin equation
(1.7) itself, in the form

S = P + hr̄ + h2ρ̄+O
(
h3

)
, (1.23)

the h2-terms would have collected into the equation

r̄23r̄12P 23 + r̄23P 12r̄23 + P 23r̄12r̄23 = r̄12r̄23P 12 + r̄12P 23r̄12 + P 12r̄23r̄12. (1.24)
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This equation turns into CYBE (1.16) upon the substitution

r̄ = Pr. (1.25)

Let us discuss the skewsymmetry proprty of the classical r-matrix. If we impose on the
operator S the very natural “unitarity”condition

S2 = 1, (1.26)

the r-matrix r =
∂(PS)
∂h

∣∣∣∣
h=0

inherits from the unitarity the skewsymmetry condition

Pr = −rP. (1.27)

The Lie-algebraic r-matrix (1.19) then belongs to Λ2G rather than G⊗2:

r =
∑
i

ai ∧ bi =
∑
i

(ai ⊗ bi − bi ⊗ ai). (1.28)

Although non-skewsymmetric r-matrices play many important rôles in various branches of
Mathematics and Physics (see the textbook [1] of Chari and Pressley as the basic reference
for what follows), in this paper all r-matrices will be considered skewsymmetric, due to
the nature of the topics discussed.

For future reference, we shall record the skewsymmetric version of formulae (1.20) for
c(r) with the skewsymmetric r-matrix (1.28):[

r12, r13
]
=

∑
ij

([ai, aj ]⊗bi⊗bj−[ai, bj ]⊗bi⊗aj−[bi, aj ]⊗ai⊗bj+[bi, bj ]⊗a⊗aj),(1.29a)

[
r12, r23

]
=

∑
ij

(ai⊗[bi, aj ]⊗bj−ai⊗[bi, bj ]⊗aj−bi⊗[ai, aj ]⊗bj+bi⊗[ai, bj ]⊗aj),(1.29b)

[
r13, r23

]
=

∑
ij

(ai⊗aj⊗[bi, bj ]−ai⊗bj⊗[bi, aj ]−bi⊗aj⊗[ai, bj ]+bi⊗bj⊗[ai, aj ]).(1.29c)

2 Classical r-matrices and 2-cocycles

Any skewsymmetric element r ∈ Λ2G satisfying the CYBE (1.16) is called a classical
r-matrix.

To every r ∈ G ⊗ G we can associate an operator O = Or : G∗ → G by the rule

〈u,O(v)〉 = 〈u⊗ v, r〉, ∀ u, v ∈ G∗. (2.1)

Conversely, this equality attaches an element r ∈ G⊗2 to every operator O : G∗ → G.
(Why do such banalities deserve being mentioned? Because they are not true in general.
Please bear with me). The skewsymmetry of r is equivalent to skewsymmetry of O:

〈u,O(v)〉+ 〈v,O(u)〉 = 0. (2.2)

Now, suppose temporarily that r is nondegenerate, i.e., O is invertible. (G is then
even-dimensional). Consider the skewsymmetric bilinear form ω = ωr on G:

ω(x, y) = 〈O−1(x), y〉, ∀ x, y ∈ G. (2.3)
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Theorem 2.4 (Drinfel’d [2]). A nondegenerate r in ∧2G satisfies CYBE iff ω is a
2-cocycle on G.

We postpone the proof of this Theorem until later on in this Section, since we aim at
a higher prize: to reformulate this 2-cocycle characterization of classical r-matrices into a
form suitable for a fruitful definition.

Let’s write down the condition for ω to be a 2-cocycle on G:
0 = ω(x, [y, z)) + c.p. = 〈O−1(x), [y, z]〉+ c.p., ∀ x, y, z ∈ G. (2.4)

Since O is invertible, we can find u, v, w ∈ G∗ such that

x = O(u), y = O(v), z = O(w). (2.5)

The 2-cocycle condition (2.4) then becomes

〈u, [O(v),O(w)]〉+ c.p. = 0, ∀ u, v, w ∈ G∗. (2.6)

What have we achieved? First, in equality (2.6) the map O is no longer required to be
invertible. (2-cocycles are often degenerate. This is true in Fluid Mechanics and Plasma
Physics, see many examples in [6]; same happens in finite dimensions, e.g. for complex
semisimple Lie algebras, see discussion in [1], p. 62.) Second, the equaity (2.6) is trilinear
in G∗, but we can transform this trilinear equation into an equivalent bilinear one, as
follows.

Denote the coadjoint action of x ∈ G on u ∈ G∗ by x.u :

〈x.u, y〉 = −〈u, [x, y]〉, ∀ y ∈ G. (2.7)

Now, using the skewsymmetry of O, we get

1) 〈u, [O(v),O(w)]〉 = −〈O(v).u,O(w)〉 = 〈w,O(O(v).u)〉, (2.8a)

2) 〈v, [O(w),O(u)]〉 = 〈O(u).v,O(w)〉 = −〈w,O(O(u).v)〉. (2.8b)

Substituting (2.8) into (2.6) we obtain

〈w,O(O(v).u−O(u).v) + [O(u),O(v)]〉 = 0. (2.9)

Since w is arbitrary, the 2-cocycle condition (2.6) is equivalent to the equality

O(O(u).v −O(v).u) = [O(u),O(v)], ∀ u, v ∈ G∗. (2.10)

This suggests the following generalization of the notion of the classical r-matrix. Let
G be a Lie algebra, U a G-module, and O : U → G a linear map. Let’s make U into an
algebra by defining a skew multiplication [ , ] in U by the rule

[u, v] = O(u).v −O(v).u, ∀ u, v ∈ U . (2.11)

O is called an O-operator, or a classical r-matrix, iff O is a homomorphism of algebras:

O([u, v]) = [O(u),O(v)], ∀ u, v ∈ U ; (2.12)

equivalently,

O(O(u).v −O(v).u) = [O(u),O(v)], ∀ u, v ∈ U . (2.13)
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Examle 2.14. Let G = sl2 with a basis (h; e; f):

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (2.15)

Let U be 2-dimensional, with a basis (v0; v1) and the action of s�2 of the fundamental
representation:

e.v0 = 0, h.v0 = v0, f.v0 = v1,

e.v1 = v0, h.v1 = −v1, f.v1 = 0.
(2.16)

Each of the following 2 maps can be easily seen to be an O-operator:

O
(
v0
v1

)
= c1

(
h
f

)
+ c2

(
f
0

)
, c1, c2 are constants, (2.17a)

O
(
v0
v1

)
= c3

(
e
−h

)
+ c4

(
0
e

)
, c3, c4 are constants, (2.17b)

Proposition 2.18. If O : U → G is an O-operator then U is a Lie algebra.

Proof. By formula (2.11),

[[u, v], w] + c.p. = {O([u, v]).w −O(w).[u, v]}+ c.p.

[by (2.12)]
= {[O(u),O(v)].w −O(w).(O(u).v −O(v).u)}+ c.p.

[since U is a G-module]
= {(O(u).(O(v).w)−O(v).(O(u).w)) + c.p.}

−{O(w).(O(u).v) + c.p.}+ {O(w).(O(v).u) + c.p.}
= {(O(u).(O(v).w)−O(v).(O(u).w)) + c.p.}
−{O(u).(O(v).w) + c.p.}+ {O(v).(O(u).w) + c.p.} = 0.

Thus, O is aposteriori a homomorphism of Lie algebras. (This explains formulae (2.17),
since U is 2-dimensional and O maps U into b+ or b−.) We shall not wander into the
general U-route here. (For example, adding linear on O conditions making G + U into a
Lie algebra.) From now on U reverts to the old familiar G∗.

Proposition 2.19. Let O : G∗ → G be an O-operator, so that G∗ is now a Lie algebra.
Then the skewsymmetric bilinear form Ω on G∗:

Ω(u, v) = 〈u,O(v)〉 (2.20)

is a 2-cocycle on G∗.

Proof. We have:

Ω([u, v], w) + c.p. = 〈[u, v],O(w)〉+ c.p. = −〈w,O([u, v])〉+ c.p.

[by (2.12)]
= − 〈w, [O(u),O(v)]〉+ c.p.

[by (2.6) ]
= 0.

Let us prove now Drinfel’d’s Theorem 2.4. We shall evaluate each of the 3 terms in the
O-equation (2.13) and compare them to the expressions (1.29) for c(r).
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First, for r =
∑
i
(ai ⊗ bi − bi ⊗ ai) (1.28), we get

〈u⊗ v, r〉 =
∑
i

(〈u, ai〉〈v, bi〉 − 〈u, bi〉〈v, ai〉)

= 〈u,
∑
i

(〈v, bi〉ai − 〈v, ai〉bi)〉,

so that

O(v) =
∑
i

(〈v, bi〉ai − 〈v, ai〉bi). (2.21)

Now,

1) O(O(u)·v) = O

∑

j

(〈u, bj〉(aj ·v)− 〈u, aj〉(bj ·v))



=
∑
ji

(〈u, bj〉〈aj ·v, bi〉ai − 〈u, aj〉〈bj ·v, bi〉ai

−〈u, bj〉〈aj ·v, ai〉bi + 〈u, aj〉〈bj ·v, ai〉bi)

=
∑
ij

(〈u, bj〉〈v, [bi, aj ]〉ai − 〈u, aj〉〈v, [bi, bi]〉ai

−〈u, bj〉〈u, [ai, aj ]〉bi + 〈u, aj〉〈v, [ai, bj ]〉bi)
[by (1.29b)]

= − (〈u, 〉 ⊗ 〈v, 〉 ⊗ 1)([r12, r23]);

(2.22a)

Interchanging u and v in the above calculation, we get

2) −O(O(v).u) =
∑
ij

(〈u, [aj , bi)]〉〈v, bj〉ai + 〈u, [bi, bj ]〉〈v, aj〉ai

+〈u, [ai, aj ]〉〈v, bj〉bi − 〈u, [ai, bj ]〉〈v, aj〉bi)
[by (1.29a)]

= − (〈u, 〉 ⊗ 〈v, 〉 ⊗ 1)([r12, r13]);

(2.22b)

3) [O(v),O(u)] =
∑
ij

[〈v, bi〉ai − 〈v, ai〉bi, 〈u, bj〉aj − 〈u, aj〉bj ]

=
∑
ij

(〈u, bj〉〈v, bi〉[ai, aj ]− 〈u, aj〉〈v, bi〉[ai, bj ]

−〈u, bj〉〈v, ai〉[bi, aj ] + 〈u, aj〉〈v, ai〉[bi, bj ]
[by (1.29c)]

= − (〈u, 〉 ⊗ 〈v, 〉 ⊗ 1)([r13, r23]).

(2.22c)

Altogether, we thus find

〈w, [O(u),O(v)]−O(O(u).v −O(v).u)〉 = 〈u⊗ v ⊗ w, c(r)〉, ∀ u, v, w ∈ G∗. (2.23)
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3 Differential Lie Algebras say: 2-cocycles,
– Si, r-matrices, – No, O-operators are welcome

Let R be a commutative ring or algebra, and ∂1, . . . , ∂m, : R → R be m commuting
derivations. A Lie algebra over R is RN , some N ∈ N, with a skew multiplication [ , ]
RN ×RN → RN given by bilinear differential operators, such that

[[x, y], z] + c.p. = 0, ∀ x, y, z ∈ R̃N , (3.1)

where R̃ ⊃ R is arbitrary differential extension of R. (This means that the skewsymmetry
of [ , ] and Jacobi identity are the properties solely of differential operators performing
the multiplication [ , ] and are not dependent upon the quirks of R itself).

In this Section we consider the very simplest case m = 1. Denote ∂1 by ∂. First, let
D1 be the Lie algebra of vector fields on the line: D1 = R and

[X,Y ] = XY ′ −X ′Y, ∀ X,Y ∈ D1, (3.2)

where (·)′ := ∂(·).
Consider the following bilinear form on D1:

ω(X,Y ) = ∂3(X)Y. (3.3)

This form is skewsymmetric, in differential sense, for

ω(X,Y ) ∼ −ω(Y,X), ∀ X,Y ∈ D1, (3.4)

where a ∼ b means that (a− b) ∈ Im ∂. Also,

ω(X, [Y, Z]) + c.p. ∼ 0, ∀ X,Y, Z ∈ D1, (3.5)

so that ω is a (generalized) 2-cocycle. (All the necessary details of the theory can be found
in [6].) But if we try to represent this 2-cocycle ω in the O-form (2.3),

ω(X,Y ) = 〈O−1(X), Y 〉, (3.6)

we find that O = ∂−3: in other words, O doesn’t exist, and neither does r. We circumvent
this particular obstacle as follows.

Denote by G(µ), µ = const ∈ F := Ker ∂|R, the following Lie algebra structure on
R+R:[(

X
f

)
,

(
Y
g

)]
=

(
XY ′ −X ′Y

(Xg − Y f + µ(X ′Y ′′ −X ′′Y ′))′

)
. (3.7)

We still have the 2-cocycle ω (3.3) on G(µ):

ω

((
X
f

)
,

(
Y
g

))
= ∂3(X)Y, (3.8)

and it is still degenerate. However, G(µ) also possess a nondegenerate symplectic 2-cocycle.

Ω
((

X

f

)
,

(
Y

g

))
= Xg − Y f. (3.9)
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Indeed,

Ω
((

X

f

)
,

[(
Y

g

)
,

(
Z

h

)])
+ c.p.

= Ω
((

X

f

)
,

((
Y Z ′ − Y ′Z

(Y h− Zg + µ(Y ′Z ′′ − Y ′′Z ′))′

)))
+ c.p.

=
{−(Y Z ′ − Y ′Z)f +X(Y ′h+ Y h′ − Z ′g − Zg′ + µY ′Z ′′′ − µY ′′′Z ′)

}
+ c.p.

= µX(Y ′Z ′′′ − Y ′′′Z ′) + c.p. ∼ −µX ′(Y ′Z ′′′ − Y ′′′Z ′) + c.p. = 0.

Taking the sum εω +Ω as the new 2-cocycle on G(µ), ε = const, we get

(εω +Ω)
((

X

f

)
,

(
Y

g

))

= ε∂3(X)Y + (Xg − Y f) = 〈
(
ε∂3 −1
1 0

) (
X
f

)
,

(
Y
g

)
〉,

(3.10)

so that

O−1 =
(
ε∂3 −1
1 0

)
, (3.11)

and thus

O =
(

0 1
−1 ε∂3

)
. (3.12)

Since O is a differential operator, it corresponds to no element of ∧2G(µ); it is only in
finite dimensions that we can identify G with Hom (G∗, R) and G⊗2 with Hom (G∗⊗2, R).
The conclusion is inescapable: the proper notion of the classical r-matrix is a skewsym-
metric O-operator G∗ → G satisfying the classical O-defining equation (2.10).

In finite dimensions, there exists a different version of the notion of classical r-matrix,
due to Semeynov-Tyan-Shansky [13]. It is already in operator form, acting as r : G → G;
but it requires G to have an invariant nondegenerate scalar product, a condition rarely
encountered in differential situations. [E.g., the Lie algebra G(µ) (3.7) has no invariant
scalar product, no matter what µ is.)

We conclude this Section by calculating the Lie algebra structure on G(µ)∗ induced by
the O-operator (3.12) via formula (2.11).

Denote typical elements in G(µ)∗ as
(
u

p

)
,

(
v

q

)
, with the pairing

〈
(
u

p

)
,

(
X

f

)
〉 = uX + pf. (3.13)

Let us first obtain the formula for the coadjoint action of G(µ) on G(µ)∗:

〈
(
X

f

).(u
p

)
,

(
Y

g

)
〉 ∼ −〈

(
u

p

)
,

[(
X

f

)
,

(
Y

g

)]
〉

[by (3.7)]∼ − u(XY ′ −X ′Y ) + p′(Xg − Y f + µX ′Y ′′ − µX ′′Y ′)

∼ ((uX)′ + uX ′)Y − fp′Y +Xp′g + ((µX ′p′)′′ + (µX ′′p′)′)Y.
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Thus,(
X

f

).(u
p

)
=

(
X∂ + 2X ′ (µ∂(X ′∂ + 2X ′′)− f)∂

0 X∂

) (
u

p

)
. (3.14)

Hence,

O
(
u

p

).(v
q

)
=

(
p

−u+ εp′′′

).(v
q

)

=
(
(pv′ + 2p′v) + µ((p′q′)′′ + (p′′q′)′)− (−u+ εp′′′)q′

pq′

)
.

(3.15)

Therefore,[(
u

p

)
,

(
v

q

)]
= O

(
u

p

).(v
q

)
−O

(
v

q

).(u
p

)

=
(
(pv − qu+ (ε− µ)(p′q′′ − p′′q′))′

pq′ − p′q

)
.

(3.16)

We see that

G(µ)∗ ≈ G(ε− µ). (3.17)

Since G(0) = D1 � V1 is certainly a Lie algebra, G(µ) is so aposteriori:

G(ε) ≈ G(0)∗. (3.18)

The reader who hasn’t bothered to check the Jacobi identity for the Lie bracket (3.7) on
G(µ) may now feel smug about it. The reader who didn’t blink an eye when the symplectic
2-cocycle (3.9) was sprung out on him as a deus ex machina without an explanation, as
this is how modern mathematics is supposed to operate, will be disappointed to find a
general construction of symplectic r-matrices in Appendix A2. Sorry about that.

4 O-natural property of the O-operators

Let ϕ : G → H be a homomorphism of Lie algebras. If everything is finite-dimensional
and r ∈ ∧2G then ϕ(r) ∈ ∧2H, and

c(ϕ(r)) = ϕ(c(r)); (4.1)

thus, if r is a classical r-matrix then so is ϕ(r).
Consider now the general case. Let O = OG : G∗ → G be an O-operator. Recall that

this means that

O(O(u).v −O(v).u) = [O(u),O(v)], ∀ u, v ∈ G∗, (4.2)

and that O is skewsymmetric:

〈u,O(v)〉+ 〈v,O(u)〉 ∼ 0, ∀ u, v ∈ G∗. (4.3)
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Since

〈u,O(v)〉+ 〈v,O(u)〉 ∼ ut(O +O†)(v), (4.4)

O is skewsymmetric iff

O† = −O, (4.5)

where O† is the operator adjoint to O, and u and v are treated as column-vectors (see [6].)
Now let ϕ : G → H be a homomorphism of Lie algebras. It induces the dual map

ϕ∗ : H∗ → G∗. Since

〈ϕ∗(ū), x〉 = 〈ū, ϕ(x)〉, ∀ ū ∈ H∗, ∀ x ∈ G, (4.6)

and

〈ū, ϕ(x)〉 = ūtϕ(x) ∼ (ϕ†(ū))tx, (4.7)

we see that

ϕ∗ = ϕ†. (4.8)

Proposition 4.9. Set

OH = ϕOGϕ∗ : H∗ → H. (4.10)

Then OH is an O-operator.

Proof. First, let’s check that OH is skewsymmetric. We have:

(OH)† = (ϕOGϕ†)† = ϕ(OG)†ϕ† = −ϕOGϕ† = −OH. (4.11)

Next, for any ū, v̄ ∈ H∗, we have to verify that

OH(OH(ū).v̄ −OH(v̄).ū) = [OH(ū),OH(v̄)]. (4.12)

For the LHS of the expression (4.12) we get

ϕOGϕ†(ϕO†
G(ū)

.v̄ − ϕOGϕ†(v̄).ū), (4.13L)

and for the RHS of the expression (4.12) we obtain

[ϕOGϕ†(ū), ϕOGϕ†(v̄)]
[since ϕ is a homomorphism]

= ϕ[OGϕ†(ū),OGϕ†(v̄)]
[since OG is an O-operator]

= ϕOG(OGϕ†(ū).ϕ†(v̄)−OGϕ†(v̄).ϕ†(ū)),
(4.13R)

and by formula (4.15) below the expressions (4.13L,R) are equal.

Lemma 4.14.

ϕ†(ϕ(X).v̄) = X .ϕ†(v̄), ∀ X ∈ G, ∀ v̄ ∈ H∗. (4.15)

Proof. Formula (4.15) is an equality in G∗. Any such equality, (·) = (··), is equivalent to
the relation

〈(·), Y 〉 ∼ 〈(··), Y 〉, ∀ Y ∈ G. (4.16)
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So,

〈ϕ†(ϕ(X).v̄), Y 〉 ∼ 〈ϕ(X).v̄, ϕ(Y )〉 ∼ −〈v̄, [ϕ(X), ϕ(Y )]〉
[since ϕ is a homomorphism]

= − 〈v̄, ϕ([X,Y ])〉 ∼ −〈ϕ†(v̄), [X,Y ]〉 ∼ 〈X .ϕ†(v̄), Y 〉.
In § 6 we establish that a quadratic Poisson bracket on G∗ canonically associated to

every O-operator OG , also has the natural property.

Remark 4.17. The map ϕ∗ : H∗ → G∗ is a homomorphism of Lie algebras.

Proof. Take any ū, v̄ ∈ H∗. We have to show that

ϕ†([ū, v̄)] = [ϕ†(ū), ϕ†(v̄)], (4.18)

which is

ϕ†(OH(ū).v̄ −OH(v̄).ū) = OGϕ†(ū).ϕ†(v̄)−OGϕ†(v̄).ϕ†(ū),

which further is

ϕ†(ϕOGϕ†(v̄).v̄ − ϕOGϕ†(v̄).ū) = OGϕ†(ū).ϕ†(v̄)−OGϕ†(v̄).ϕ†(ū),

and this is true by formula (4.15).

Remark 4.19. In the generality we are working, many finite-dimensional notions dis-
appear. For example, Hamilton–Lie groups and their Hamiltonian actions, – though in-
finitestimal versions of those may survive, see § 5, 6. Other things disappear altogether,
such as representation of commutator on G∗ by the cocommutator G → G⊗G. Every time
one needs to use the finite-dimensional isomorphism End (V ) ≈ V ∗ ⊗ V , one gets into all
sorts of trouble with the authorities, since Diff (V ) is infinite-dimensional no matter what
dimension of V is.

5 Linear Poisson brackets on dual spaces to Lie algebras

Before we tackle quadratic Poisson brackets on G∗, it’s instructive to review the linear
Poisson brackets; this way we can introduce basic definitions and themes in more familiar
surroundings.

So, let G = RN be a differential Lie algebra. (Or differential-difference one; it’s
almost the same, as far as the theory goes, so I prefer not to clutter the presentation
with indices corresponding to discrete degrees of freedom. See Remark 5.50 below for
more details.) The dual space G∗ is also RN . The differential ring C = Cu = R[u(σ)

i ],
i = 1, . . . , N , σ ∈ Zm+ , is what used to be the ring Fun (G∗) of smooth functions on G∗ in
finite dimensions.

On the ring Cu we have the Poisson bracket

{H,F} = XH(F ) ∼ δF

δut
B

(
δH

δu

)
, (5.1)

where the Hamiltonian matrix B, linear in u, is extracted from the following defining
relation:

{utX,utY } ∼ ut[X,Y ], ∀ X,Y ∈ G. (5.2)
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This is the differential version of the more familiar form

{〈u,X〉, 〈u, Y 〉} ∼ 〈u, [X,Y ]〉, ∀ X,Y ∈ G. (5.3)

Since

{utX,utY } ∼ Y tB(X), (5.4a)

and

ut[X,Y ] = 〈u, [X,Y ]〉 ∼ −〈X .u,Y 〉, (5.4b)

we see that

B(X) = −X .u. (5.5)

Thus, the linear Poisson bracket on G∗ has the form

{H,F} ∼ −〈δH
δu

.

u,
δF

δu
〉 (5.6a)

∼ 〈u,
[
δH

δu
,
δF

δu

]
. (5.6b)

The Casimirs of a Poisson bracket are those Hamiltonians H for which the vector field
XH = {H, .} is identically zero. (In finite dimensions, the common level surfaces of
Casimirs are symplectic leaves.) From formula (5.6a) we see that the Casimirs on G∗, also
called (for a reason) coadjoint invariants, are the solutions of the equation

δH

δu

.

u = 0. (5.7)

Equivalently,

〈X .u,
δH

δu
〉 ∼ 0, ∀ X ∈ G. (5.8)

Example 5.9. Let G be the Lie lagebra D1 of § 3:
[X,Y ] = X∂(Y )− ∂(X)Y, ∀ X,Y ∈ D1. (5.10)

Then

u[X,Y ] = u(XY ′ −X ′Y ) ∼ −Y (u∂ + ∂u)(X). (5.11)

Thus,

B = B(D1) = −(u∂ + ∂u) (5.12)

= −2√u∂√u. (5.13)

Therefore,

H ∈ Ker (B) ⇔ δH

δu
= const/

√
u ⇔ H = const

√
u. (5.14)
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Equivalently, from formula (3.14) we see that

X .u = (X∂ + 2X ′)(u) = Xu′ + 2X ′u =
1
X
(X2u)′, (5.15)

so that H is Casimir iff(
δH

δu

)2

u = const ⇔ H = const
√
u. (5.16)

We see that in this case H belongs not to the ring Cu itself but to its algebraic extension.

Remark 5.17. In finite dimensions, the linear Poisson bracket (5.6) was discovered by
Lie and rediscovered by everyone else.

Let us check that the linear Poisson bracket (5.6) is natural. Let ϕ : G → H be a
homomorphism of Lie algebras. Let Cq = R[q(σ)j ] be the differential ring of functions
on H∗, j = 1, . . . ,dim (H). Let Φ : Cu → Cq be the differential homomorphism dual to
the map of spaces ϕ∗ : H∗ → G∗. To calculate Φ, it’s enough to notice that Cu and Cq are
(differentially) generated by linear functions on G∗ and H∗ respectively:

Φ : 〈 , X〉  −→ 〈 , ϕ(X)〉, ∀ X ∈ G. (5.18)

Thus,

Φ(〈u,X〉) = Φ(u)tX = 〈q, ϕ(X)〉 = qtϕ(X) ∼ ϕ†(q)tX, (5.19)

so that

Φ(u) = ϕ†(q). (5.20)

Denote by BG = B(G) the linear Hamiltonian matrix associated to the Lie algebra G by
formula (5.5). The property of the matrix BG being natural means that

Φ({H,F}G∗) = {Φ(H),Φ(F )}H∗ , ∀ H,F ∈ CG∗ = Cu. (5.21)

By the well-known criterion (see, e.g. [6] p. 54), a map Φ : C1 → C2 is Hamiltonian
between the Hamiltonian matrices B1 and B2 over rings C2 and C2 respectively, iff

Φ(B1) = D(Φ)B2D(Φ)†, (5.22)

where D stands for the Frèchet derivative and

Φ = Φ(q1), (5.23)

q1 and q2 being the column-vectors of generators of the rings C1 and C2 respectively. For
the matrices B1 = BG and B2 = BH, a proof of the identity (5.22) can be found in [6]
p. 66. Instead of repeating this type of proof, – which becomes very cumbersome for the
quadratic Poisson bracket on G∗ defined in § 6, – I will reformulate the criterion (5.22)
into a very useful form:

Proposition 5.24. A map Φ : C1 → C2 is Hamiltonian iff

Φ({H,F}1) ∼ {Φ(H),Φ(F )}2, ∀ H,F linear in q1. (5.25)
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Proof. We shall show that if H and F are arbitrary linear in q1 then formula (5.25)
implies formula (5.22). Let

H = q1tX, F = q1tY , X,Y ∈ R̃N1 ,

so that

{H,F}1 ∼ Y tB1(X), Φ({H,F}1) ∼ Y tΦ(B1)(X), (5.26)

{Φ(H),Φ(F )}2 = {ΦtX,ΦtY }2 ∼
(

δ

δq2
(ΦtY )

)t

B2
δ

δq2
(ΦtX). (5.27)

Now, since X and Y are q(.)-independent,

δ

δqs
(ΦtX) = Dqs(Φ)†(X) =

∑
j

Dqs(Φj)
†(Xj), (5.28)

so that(
δ

δq2
(ΦtY )

)t

B2
δ

δq2
(ΦtX) =

∑
ij

[Di(Φ)†(Y )]t(B2)ijDj(Φ)†(X)

∼
∑
ij

Y tDi(Φ)(B2)ijDj(Φ)†(X) = Y tD(Φ)B2D(Φ)†(X).
(5.29)

Comparing formulae (5.26) and (5.29) and remembering that X and Y are arbitrary, we
arrive at the Hamiltonian criterion (5.22).

Remark 5.30. A little more effort will show that the equality modulo
m∑
�=1

Im ∂� sign ∼
in formula (5.25) can be replaced by the exact equality sign = (see [6] p. 53). We won’t
need this more precise form in what follows.

Assume for a moment that we are thrown back in time into finite dimensions. Let G
be a Lie group whose Lie algebra is G. Then G acts on G∗ by the coadjoint representation,
and this action preserves the linear Poisson bracket on G∗. This means that the map
Ad∗ : G × G∗ → G∗ is Poisson, with the Poisson bracket on G × G∗ being the product of
Poisson brackets on G and G∗ and Poisson bracket and G being zero. This is a particular
case of the following more general set-up. Let G be a Hamilton–Lie group. (This is
the original name given to the subject by its inventor, V.G. Drinfel’d [2]; subsequent
commentators have changed the original name into “Poisson–Lie” groups). Let M be a
Poisson manifold. Suppose G acts from the left on M in such a way that the action map
G×M → M is a Hamiltonian (= Poisson) map, with the Poisson structure on G×M being
of product type. Then infinitesimal criterion for this action to be Hamiltonian is ([14])

X∧({H,F})− {X∧(H), F} − {H,X∧(F )} = 〈[θH , θF ], X〉,
∀ H,F ∈ Fun (M), ∀ X ∈ G = Lie (G).

(5.31)

Here X∧ is the vector field
d

dt
exp(tX)∗

∣∣∣∣
t=0

on M generated by X ∈ G, { , } is the Poisson

bracket on M , θH : M → G∗, for a given function H on M , is the map defined by the rule

θH(x) = dgH(gx)|g=e, ∀ x ∈ M, (5.32)
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and [θH , θF ] is the commutator in G∗ induced by the differential at the identity in G of
the multiplicative Poisson bracket on G. (For a proof, see, e.g. [4] p. 45).

We aim to reformulate the infinitesimal criterion of Hamiltonian action (5.31) into a
definition usable for the functional case where there are no Lie groups present anymore,
only Lie algebras. Let G be such Lie algebra, and let ∧ : G  → Dev(C) be an antirepre-
sentation of G in the Lie algebra of evolution derivations of some differential ring C. Let
∼ : C → C ⊗ G∗ be the map defined by the relation

〈H∼, X〉 ∼ X∧(H), ∀ H ∈ C, ∀ X ∈ G. (5.33)

Extend the given commutator in G∗, – whether given by an O-operator, or otherwise, but
making G + G∗ into a differential Lie algebra, see Appendix I, – into the one on C ⊗ G∗

by treating C as just another differential extension R̃ ⊃ R. The criterion of infinitesimal
Hamiltonian action then is:

X∧({H,F})− {X∧(H), F} − {H,X∧(F )} ∼ 〈[H∼, F∼], X〉,
∀ H,F ∈ C, ∀ X ∈ G,

(5.34)

with { , } being a Poisson bracket on C defined by some Hamiltonian matrix.
We are interested in this paper in the case C = CG∗ = Cu. In this case the action of

the evolution vector field X∧ on Cu corresponding to an element X ∈ G is given by the
formula

X∧(u) = X .u. (5.35)

For the linear bracket on G∗, the RHS of the criterion (5.34) vanishes identically since G∗

is considered as an abelian Lie algebra. Thus, we have to verify that

X∧({H,F}) ∼ {X∧(H), F}+ {H,X∧(F )}, ∀ H,F ∈ Cu. (5.36)

However, this relation follows at once from the fact that X∧ is a Hamiltonian vector field
with the Hamiltonian

G = −〈u,X〉. (5.37)

Indeed, by formula (5.5),

XG(u) = B

(
δG

δu

)
= −δG

δu

.

u = X .u, (5.38)

and this is formula (5.35)
We now prove “the main result of the infinitesimal Hamiltonian action”:

Theorem 5.39. The infinitesimal Hamiltonian action criterion (5.34) for a given Poisson
bracket on G∗ is enough to verify for Hamiltonians H and F linear in the u’s.

Proof. We are going to show that each side of the criterion (5.34) can be transformed
into a form which is a bilinear differential operator acting on the vectors

Y =
δH

δu
, Z =

δF

δu
. (5.40)
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First by formula (5.33),

〈H∼, X〉 ∼ X∧(H) ∼ (X∧(u))t
δH

δu
= 〈X .u,Y 〉 ∼ 〈u, [Y,X]〉 ∼ −〈Y .u,X〉,

so that

H∼ = −δH

δu

.

u. (5.41)

Similarly, F∼ = −Z .u, and the RHS of the criterion (5.34) is therefore indeed a bilinear
differential operator w.r.t. Y and Z.

Next, let B be an unspecified Hamiltonian matrix over the ring Cu = CG∗ , so that

{H,F} ∼ δF

δut
B

(
δH

δu

)
= ZtB(Y ). (5.42)

Transforming separately each of the 3 terms on the LHS of the criterion (5.34), we get:

1) X∧({H,F}) ∼ X∧(ZtB(Y ))

= (X∧(Z))tB(Y ) + ZtX∧(B)(Y ) + ZtB(X∧(Y ));
(5.43a)

2) −{X∧(H), F} ∼ −ZtB
δ

δu
(X∧(H))

[by formula (5.46) below]
= − ZtB([Y ,X] +X∧(Y ));

(5.43b)

3) −{H,X∧(F )} ∼ {X∧(F ), H}
[by (5.43b)]∼ Y tB([Z,X] +X∧(Z)) ∼ −([Z,X] +X∧(Z))tB(Y ).

(5.43c)

Adding up the expressions (5.43), we obtain

X∧({H,F})− {X∧(H), F} − {H,X∧(F )}

∼ δF

δut
X∧(B)

(
δH

δu

)
+

δF

δut
B

([
X,

δH

δu

])
+

[
X,

δF

δu

]t
B

(
δH

δu

)
.

(5.44)

Lemma 5.45.

δ

δu
(X∧(H)) =

[
δH

δu
, X

]
+X∧

(
δH

δu

)
. (5.46)

Proof. We have,

X∧(H) ∼ (X∧(u))t
δH

δu
= 〈X .u,

δH

δu
〉 ∼ 〈u,

[
δH

δu
, X

]
〉. (5.47)

Therefore, since X is u-independent,

δ

δu
(X∧(H)) =

[
δH

δu
, X

]
+D

(
δH

δu

)†
(X .u). (5.48)
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Now, since

D

(
δH

δu

)†
= D

(
δH

δu

)
(5.49)

(see [6]), the second summand on the RHS of the expression (5.48) can be transformed
into

D

(
δH

δu

)
(X∧(u)) = X∧

(
δH

δu

)
.

Remark 5.50. Exactly where have we used the restriction that our objects, – Lie alge-
bras, rings, etc., – are differential rather than differential-difference ones? The answer is
nowhere except in the notation: in the general case,

a ∼ b ⇔ (a− b) ∈
m∑
�=1

Im ∂� +
∑
g∈G

Im (ĝ − ê), (5.51)

Cu = R[u(g|σ)
i ], g ∈ G, σ ∈ Zm+ , etc., where G is a discrete group whose elements index

the discrete degrees of freedom, ĝ is the action of the element g ∈ G on R, Cu, etc. The

presence of discrete degrees of freedom is hidden in the notation
δ

δu
, ( )†, D(·), etc. (The

continuous reader may safely ignore this Remark).

We conclude this Section by considering affine Poisson brackets. These brackets have
the corresponding Hamiltonian operators of the form

B = Blin + b, (5.52)

where Blin is a Hamiltonian matrix operator linearly dependent upon u, and b is u-
independent. Thus,

{H,F} ∼ δF

δut
B

(
δH

δu

)
= 〈u,

[
δH

δu
,
δF

δu

]
〉+ 〈b

(
δH

δu

)
,
δF

δu
〉, (5.53)

where [ , ] is a commutator in some Lie algebra, say G, and b : G → G∗ is a skewsymmetric
operator defining a generalized 2-cocycle on G:

〈b([X,Y ]), Z〉+ c.p. ∼ 0, ∀ X,Y, Z ∈ G (5.54)

(see [6].) Since thie 2-cocycle is, in general, generalized (“∼” instead of “=” in the RHS
of (5.54)), it does not correspond to a central extension any more. Nevertheless, we have

Theorem 5.55. Let G act on CG∗ by the rule

X∧(u) = X .u− b(X). (5.56)

Then this action satisfies the infinitesimal Hamiltonian action criterion (5.34) for the
affine Poisson bracket (5.53).

Proof. Let us write

X∧ = X∧
old +X∧

new, {H,F} = {H,F}old + {H,F}new, (5.57)
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where

X∧
new(u) = −b(X), (5.58)

{H,F}new = 〈b
(
δH

δu

)
,
δF

δu
〉. (5.59)

By Theorem 5.39, we need to verify the relation

X∧({H,F})− {X∧(H), F} − {H,X∧(F )} ∼ 0 (5.60)

for all H, F linear in u:

H = 〈u, Y 〉, F = 〈u, Z〉, ∀ Y, Z ∈ G. (5.61)

We have:

X∧({H,F}) ∼ (X∧
old +X∧

new){〈u, [Y, Z]〉+ 〈b(Y ), Z〉}
= X∧

old({H,F}old)− 〈b(X), [Y, Z]〉,
(5.62a)

−{X∧(H), F} = −{〈X . u− b(X), Y 〉, 〈u, Z〉}
∼ {〈u, [X,Y ]〉, 〈u, Z〉} = −{Xold(H), F}old + 〈b([X,Y ]), Z〉,

(5.62b)

−{H,X∧(F )} ∼ −{H,X∧
old(F )}old − 〈b([X,Z]), Y 〉. (5.62c)

Adding the expressions (5.62) up and remembering formula (5.36), we obtain formula
(5.60).

6 Quadratic Poisson brackets on dual spaces to Lie algebras

The action map Ad∗ : G×G∗ → G∗ is Poisson when the Poisson bracket on G is zero and
on G∗ is linear. When G itself has a nonzero multiplicative Poisson bracket on it, coming
from an r-matrix, there exists a quadratic deformation of the standard linear Poisson
bracket on G∗ such that the action map Ad∗ : G × G∗ → G∗ is still Poisson. (If the
multiplicative Poisson bracket on G is not of r-matrix type, such quadratic deformation
is, in general, impossible.) This was found by Kupershmidt and Stoyanov in [11]. In this
Section we construct a differential (-difference) analog of this quadratic bracket, prove
that it’s compatible with the linear one, verify that this quadratic bracket is natural, and
then check the infinitesimal Hamiltonian action criterion for it.

So, let O : G∗ → G be an O-operator. Recall that O is skewsymmetric:

〈u,O(v)〉 ∼ −〈v,O(u)〉, ∀ u, v ∈ G∗, (6.1)

and

O(O(u).v −O(v).u) = [O(u),O(v)], ∀ u, v ∈ G∗. (6.2)

Define the quadratic Poisson bracket on G∗ by formula

{H,F} ∼ 〈δH
δu

.

u,O
(
δF

δu

.

u

)
〉 ∼ −〈δF

δu

.

u,O
(
δH

δu

.

u

)
〉 (6.3a)
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∼ 〈O
(
δH

δu

.

u

).

u,
δF

δu
〉. (6.3b)

The corresponding Hamiltonian matrix B is therefore quadratic in u:

B(Y ) = O(Y .u).u. (6.4)

The quadratic bracket (6.3) is obviously skewsymmetric. Let us verify that it satisfies
the Jacobi identity. By the main result of the Hamiltonian formalism ([6] p. 47), it is
enough to check the Jacobi identify for Hamiltonians linear in u. So, let

H = Y tu, F = Ztu, G = Xtu. (6.5)

Then

{H,F} ∼ 〈Y .u,O(Z .u)〉 ∼ −〈u, [Y ,O(Z .u)]〉 ∼ 〈u, [Z,O(Y .u)]〉. (6.6)

Therefore,

δ{H,F}
δu

= −[Y ,O(Z .u)] + [Z,O(Y .u)], (6.7)

and hence, in the notation

X̄ = X .u, Ȳ = Y .u, Z̄ = Z .u, (6.8)

{{H,F}, G}+ c.p. ∼ 〈−[Y,O(Z̄)].u+ [Z,O(Ȳ )].u,O(X̄)〉+ c.p.

= −(〈[Y,O(Z̄)].u,O(X̄)〉+ c.p.) + (〈[Y,O(X̄)].u,O(Z̄)〉+ c.p.)

∼ 〈u, [[Y,O(Z̄)],O(X̄)]− [[Y,O(X̄)],O(Z̄)]〉+ c.p.

= 〈u,−[Y, [O(X̄),O(Z̄)]〉+ c.p. ∼ 〈Ȳ , [O(X̄),O(Z̄)]〉+ c.p.

and this expression is ∼ 0 by formula (2.6), itself equivalent to the O-property (6.2).
Now let us verify that the linear and quadratic Poisson brackets on G∗ are compatible

no matter what O is. Recall that compatibility of two Poisson brackets means that their
arbitrary linear combination with constant coefficients is again a Poisson bracket, i.e., it
satisfies the Jacobi identify. This amounts to the relation

({{H,F}1, G}2 + {{H,F}2, G}1) + c.p. ∼ 0, ∀ H,G,F, (6.9)

and the main Theorem of the Hamiltonian formalism asserts that this relation needs to
be verified only for linear Hamiltonian H, F , G. So, for such H, F , G, given by formula
(6.5), we have, by formulae (5.2) and (6.6)

{H,F}1 ∼ [Y ,Z]tu ⇒ {{H,F}1, G}2 ∼ 〈[Y ,Z].u,O(X .u)〉. (6.10a)

On the other hand, by formulae (6.7) and (5.6), we get

{{H,F}2, G}1 ∼ 〈X .u,−[Y ,O(Z .u)] + [Z,O(Y .u)]〉
∼ 〈Y .(X .u),O(Z .u)〉 − 〈Z .(X .u),O(Y .u)〉.

(6.10b)

Substituting expressions (6.10) into formula (6.9), we get

(〈[X,Y ].u + Y (X .u)− X .(Y .u),O(Z .u)〉) + c.p. = 0,
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since

[X,Y ].u = X .(Y .u)− Y .(X .u). (6.11)

If it so happens that the O-operator O : G∗ → G is invertible, like in § 2, then we have
a generalized 2-cocycle on G:

ωb(X,Y ) = 〈b(X), Y 〉, b = εO−1, ε = const, (6.11a)

and thus a constant-coefficient Poisson bracket on CG∗ :

{H,F}0 ∼ 〈b
(
δH

δu

)
,
δF

δu
〉. (6.11b)

Since ωb is a generalized 2-cocycle on G, this constant-coefficient Poisson bracket { , }0
on G∗ is compatible with the linear Poisson bracket { , }1. Let us verify that all three
Poisson brackets on G∗, – constant-coefficient, linear and quadratic, – are compatible. It
remains only to verify compatibility of constant-coefficient { , }0 one and the quadratic
{ , }2 one. Again, for linear Hamiltonians (6.5), the Poisson bracket {H,F}0 (6.11b) is
u-independent, so that {{H,F}0, G}2 = 0. Thus, we need only to verify that

{{H,F}2, G}0 + c.p. ∼ 0.

By formulae (6.7), (6.8), and (6.11), we have:

{{H,F}2, G}0 + c.p. = 〈b
(
δ{H,F}2

δu

)
, X〉+ c.p.

∼ 〈b(X), [Y,O(Z̄]− [Z,O(Ȳ )]〉+ c.p.

= (〈b(X), [Y,O(Z̄)]〉 − 〈b(Y ), [X,O(Z)]〉) + c.p.

∼ 〈−Y .b(X) +X .b(Y ),O(Z̄)〉+ c.p.

[by (2.11)]
= 〈ε[O−1(X),O−1(Y )],O(Z̄)〉+ c.p.

∼ −ε〈Z .u,O[O−1(X),O−1(Y )]〉+ c.p.

[by (2.12)]
= − ε〈Z .u, [X,Y ]〉+ c.p. ∼ ε〈u, [Z, [X,Y ]]〉+ c.p. = 0.

Thus, when O is invertible, we have a triple of compatible Hamiltonian structures on
G∗, of u-degrees zero, one, and two. When O is not invertible, we are left with only linear
and quadratic Poisson brackets.

To see that the quadratic Poisson bracket is natural, let ϕ : G → H be a homomorphism
of Lie algebras. Let OH = ϕOGϕ† : H∗ → H be the O-operator induced on H∗ by the
O-operator O = OG on G∗. Let Φ : Cu → Cq (5.20) be the corresponding homomorphism
of function rings:

Φ(u) = ϕ†(q). (6.12)

To show that the map Φ is Hamiltonian between the quadratic Poisson brackets on G∗

and H∗, we use Proposition 5.24. So, let H and F be two linear Hamiltonians in Cu:

H = Y tu, F = Ztu, Y ,Z ∈ G. (6.13)
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Then, by formulae (6.3) and (6.12),

Φ({H,F}G∗) ∼ Φ(〈Y .u,OG(Z .u)〉) = 〈Y .(ϕ†(q),OG(Z .ϕ†(q))〉
[by (4.15)]

= 〈ϕ†(ϕ(Y ).q),OGϕ†(ϕ(Z).q)〉 ∼ 〈ϕ(Y ).q, ϕOGϕ†(ϕ(Z).q)〉

= 〈ϕ(Y ).q,OH(ϕ(Z).q)〉 = 〈δΦ(H)
δq

.

q,OH
(
δΦ(F )
δq

.

q

)
〉 ∼ {Φ(H),Φ(F )}H∗ ,

(6.14)

where we used in the next to last equality in this chain the formula

δΦ(H)
δq

= ϕ(Y ),

which follows from the relations

Φ(H) = Φ(〈u,Y )〉) = 〈ϕ†(q),Y )〉 ∼ 〈q, ϕ(Y )〉.
What are the Casimirs of the quadratic bracket? Formula (6.4) shows that they are

precisely the solutions of the equation

O
(
δH

δu

.

u

).

u = 0. (6.15)

In particular, all “coadjoint invariants”, i.e., those H satisfying

δH

δu

.

u = 0, (6.16)

are Casimirs, so that, in finite dimensions, the symplectic leaves of the quadratic bracket
sit inside the coadjoint orbits. A better understanding of the symplectic leaves should be
interesting.

Let us now check the infinitesimal Hamiltonian action criterion for the quadratic
bracket. By Theorem 5.39, we have to verify the relation (5.34) for linear Hamiltoni-
ans H and F given by formula (6.13). Starting with the RHS of the criterion (5.34) and
using formulae (5.41) and (2.11), we obtain:

〈[H∼, F∼], X〉 = 〈[−Y .u,−Z .u], X〉
= 〈O(Y .u).(Z .u)−O(Z .u).(Y .u), X〉 = 〈O(Ȳ ).Z̄ −O(Z̄).Ȳ , X〉,

(6.17)

where we introduced the convenient notation

Ȳ = Y .u, Z̄ = Z .u. (6.18)

For LHS of the criterion (5.34) we use the form (5.44):

Zt(X∧(B)(Y ) + ZtB([X,Y ]) + [X,Z]tB(Y ) (6.19)

[by (6.4)]∼ Zt(O(Y .(X .u)).u+O(Y .u).(X .u))− [X,Y ]tO(Z .u).u+ [X,Z]tO(Y .u).u

[by (6.18), (6.22)]∼ 〈−Z .u,O(Y .(X .u))〉+ 〈X .u, [Z,O(Ȳ )]〉 (6.20)

+〈u, [O(Z̄), [X,Y ]]〉 − 〈u, [O(Ȳ ), [X,Z]]〉. (6.21)
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(We used above the obvious relation

Xt(Y .u) ∼ −Y t(X .u).) (6.22)

The 1st summand in the expression (6.20) can be transformed as

〈Y .(X .u),O(Z̄)〉 ∼ 〈u, [X, [Y,O(Z̄)]]〉, (6.23a)

while the second summand in (6.20) is ∼ to

−〈u, [X, [Z,O(Ȳ )]]〉. (6.23b)

Altogether, expression (6.21) and (6.23) add up to

〈u,−[Y, [O(Z̄), X]] + [Z, [O(Ȳ ), X]]〉 ∼ 〈O(Z̄).(Y .u)−O(Ȳ ).(Z .u), X〉, (6.24)

and this is the same as the expression (6.17).

Example 6.25. Let G = G(µ) be the Lie algebra (3.7),[(
X

f

)
,

(
Y

g

)]
=

(
XY ′ −X ′Y

(Xg − Y f + µ(X ′Y ′′ −X ′′Y ′))′

)
, (6.26)

and let O be the O-operator (3.12):

O =
(

0 1
−1 ε∂3

)
. (6.27)

By formula (3.14),(
X

f

).(u
p

)
=

(
Xu′ + 2X ′u− fp′ + µ(X ′p′)′′ + µ(X ′′p′)′

Xp′

)
. (6.28)

For H ∈ Cu,p, let(
X

f

)
=

(
δH/δu

δH/δp

)
. (6.29)

Then the motion equations for the Hamiltonian vector field XH , by formula (6.4), are(
u

p

)
t

= XH

(
u

p

)
= B(X) = B

(
δH/δu

δH/δp

)
= O

(
X .

(
u

p

)).(u
p

)

=
((

0 1
−1 ε∂3

) (
Xu′ + 2X ′u− fp′ + µ(X ′p′)′′ + µ(X ′′p′)′

Xp′

)). (u
p

)

=
(

Xp′

ε(Xp′)′′′ −Xu′ − 2X ′u− µ(X ′p′)′′ − µ(X ′′p′)′ + fp′

). (u
p

)

=



Xp′u′ + 2(Xp′)′u+ p′(−ε(Xp′)′′′ − fp′ +Xu′ + 2X ′u+ µ(X ′p′)′′

+µ(X ′′p′)′ + µ((Xp′)′p′)′′ + µ((Xp′)′′p′)′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Xp′2


 .

(6.30)
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Hence, the quadratic Hamiltonian matrix on G(µ∗ is

B =
( ∗ −p′2
p′2 0

)
, (6.31)

∗ = 2(p′u∂ + ∂p′u) + (4µ− ε)p′∂3p′ + µ(3p′′2 − 2p′p′′′)∂ + µ∂(3p′′2 − 2p′p′′′). (6.32)

This quadratic Hamiltonian matrix is compatible with the linear Hamiltonian matrix

Blin = −
( ∗∗ −p′
p′ 0

)
, (6.33a)

∗∗ = u∂ + ∂u+ µ
(
∂2p′∂ + ∂p′∂2

)
, (6.33b)

and both these Hamiltonian matrices are compatible with the constant-coefficient Hamil-
tonian matrix

O−1 =
(
ε∂3 −1
1 0

)
. (6.34)

For µ = ε = 0, formulate (6.31)–(6.34) have n-dimensional analogs. See Appendix A2.
We conclude this Section by calculating the quadratic Poisson bracket in finite dimen-

sions. Let (ei) be a basis in G, (ei) the dual basis in G∗, r =
∑
ij
rijei⊗ej ∈ G⊗2, rij = −rji,

the classical r-matrix, (ckij) the structure constants of G in the chosen basis. Then

O(ei) =
∑
s

esr
si, (6.35)

e·je
j = −

∑
s

cjise
s, (6.36)

{ui, uj} = 〈e·iu,O(e·ju)〉 =
∑
αβ

uαuβ〈e·ieα,O(e·jeβ)〉

=
∑
αβk�

uαuβc
α
ikc

β
j�〈ek,O(e�)〉 =

∑
αβk�

uαuβc
α
ikc

β
j�r

k�.
(6.37)

This is formula (28) in [11]. All other results of this Section had been established for the
finite-dimensional case in that paper.

7 Symplectic models for linear Poisson brackets
on dual spaces to Lie algebras

Let χ : G → Diff (V ) be a representation of a Lie algebra G on a vector space V . Let

∇ : V × V ∗ → G∗ (7.1)

be the map defined by the relation

〈v∇v∗, X〉 ∼ 〈v∗, χ(X)(v)〉, ∀ v ∈ V, v∗ ∈ V ∗, X ∈ G. (7.2)
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This map is then Hamiltonian, between the linear Poisson bracket on G∗ and symplectic
Poisson bracket on V ⊕V ∗. This was proven in [5] Ch. 8, where I called such maps Clebsch
representations. We shall see in the next Section that the same map (7.1) is Hamiltonian
between the quadratic Poisson bracket on G∗ defined in § 6 and some interesting quadratic
Poisson bracket on V ⊕ V ∗. In this Section we prepare the ground for the next one, by
fixing notation and quickly reproving the Hamiltonian property of the map ∇ (7.1) for
the linear Poisson bracket.

Let CM = Fun (V ⊕ V ∗) = R[x(σ)
α , p

(σ)
α ], α = 1, . . . ,dim(V ). Define the symplectic

Poisson bracket on CM by the matrix

b =
(
0 −1
1 0

)
, (7.3)

so that

{H,F} ∼
( δF

δx
δF
δp

)t

b

( δH
δx
δH
δp

)
= − δF

δxt
δH

δp
+

δF

δpt
δH

δx
. (7.4)

Let Φ : C∗
G → CM be the differential (-difference) homomorphism defined on the genera-

tors of the ring CG∗ = Cu = R[u(σ)
i ], i = 1, . . . ,dim(G), by the rule

Φ(u) = x∇p. (7.5)

To show that this map Φ is Hamiltonian, we appeal to Propositions 5.24, choose two linear
in u Hamiltonians

H = utY , F = utZ, Y ,Z ∈ G, (7.6)

and then have:

Φ({H,F}G∗) ∼ Φ(ut[Y ,Z]) = 〈x∇p, [Y ,Z]〉 ∼ 〈p, [Y ,Z].x〉, (7.7)

Φ(H) = Φ(utY ) = 〈x∇p,Y 〉 ∼ 〈p,Y .x〉 ∼ 〈−Y .p,x〉 (7.8)

⇒ δΦ(H)
δx

= −Y .p,
δΦ(H)
δp

= Y .x (7.9)

⇒ {Φ(H),Φ(F )}M [by (7.4)]∼ (Z .p)t(Y .x)− (Z.x)t(Y .p)

∼ 〈p,−Z.(Y .x)〉+ 〈p,Y .(Z.x)〉 = 〈p,−Z.(Y .x) + Y .(Z.x)〉
= 〈p, [Y ,Z].x〉,

(7.10)

and this is the same as the expression (7.7).

Remark 7.11. Strictly speaking, we are dealing here not with the full Clebsch represen-
tations, – which are Hamiltonian maps: Fun ((G�

χ
V ∗) → Fun (V ⊕ V ∗), – but only with

their G∗-components, in which the nontrivality of results resides; and in any case, this
component is the only one we need in this paper.
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8 Clebsch representations for quadratic Poisson brackets
on dual spaces to Lie algebras

For the linear Hamiltonian H,F ∈ CG∗ = Cu,

H = utY , F = utZ, (8.1)

The quadratic Poisson brackets (6.3) on G∗ yields:

{H,F}G∗ ∼ 〈Y .u,O(Z .u)〉. (8.2)

Therefore, the image under the map Φ : OG∗ → CM of the Poisson bracket {H,F}G∗ is:

Φ({H,F}G∗) ∼ 〈Y .(x∇p),O(Z .(x∇p))〉. (8.3)

On the other hand, by formula (7.9),

{Φ(H),Φ(F )}M ∼
(−Z .p

Z.x

)t (
Bxx Bxp

Bpx Bpp

) (−Y .p
Y .x

)
, (8.4)

where

B =
(
Bxx Bxp

Bpx Bpp

)
(8.5)

is the following quadratic Poisson bracket on V ⊕ V ∗:

({M tx,N tx} ∼) N tBxx(M) ∼ 〈x∇M ,O(x∇N)〉, (8.6a)

({M tp,N tx} ∼) N tBxp(M) ∼ −〈M∇p,O(x∇N)〉, (8.6b)

({M tx,N tp} ∼) N tBpx(M) ∼ −〈x∇M ,O(N∇p)〉, (8.6c)

({M tx,N tp} ∼) N tBpp(M) ∼ 〈M∇p,O(N∇p)〉, (8.6d)

The formulae (8.6b) and (8.6c) obviously agree with each other; the matrix B (8.5) is
thus skewsymmetric. In the next Section we shall verify that the corresponding quadratic
Poison bracket on V ⊕V ∗ satisfies the Jacobi identity and is compatible with the symplectic
Poisson bracket (7.4).

Let us check now that the map Φ : CG∗ → Cµ, Φ(u) = x∇p, is Hamiltonian. Writing
in long hand the expression (8.4) and using formulae (8.6), we get

{Φ(H),Φ(F )}M ∼ (−Z .p)tBxx(−Y .p) + (−Z .p)tBxp(Y .x)

+(Z.x)tBpx(−Y .p) + (Z.x)tBpp(Y .x)

∼ 〈x∇(Y .p),O(x∇(Z .p))〉+ 〈(Y .x)∇p,O(x∇(Z .p))〉
+〈x∇(Y .p),O((Z.x)∇p)〉+ 〈(Y .x)∇p,O((Z.x)∇p)〉
= 〈x∇(Y .p) + (Y .x)∇p,O(x(∇(Z.p) + (Z.x)∇p)〉
[by (8.8)]

= 〈Y .(x∇p),O(Z .(x∇p))〉 [by (8.3)]
= Φ({H,F})G∗ .
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Lemma 8.7.

X .(v∇v∗) = (X.v)∇v∗ + v∇(X .v∗), ∀ v ∈ V, v∗ ∈ V ∗, X ∈ G. (8.8)

Proof. For any L ∈ G, we have
〈X .(v∇v∗), L〉 ∼ 〈v∇v∗, [L,X]〉 ∼ 〈v∗, [L,X].v〉

= 〈v∗, L.(X.v)−X.(L.v)〉 ∼ 〈(X.v)∇v∗, L〉+ 〈v∇(X .v∗), L〉
= 〈(X.v)∇v∗ + v∇(X ·v∗), L〉.

Remark 8.8. Originally, Clebsch representation was discovered by Clebsch in vector
calculus on Rn, n = 2, 3, without any Lie-algebraic connections. The later are the results
of more recent developments, in 1980’s, and are summarized and developed in my book [6].
Since the publications of that book in 1992, there have been 2.5 other developments I’m
aware of. First, I found (in [8] § 6) quantum Clebsch representations for the linear Poisson
brackets on the dual spaces to finite-dimensional Lie algebras. Second, for the general
non-quantal case, the theory of Clebsch representations has been generalized into the
noncommutative realm in [10]. Finally, Dr. Morrison in [12] pp. 500–503 independently
published a simple version of some of the Clebsch representations results from [5], but in
a slightly different notation.

We conclude this Section by writing down explicit quadratic Poisson bracket formulae
on V ⊕ V ∗ for the case of finite dimensions. In the notation (6.35)–(6.37), let {�α} be a
basis in V , {�α} the dual basis in V ∗, and

χ(ei)(�α) =
∑
γ

χγiα�γ (8.9)

be the action formulae for the representation χ : G → End (V ). Then formuale (6.6) yieid

{xα, xβ} =
∑
stµν

rstχαsµχ
β
tνx

µxν , (8.10a)

{pα, xβ} = −
∑
stµν

rstχµsαχ
β
tνpµx

ν , (8.10b)

{pα, pβ} =
∑
stµν

rstχµsαχ
ν
tβpµpν . (8.10c)

The map Φ(u) = x∇p takes the form

Φ(us) =
∑
αβ

χβsαx
αpβ , (8.11)

and it is a Hamiltonian map between the quadratic Poisson bracket (6.37) on G∗,

{ui, uj} =
∑
stκ�

rstcκisc
�
jtuκu�, (8.12)

and the quadratic Poisson brackets (8.10) on V ⊕ V ∗.
From the results in the next Section it follows that the quadratic Poisson brackets

(8.10) on V ⊕ V ∗ satisfy the Jacobi identity and are compatible with the symplectic
Poisson bracket

{xα, pβ} = δαβ , {xα, xβ} = {pα, pβ} = 0. (8.13)

Finite-dimensional formulae (8.10) can be found in Zakrzewski’s paper [15].
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9 Properties of the quadratic Poisson brackets on V ⊕ V ∗

In this Section we prove that: 1) the quadratic Poisson bracket (8.6) on Fun (V ⊕ V ∗),
induced by an O-operator O : G∗ → G and a representation χ : G → Diff (V ), is legitimate,
i.e., it satisfies the Jacobi identity; 2) this quadratic Poisson bracket is compatible with
the symplectic one; 3) the natural action of G on Fun (V ⊕ V ∗) satisfies the infinitesimal
Hamiltonian action criterion (5.34) for this quadratic Poisson bracket.

Proposition 9.1. The quadratic Poisson brackets (8.6) on Fun (V ⊕V ∗) satisfy the Jacobi
identity.

Proof. By the main Theorem of the Hamiltonian formalism, we have to verify that

{{H,F}, G}+ c.p. ∼ 0 (9.2)

for all Hamiltonians H, F , G linear in the x’s and the p’s. We break the verification
procedure into 4 cases indexed by the number of the p’s involved in H, F , G: zero, one,
two, or three.
Case zero:

H = Xtx, F = Y tx, G = Ztx, (9.3)

where, as understood throughout this paper, X, Y , Z are arbitrary vectors with entries
in R (or R̃ ⊃ R). By formula (8.6a),

{H,F} ∼ 〈x∇X,O(x∇Y )〉. (9.4)

Denoting temporarily

X̄ = x∇X, ¯̄X = O(X̄), (9.5)

we get from formula (9.4) and the relations

〈x∇X, ¯̄Y 〉 ∼ 〈X, ¯̄Y .x〉 ∼ −〈 ¯̄Y ·X,x〉 (9.6)

that
δ

δx
({H,F}) ∼ − ¯̄Y ·X + ¯̄X ·Y . (9.7)

Therefore, by formula (8.6a) again,

{{H,F}, G} ∼ ZtBxx( ¯̄X ·Y − ¯̄Y ·X) ∼ 〈x∇( ¯̄X ·Y − ¯̄Y ·X), ¯̄Z〉, (9.8)

so that

{{H,F}, G}+ c.p. ∼ (〈x∇( ¯̄X ·Y ), ¯̄Z〉+ c.p.)− (〈x∇( ¯̄Y ·X), ¯̄Z〉+ c.p.)

= (〈x∇( ¯̄X ·Y ), ¯̄Z〉+ c.p.)− (〈x∇(¯̄Z ·Y ), ¯̄X〉+ c.p.)

= (〈x∇( ¯̄X ·Y ), ¯̄Z〉 − 〈x∇(¯̄Z ·Y ), ¯̄X〉) + c.p.

∼ 〈−¯̄Z ·( ¯̄X ·Y ) + ¯̄X ·(¯̄Z ·Y ),x〉+ c.p. = 〈[ ¯̄X, ¯̄Z]·Y ,x〉+ c.p.

∼ 〈x∇Y , [¯̄Z, ¯̄X])〉+ c.p. = 〈 ¯̄Y , [O(¯̄Z),O( ¯̄X)]〉+ c.p. ∼ 0

by formula (2.6);
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Case one:

H = Xtx, F = Y tx, G = Ztp. (9.9)

By formulae (9.7) and (8.6c),

{{H,F}, G} ∼ ZtBpx( ¯̄X ·Y − ¯̄Y ·X) ∼ −〈x∇( ¯̄X ·Y − ¯̄Y ·X),O(Z∇p)〉. (9.10)

On the other hand,

{F,G} ∼ ZtBpx(Y ) ∼ −〈x∇Y ,O(Z∇p)〉 ∼ 〈O(Z∇p)·Y ,x〉 ∼ 〈p, ¯̄Y .Z〉.
Thus, in the notation

Z = Z∇p, Z = O(Z),

we have

δ

δx
({F,G}) = Z ·Y ,

δ

δp
({F,G}) = ¯̄Y .Z. (9.11)

Therefore, by formulae (8.6a,b),

{{F,G}, H} ∼ Xt[Bxx(Z ·Y ) +Bxp( ¯̄Y .Z)]

∼ 〈x∇(ZY ), ¯̄X〉 − 〈( ¯̄Y .Z)∇p, ¯̄X〉. (9.12)

Interchanging X and Y in formula (9.12), we obtain

{{G,H}, F} ∼ −{{H,G}, F}

∼ −〈x∇(Z ·X), ¯̄Y 〉+ 〈( ¯̄X ·Z)∇p, ¯̄Y 〉. (9.13)

The 2nd summands in the expressions (9.12) and (9.13) combine into

〈p,− ¯̄X.( ¯̄Y .Z) + ¯̄Y .( ¯̄X.Z)〉 = 〈p, [ ¯̄Y , ¯̄X].Z〉

∼ 〈Z∇p, [O(Y ),O(X)]〉 [by (2.10)]
= 〈Z,O( ¯̄Y ·X̄ − ¯̄X ·Ȳ )〉

∼ −〈 ¯̄Y ·X̄ − ¯̄X ·Y, Z〉, (9.14)

while the 1st summands in the expressions (9.12) and (9.13) combine into

〈Z ·Y , X.x〉 − 〈Z ·x, Y .x〉 ∼ −〈Y , Z.(X.x)〉+ 〈X, Z.(Y .x)〉

∼ −〈( ¯̄X.x)∇Y + ( ¯̄Y .x)∇X, ¯̄Z〉. (9.15)

We see that the sum total of the expressions (9.10), (9.14), and (9.15) is ∼ 0 provided

−x∇( ¯̄X ·Y − ¯̄Y ·X)− ¯̄Y ·X̄ + ¯̄X ·Ȳ − (X.x)∇Y + (Y .x)∇X = 0,

and this is so by formulae (8.8) and (9.5);
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Cases two and three follow from cases one and zero, respectively, once we notice that
the quadratic Poisson bracket formulae (8.6) allow the symmetry

x  → p, p  → x, χ  → χd, (9.16)

where χd : G  → Diff (V ∗) is the dual representation,

χd(X) = −χ(X)†, ∀ X ∈ G. (9.17)

This symmetry becomes obvious if we use the relation

a∇b = −b∇
d
a (9.18)

where ∇
d
product is taken w.r.t. the dual representation χd:

〈a∇b,X〉 ∼ 〈b,X.a〉 ∼ 〈−X ·b, a〉 = 〈a,−X ·b〉 ∼ 〈−b∇
d
a,X〉, ∀ X ∈ G. (9.19)

Formulae (8.6a) and (8.6d) are interchanged under the symmetry (9.16), as are formulae
(8.6b) and (8.6c).

Proposition 9.20. The quadratic Poisson bracket (8.6) on V ⊕ V ∗ and the symplectic
bracket (7.4) are compatible.

Proof. We have to verify that

({{H,F}1, G}2 + {{H,F}2, G}1) + c.p. ∼ 0 (9.21)

for all H, F , G linear in x, p, where { , }1 denotes the symplectic Poisson bracket and
{ , }2 denotes the quadratic one. This is obviously true for H, F , G linear in x; and also
for H, F , G linear in p.
Case one:

H = Xtx, F = Y tx, G = Ztp. (9.22)

We have

{H,F}1 = 0, {F,G}1 ∼ −Y tZ, {G,H}1 ∼ ZtX.

Thus,

{{( · ), (··)}1, (· · ·)}2 = 0.

Now, by formula (9.7),

δ{H,F}
δx

= ¯̄X ·Y − ¯̄Y ·X, (9.23)

so that, by formulae (7.4),

{{H,F}2, G}1 ∼ −Zt( ¯̄X ·Y − ¯̄Y ·X) ∼ Y t( ¯̄X.Z)− Xt( ¯̄Y .Z). (9.24)

Next, by formula (9.11),

δ{F,G}2
δp

= ¯̄Y .Z,
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so that

{{F,G}2, H}1 ∼ Xt( ¯̄Y .Z). (9.25a)

Interchanging X and Y in the formula (9.25a), we obtain

{{G,H}2, F}1 ∼ −{{H,G}2, F}1 ∼ −Y t( ¯̄X.Z). (9.25b)

Adding up the expression (9.24)–(9.26) we get zero.
Case two follows from the already established case one (9.22) by the application of the
symmetry (9.16) accompanied by the replacement of the symplectic matrix b (7.3) by −b,
– which doesn’t affect the validity of the case one arguments.

Remark 9.26. The Proof of Proposition 9.1 could be reduced to only the case zero upon
noticing that formulae (8.6b–d) are particular instances of the basic formula (8.6a) applied
to the representation χnew = χ⊕ χd on V new = V ⊕ V ∗.

Proposition 9.27. The natural (anti) action of G on CM = Fun (V ⊕ V ∗),

X∧(x) = X.x, X∧(p) = X ·p, (9.28)

satisfies the criterion (5.34) of infinitesimal Hamiltonian action w.r.t. the quadratic Pois-
son bracket (8.6) on V ⊕ V ∗.

Proof. We shall check formula (5.34) for the linear Hamiltonians H, F . We break this
check into 3 cases, depending upon how many p’s are present among H and F .
Case zero:

H = Y tx, F = Ztx. (9.29)

We have, by formula (8.6a):

X∧({H,F}) ∼ X∧(〈x∇Y ,O(x∇Z)〉)
= 〈(X.x)∇Y ,O(x∇Z)〉+ 〈x∇Y ,O((X.x)∇Z)〉,

(9.30)

−{X∧(H), F} ∼ −{Y t(X.x),Ztx} ∼ 〈x∇(X ·Y ),O(x∇Z)〉, (9.31)

−{H,X∧(F )} = −{Y tx,Zt(X.x)} ∼ 〈x∇Y ,O((X.x)∇Z)〉. (9.32)

Adding up the expressions (9.30)–(9.32) and using formula (8.8), we find

X∧({H,F})− {X∧(H), F} − {H,X∧(F )}
∼ 〈X ·(x∇Y ),O(x∇Z)〉+ 〈x∇Y ,O(X ·(x∇Z))〉.

(9.33)

On the other hand, formulae (9.28) imply that

X∧(Y tx) = Y t(X.x) ∼ 〈x∇Y , X〉, (9.34a)

X∧(Y tp) = Y t(X ·p) ∼ 〈−Y ∇p, X〉, (9.34b)

so that

(Y tx)∼ = x∇Y , (Y tp)∼ = −Y ∇p. (9.35)
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Therefore,

〈[H∼, F∼], X) = 〈[x∇Y ,x∇Z], X〉
[by (2.11) ]

= 〈O(x∇Y ).(x∇Z)−O(x∇Z).(x∇Y ), X〉
∼ 〈−X .(x∇Z),O(x∇Y )〉+ 〈X ·(x∇Y ),O(x∇Z)〉,

(9.36)

and this expression is ∼ to (9.33) since O is skewsymmetric.
Case one:

H = Y tp, F = Ztx. (9.37)

We have, by formula (8.6b):

X∧({H,F}) ∼ X∧(−〈Y ∇p,O(x∇Z)〉)
= −〈Y ∇(X ·p),O(x∇Z)〉 − 〈Y ∇p,O((X.x)∇Z)〉,

(9.38)

−{X∧(H), F} = −{Y t(X ·p),Ztx}
∼ {(X.Y )tp,Ztx} ∼ −〈(X.Y )∇p,O(x∇Z)〉,

(9.39)

−{H,X∧(F )} = −{Y tp,Zt(X.x)}
∼ {Y tp, (X .Z)tx} ∼ −〈Y ∇p,O(x∇(X ·Z))〉.

(9.40)

Adding the expressions (9.38)–(9.40) up and using formula (8.8), we find

X∧({H,F})− {X∧(H), F} − {H,X∧(F )}
∼ −〈Y ∇p,O(X ·(x∇Z))〉 − 〈X ·(Y ∇p),O(x∇Z)〉.

(9.41)

On the other hand, by formulae (9.35) and (2.11),

〈[H∼, F∼], X〉 = −〈[Y ∇p,x∇Z], X〉 = −〈O(Y ∇p).(x∇Z), X〉
+〈O(x∇Z).(Y ∇p), X〉 ∼ 〈X ·(x∇Z),O(Y ∇p)〉 − 〈X ·(Y ∇p),O(x∇Z)〉,

(9.42)

and this is ∼ to the expression (9.41) because O is skewsymmetric.
Case two follows from the case zero and the symmetry property (9.16).

Appendix A1. Crossed Lie algebras

Let G be a Hamilton-Lie group, i.e., a Lie group with a multiplicative Poisson bracket on
it. The infinitesimal version of this object is a Lie bialgebra, i.e., a Lie bracket [ , ] on G∗

whose dual, considered as a map ϕ : G → ∧2G, is 1-cocycle on G. Drinfel’d noticed in [2]
that the 1-cocycle condition can be reformated in such a way as to make the self-duality
of the notion of Lie bialgebra explicit, as follows. Since G is a Lie algebra, it acts on its
dual space, G∗. Consider the following skew multiplication on the space G + G∗:[(

X
u

)
,

(
Y
v

)]
=

(
[X,Y ] + u·Y − v·X
[u, v] +X ·v − Y ·u

)
, X, Y ∈ G, u, v ∈ G∗. (A1.1)
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The Drinfel’d observation mentioned above is that the bracket (A1.1) satisfies the Jacobi
identity iff ϕ : G → ∧2G is a 1-cocycle on G (see [1] p. 27). Let us find the form of
the condition, originally written down by Drinfel’d in [2] for the finite-dimensional case,
equivalent to formula (A1.1) defining a Lie algebra.

For the G-component of the expression[[ (
X
u

)
,

(
Y
v

)]
,

(
Z
w

) ]
+ c.p. =

[(
[X,Y ] + u·Y − v·X
[u, v] +X ·v − Y ·u

)
,

(
Z
w

)]
+ c.p. (A1.2)

we get:

([[X,Y ], Z] + c.p.) + ([u·Y − v·X,Z] + c.p.) + ([u, v]·Z + c.p.) (A1.3a)

+([X ·v − Y ·u)·Z − w·[X,Y ] + c.p.)− (w·(u·Y − v·X) + c.p.). (A1.3b)

The first summand vanishes by the Jacobi identity in G. The 3rd and 5th summands
combine into

[w, u]·Y − w·(u·Y ) + u·(w·Y ) + c.p.

and this vanishes because the action of G∗ on G is a representation of the Lie algebra
structure on G∗. This leaves us with 2nd and 4th summands, which combine into

[u·Y, Z]− [u·Z, Y ] + (Z ·u)·Y − (Y ·u)·Z − u·[Y, Z] = 0. (A1.4)

This is an equation in G. Let us calculate the value 〈v, LHS〉 for an arbitrary element
v ∈ G∗. Term-by-term, we find:

(v, [u·Y, Z]〉 ∼ 〈Z ·v, u·Y 〉, (A1.5a)

〈v,−[u·Z, Y ]〉 ∼ −〈Y ·v, u·Z〉, (A1.5b)

〈v, (Z ·u)·Y 〉 ∼ 〈[v, Z ·u], Y 〉 ∼ −〈Z ·u, v·Y 〉, (A1.5c)

〈v,−(Y ·u)·Z〉 ∼ 〈[Y ·u, v], Z〉 ∼ −〈Y ·u, v·Z〉, (A1.5d)

〈v,−u·[Y, Z]〉 ∼ 〈[u, v], [Y, Z]〉. (A1.5e)

Adding the expressions (A1.5) up, we arrive at the following quadrilinear relation equiva-
lent to the trilinear equation (A1.4):

〈[u, v], [Y, Z]〉 ∼ 〈Z ·v, u·Y 〉+ 〈Y ·u, v·Z〉 − 〈Y ·v, u·Z〉 − 〈Z ·u, v·Y 〉,
∀ Y, Z ∈ G, ∀ u, v ∈ G∗.

(A1.6)

In this form, the symmetry between G and G∗ is apparent. We don’t have to analyze the
G∗-component of the double-commutator (A1.2).

Remark A1.7. In finite dimenions, the commutator (A1.1) leaves the natural scalar
product on G + G∗:((

X

u

)
,

(
Y

v

))
= 〈u, Y 〉+ 〈v,X〉, (A1.8)



482 B.A. Kupershmidt

ad-invariant:([(
X

u

)
,

(
Y

v

)]
,

(
Z

w

))
=

((
X

u

)
,

[(
Y

v

)
,

(
Z

w

)])
. (A1.9)

This ad-invariance is still true in infinite dimensions, provided it is properly understood:([(
X

u

)
,

(
Y

v

)]
,

(
Z

w

))
∼

((
X

u

)
,

[(
Y

v

)
,

(
Z

w

)])
. (A1.10)

Indeed, for the LHS of (A1.10) we get((
[X,Y ] + u·Y − v·X
[u, v] +X ·v − Y ·u

)
,

(
Z

w

))

= 〈[u, v] +X ·u− Y ·u, Z〉+ 〈w, [X,Y ] + u·Y − v·X〉
∼ 〈u, v·Z〉 − 〈Z ·v,X〉+ 〈u, [Y, Z]〉+ 〈Y ·w,X〉 − 〈u,w·Y 〉+ 〈[v, w], X〉
= 〈u, v·Z + [Y, Z]− w·Y 〉+ 〈−Z ·v + Y ·w + [v, w], X〉

=
((

X

u

)
,

(
[Y, Z] + v·Z − w·Y
[v, w] + Y ·w − Z ·v

))
,

and this is the RHS of (A1.10).
Let us check that when the commutator on G∗ is given by the formula (2.11),

[u, v] = O(u)·v −O(v)·u, (A1.11)

where O : G∗ → G is a skewsymmetric O-operator, then O + O∗ (A1.1) is a Lie algebra.
Let us check the criterion (A1.4).

Lemma A1.12.

u·X = [O(u), X] +O(X ·u), ∀ u ∈ G∗, X ∈ G. (A1.13)

Proof. For any v ∈ G∗,

〈v, u·X〉 ∼ 〈[v, u], X〉 = 〈O(v)·u−O(u)·v,X〉 ∼ 〈u, [X,O(v)]〉+ 〈v, [O(u), X]〉
∼ −〈X ·u,O(v)〉+ 〈v, [O(u), X]〉 ∼ 〈v,O(X ·u)〉+ 〈v, [O(u), X]〉.

Using formula (A1.13), we transform each of the 5 summands in the LHS of the criterion
(A1.4):

1) [u·Y, Z] = [[O(u), Y ], Z] + [O(Y ·u), Z], (A1.14)

2) − [u·Z, Y ] = −[[O(u), Z], Y ]− [O(Z ·u), Y ], (A1.15)

3) (Z ·u)·Y = [O(Z ·u), Y ] +O(Y ·(Z ·u)), (A1.16)

4) − (Y ·u)·Z = −[O(Y ·u), Z]−O(Z ·(Y ·u)), (A1.17)

5) − u·[Y, Z] = −[O(u), [Y, Z]]−O([Y, Z]·u). (A1.18)
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The 2nd summands in the expressions (A1.16)–(A1.18) add up to zero; the 1st summands in
the expressions (A1.14), (A1.15), (A1.18) do likewise; the 2nd summand in the expression
(A1.14+�) and the 1st summand in the expression (A1.17−�), � = 0, 1, cancel each other
out.

We conclude this Section by examining when the symplectic form on G + G∗:

ω

((
X

u

)
,

(
Y

v

))
= 〈u, Y 〉 − 〈v,X〉 (A1.19)

is a 2-cocycle on the Lie algebra G + G∗ (A1.1). We have:

ω

([(
X

u

)
,

(
Y

v

)]
,

(
Z

w

))
+ c.p. = ω

((
[X,Y ] + u·Y − v·X
[u, v] +X ·v − Y ·u

)
,

(
Z

w

))
+ c.p.

= (〈[u, v] +X ·v − Y ·u, Z〉+ c.p.)− (〈w, [X,Y ] + u·Y − v·X〉+ c.p.)

= (〈[u, v], Z〉 − 〈u, v·Z〉+ 〈v, u·Z〉) + c.p. (A1.20)

+(〈Y ·w,X〉 − 〈X ·w, Y 〉 − 〈w, [X,Y ]〉) + c.p. (A1.21)

Thus, the symplectic form (A1.19) is a 2-cocycle iff

〈[u, v], Z〉 − 〈u, v·Z〉+ 〈v, u·Z〉 ∼ 0, ∀ u, v ∈ G∗, Z ∈ G, (A1.22)

〈Y ·w,X〉 − 〈X ·w, Y 〉 − 〈w, [X,Y ]〉 ∼ 0, ∀ X,Y ∈ G, w ∈ G∗. (A1.23)

This happens iff, respectively,

[u, v] = 0, ∀ u, v ∈ G∗, (A1.24)

[X,Y ] = 0, ∀X,Y ∈ G, (A1.25)

which is this side of “never”. The next Section provides a remedy of sorts.

Appendix A2. Symplectic r-matrices and symplectic doubles

Let G be a Lie algebra and ρ : G → Diff (G∗) a representation, not necessarily the coadjoint
one. Let H := G � G∗ = G �

ρ
G∗ be the semidirect sum Lie algebra, with the commutator

[(
X

u

)
,

(
Y

v

)]
=

(
[X,Y ]

ρ(X)(v)− ρ(Y )(u)

)
. X, Y ∈ G, u, v ∈ G∗. (A2.1)

Lew ω be the symplectic form on H = G � G∗:

ω

((
X

u

)
,

(
Y

v

))
= 〈u, Y 〉 − 〈v,X〉. (A2.2)

Proposition A2.3. The symplectic form ω (A2.2) is a 2-cocycle on the Lie algebra
G �

ρ
G∗ if f the dual representation ρd : G → Diff (G) satisf ies the property

ρd(X)(Y )− ρd(Y )(X) = [X,Y ], ∀ X,Y ∈ G. (A2.4)
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Proof. We have,

ω

([(
X

u

)
,

(
Y

v

)]
,

(
Z

w

))
+ c.p. = ω

((
[X,Y ]

ρ(X)(v)− ρ(Y )(u)

)
,

(
Z

w

))
+ c.p.

= (〈ρ(X)(v)− ρ(Y )(u), Z〉 − 〈w, [X,Y ]〉) + c.p.

= (〈ρ(Y )(w), X〉 − 〈ρ(X)(w), Y 〉 − 〈w, [X,Y ]〉) + c.p.

(A2.5)

Thus, ω is a 2-cocycle iff

〈ρ(Y )(w), X〉 − 〈ρ(X)(w), Y 〉 ∼ 〈w, [X,Y ]〉, ∀ X,Y ∈ G, w ∈ G∗. (A2.6)

Rewriting the LHS of this relation as

〈w,−ρd(Y )(X)〉+ 〈w, ρd(X)(Y )〉,
we arrive at the equivalent to (A2.6) equation (A2.4).

Assuming from now on that a representation ρd : G → Diff (G) satisfying (A2.4) is
fixed, denote by

xy = ρd(x)(y) (A2.7)

the resulting multiplication G × G → G. Since ρd is a representation,

ρd([x, y]) = [ρd(x), ρd(y)], ∀ x, y ∈ G. (A2.8)

Applying this operator identity to an element z ∈ G, we get
(xy − yx)z = x(yz)− y(xz), (A2.9)

or

(xy)z − x(yz) = (yx)z − y(xz), ∀ x, y, z ∈ G. (A2.10)

Thus, G is a quasiassociative algebra , and T ∗G := G �

ρ
G∗ (A2.1) is a proper phase space

of G, meaning that the symplectic form ω is a 2-cocycle on T ∗G. This explains the appear-
ance of quasiassociative algebras in [7, 9]. There are many examples of quasiassociative
algebras given in [7, 9] (in addition to obvious ones coming from associative algebras)
such as Lie algebras of vector fields on Rn [7] and on GL(n) [9]. We shall now use the
former example Dn = D(Rn) = {X ∈ Rn, R = C∞(Rn)}, with the quasiassociative
multiplication

(XY )i =
∑
s

XsY,is (A2.11)

where

( · ),s= ∂s( · ) = ∂( · )
∂xs

. (A2.12)

The quasiassociative property (A2.10) is satisfied because

(X(Y Z)− (XY )Z)i =
∑
st

XsY tZ,ist (A2.13)

is symmetric in X, Y .
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Now, formula (A2.11) means that

ρd(X) = X̂1, X̂ =
∑
s

Xs∂s. (A2.14)

Therefore, ρ(X) = −ρd(X)† is:

ρ(X) =

(∑
s

∂sX
s

)
1. (A2.15)

Hence, the Lie bracket on the Lie algebra D(1)
n = Dn � D∗

n is

[(
X

u

)
,

(
Y

v

)]i
i

=
∑
s

(
XsY,is−Y sX,is
(Xsvi − Y sui),s

)
. (A2.16)

By general theory, since the symplectic form ω (A2.2) is a nondegenerate 2-cocycle on
G(1) = G � G∗, it can be represented by an O-opertor O : G(1)∗ → G(1). Writing elements
of G(1) as

(
α
a

)
, α ∈ G∗, a ∈ G, we see from formulae (A2.2) and (2.3) that

−ω
((

X

u

)
,

(
Y

v

))
= 〈O−1

(
X

u

)
,

(
Y

v

)
〉 = −〈u, Y 〉+ 〈v,X〉, (A2.17)

whence

O−1

(
X

u

)
=

(−u
X

)
, (A2.18)

so that

O−1 =
(
0 −1
1 0

)
, (A2.19)

and hence

O =
(

0 1
−1 0

)
. (A2.20)

The resulting Lie algebra bracket (2.11) on G(1)∗ takes the form[(
α

a

)
,

(
β

b

)]
=

(
a

−α
)·(β

b

)
−

(
b

−β
)·(α

a

)

[by (A2.23)]
=

(
aβ − βa− αb

ab

)
−

(
bα− αb− βa

ba

)
=

(
aβ − bα
[a, b]

)
.

(A2.21)

Lemma A2.22. In G(1)∗, the coadjoint action formulae is(
X

u

)·(α
a

)
=

(
Xα− αX + ua

Xa

)
, X, a ∈ G, u, α ∈ G∗. (A2.23)

(The new notation is explained in formulae (A2.25) below.)
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Proof. We have,

〈
(
X

u

)·(α
a

)
,

(
Y

v

)
〉 ∼ −〈

(
α

a

)
,

[(
X

u

)
,

(
Y

v

)]
〉 = −〈

(
α

a

)
,

(
[X,Y ]

ρ(X)(v)− ρ(Y )(u)

)
〉

= −〈α, [X,Y ]〉 − 〈ρ(X)(v)− ρ(Y )(u), a〉
∼ 〈X .α, Y 〉 − 〈v, ρ(X)†(a)〉+ 〈u, ρ(Y )†(a)〉 = 〈X .α, Y 〉+ 〈v,Xa〉 − 〈u, Y a〉.

(A2.24)

Let us define the left and right multiplication of G on G∗ by the relations

〈Xu, Y 〉 ∼ −〈u,XY 〉, ∀ u ∈ G∗, X, Y ∈ G, (A2.25a)

〈uX, Y 〉 ∼ 〈u, Y X〉, ∀ u ∈ G∗, X, Y ∈ G. (A2.26b)

Then

〈X .u, Y 〉 ∼ 〈u, [Y,X]〉 = 〈u, Y X −XY 〉 ∼ 〈−uX +Xu, Y 〉, (A2.26)

so that

X .u = Xu− uX. (A2.27)

Substituting formulae (A2.25b, (A2.27) into formula (A2.24), we get

〈Xα− αX + ua, Y 〉+ 〈v,Xa〉, (A2.28)

and formula (A2.23) results.
Now, formula (A2.25a) yields

〈Xu, Y 〉 ∼ −〈u,XY 〉 = −〈u, ρd(X)(Y )〉
= −〈u,−ρ(X)†(Y )〉 ∼ 〈ρ(X)(u), Y 〉,

(A2.29)

so that

Xu = ρ(X)(u). (A2.30)

Formula (A2.21) can be now rewritten as[(
α

a

)
,

(
β

b

)]
=

(
ρ(a)(β)− ρ(b)(α)

[a, b]

)
. (A2.31)

We see that the Lie algebra structure on G(1)∗ is the same as on G(1). This explains, –
and provides an n-dimensional generalization of, – formula (3.17) for the case ε = µ = 0.
(Formula (A2.16) is an n-dimensional analog of formula (3.7).)

We conclude by defining the notion of a symplectic double of the Lie algebra G(1) =
G�G∗ for a quasiassociative G. It is different from the Drinfel’d’s classical double, G+G∗,
discussed in the previous Section.

So, let A be a quasiassociative ring and G = Lie (A). Define T ∗A by the formula [7](
a

a∗

)(
b

b∗

)
=

(
ab

ab∗

)
, a, b ∈ A, a∗, b∗ ∈ A∗, (A2.32)
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where the product ab∗ is defined by formula (A2.25a). Notice, that a∗b = 0 in formula
(A2.32), in contrast to the previous definition (A2.25b).

Proposition A2.33. T ∗A (A2.32) is again a quasiassociative algebra.

Proof. We have:((
a

a∗

)(
b

b∗

)) (
c

c∗

)
−

(
a

a∗

) ((
b

b∗

)(
c

c∗

))

=
(
ab

ab∗

)(
c

c∗

)
−

(
a

a∗

)(
bc

bc∗

)
=

(
(ab)c− a(bc)
(ab)c∗ − a(bc∗)

)
.

(A2.34)

Thus, we need to show that

(ab)c∗ − a(bc∗) = (ba)c∗ − b(ac∗). (A2.35)

We have, ∀ d ∈ A:

〈(ab)c∗ − a(bc∗), d〉 ∼ 〈c∗,−(ab)d〉+ 〈bc∗, ad〉 ∼ 〈c∗,−(ab)d− b(ad)〉. (A2.36)

But

(ab)d+ b(ad) = (ba)d+ a(bd) (A2.37)

by formula (A2.9).
Since Lie (T ∗A) = Lie (A) � [Lie (A)]∗:[(

a

a∗

)
,

(
b

b∗

)]
=

(
a

a∗

)(
b

b∗

)
−

(
b

b∗

)(
a

a∗

)
=

(
ab− ba

ab∗ − ba∗

)
, (A2.38)

we can construct a symplectic 2-cocycle, – and thus an O-opertor, – starting with G(1) =
G � G∗ rather than G. This process can be continued indefinitely. It is natural to call the
Lie algebra G(1)

� G(1)∗ the symplectic double of the Lie algebra G(1) = G � G∗; thus, G(1)

is the symplectic double of G. According to results of § 6, the space Fun (G(1)∗) carries
three compatible Hamiltonian structures: symplectic, linear, and quadratic.
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