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Abstract—This article is concerned with the estimation of a 
varying-coefficient regression model when the explanatory 
variables are measured with additive errors and the response 
variable is sometimes missing. Estimated coefficient function in 
complete observational data and interpolation data 
respectively, and all the proposed estimators for the coefficient 
function are proved to be asymptotic normality. Finally, a 
simulation study is conducted to compare the proposed 
estimators. 
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I. INTRODUCTION 
The form of varying coefficient models is: 

( )TY X Uβ ε= +               (1.1)  
where Y is the response variable,and X is U the 

explanatory variables, we assume that 
( ) ( ( ), , ( ))1

T
pβ β β⋅ = ⋅ ⋅L is a p-dimensional function of 

unknown coefficients, U is a single variable, ε  is a 
random statistical error with   

[ , ] 0E X Uε = and 2[ , ]Var X Uε σ= . 
Since Hastie and Tibshirani(1993) proposed the varying 

coefficient regression models, it had been developing rapidly 
and applied widely in many fields because of their flexibility 
and adaptability, such as, Fan, and Zhang(1999), Chiang, 
Rice and Wu(2001), Huang, Wu and Zhou(2002), Hoover , 
Wu, and Yang(1998), and Wu, Chiang, and Hoover(1998). 
But most of their attentions and works focused on the case 
where all variables with no missing data or measurement 
error, so it will be a meaningful thing for studying 
varying-coefficient errors-in-variables models with missing 
response variables. 

Based on the profile least square technology and the 
correction technique, Wei(2010) developed some approaches 
of estimating β and ( )xα for partially linear models in 
complete observational data, interpolation data, and the 
surrogate data respectively, finally, proved the asymptotic 
normality of β and ( )xα .Wei(2011) studied coefficient 
function's estimation for varying-coefficient errors-in-variab 

-les models with missing response variables, and proved 
its asymptotic normality. 

In this paper, based on Wei(2010,2011), suppose we 
obtain a random sample of incomplete data ( ){ , , ,1X Y ii i iδ ≤ ≤  

}n≤ from model(1.1), where 0iδ = if Yi is missing 
and 1iδ = otherwise. Namely, the missing data mechanism 
is ( 1 , , ) ( 1 , ) ( , )pr Y X U pr X U X Ui i i i i i i iiδ δ π= = = = .Throughout 
this paper, we assume that Y may be missing and X is 
observed completely, the explanatory variables have 
measurement errors, namely,V X ξ= + , where ( , , )T TX U δ and  
ξ are independent, [ , ]Var X Uξ ξ=Σ and [ , ] 0E X Uξ = . We 
assumed ξΣ is known, if the covariance matrix is unknown, it 
can be estimated using repeated measures data X . Next, by 
using local linear least square method, the correction 
technique and the interpolation method, we estimated 
coefficient functions in the complete data and interpolation 
data, and the estimated asymptotic normality are proved.  

II. THE ESTIMATION METHODS  

A. Complete Observation data Estimation Method 
For the regression model with missing response 

variables, a simple and direct  research method is complete 
data method(There is no missing part of the complete 
observation response variables for statistical inference ), that 
is observation data corresponding to 1iδ = , there are 

( ) , 1, ,TY X U i ni i i i i i iδ δ β δ ε= + = L       (2.1) 

where ( , , ) 1
nY X Ui i i i= is a independent identically 

distributed sample from model (1.1), we use a local linear 
least square method to estimate the coefficient 
function ( )( 1, , )u j pjβ = L , 

for every ( )ujβ , it has a continuous second derivative, 
then, ( )ujβ can be approximate locally at ( )0ujβ  by a 
linear function: 

( ) ( ) ( )( ) ( ),( 1, , )0 0 0 0u u u u u a b u u j pj j j j jβ β β′≈ + − ≡ + − = L  
( )0ujβ , ( )0ujβ′ can be estimated by minimizing 

2[ { ( )} ] ( )0 0
1 1

n p
Y a b U u X K U ui j j i ij h i ii j

δ∑ − + − −∑
= =

    (2.2) 

where, ( )K ⋅ is a kernel function, h is a bandwidth, 
( ) ( )K K h hh ⋅ = ⋅ . 
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Let 0( ) ( ( ) , ( ) ) , ( , )0 0 0
U uT T T T T Tiu u h u X Xj j i i ih

θ β β η −′= = ,

we can get the following equation on the basis of (2.2) 
1

0 { ( ); , , }1 0
1

n
u Y X Ui i i in i

φ θ∑=
=

 

1
( )( ( ) )0 0

1

n TK U u u Yi h i i i iin i
δ η η θ η∑= − −

=
        (2.3) 

because Xi is not accurate observation, if ignored the 
error of measurement, we replace Xi withVi , it is easy to 
prove the estimates obtained is not consistent, therefore we 
remember: 

( , , ) ( ) , ( , , ) ( )T T TE V V X U Y E X X E V Y X U Y E X Yi i i i i i i i i i ii i iξ= +Σ =

   Based on the correction technique, then we can get the 
following correction estimation equation: 

1
0 { ( ); , , }1 0

1

n
u Y X Ui i i in i

φ θ∗∑=
=

 

1
( ){( ) ( ) }0 0

1

n TK U u u Yi h i i i i iin i
δ η η γ θ η∗ ∗ ∗∑= − − −

=
 (2.4) 

where, iη
∗ , Xi were, respectively, replaced with iη ,Vi . 

1 ( )0
2( ) [( ) ]0 0

U u hi
i

U u h U u hi i
γ ξ

−⎛ ⎞
⎜ ⎟= ⊗∑ ⎜ ⎟− −⎝ ⎠

 

The solution to (2.4), we have the following estimates:   
1 1-1ˆ( )={ ( )( )} { ( ) }0 0 0

1 1

n nTu K U u K U u Yi h i i i i h i i iin ni i
θ δ η η γ δ η∗ ∗ ∗− − −∑ ∑

= =

    1={D W D - } D W00 0 0 0 0
T T Yuu u u u u

δ δ δ−Ω         (2.5) 

where, W diag{ ( ), , ( )}1 1 0 00
K U u K U uu h n h n

δ δ δ= − −L , 

1 0
11

2 0
2 2D , ( , , , )1 20

0

U u TT VV h
T U u TV V TY Y Y Yhu n

U u TnT VV nn h

−⎡ ⎤
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

L

MM

1 ( )0
( )020 ( ) [( ) ]1 0 0

U u hn i
K U uh i iu U u h U u hi i i

δ δξ
−⎛ ⎞

⎜ ⎟Ω = Σ ⊗ −∑ ⎜ ⎟− −= ⎝ ⎠
 

According to (2.5), the coefficient function is estimated 
as follows 

( ) 1ˆ( ) {D W D } D WT Tu I O Yp p u u u u u u
δ δ δβ −= − Ω    (2.6) 

B. Interpolation Estimation Method 
In order to make full use of data information, we use the 

interpolation method of chu and cheng(1995). The idea of 
the method is the use of single point interpolation technique 
for filling missing variables, then all data involved in the 
back of the inference process. Specifically, by using the 
estimation of ˆ ( )uβ obtained in the complete observation 

data of section 2.1, if the Xi is observed accurately, we have 

observed data 0( , , ) 1
nY X Ui ii i= , where 0 (1 ) TY Y Xi i i i iδ δ= + −  

ˆ ( )uiβ , but because of the exact value of Xi does not 

exist, we can't obtain the exact value of 0Yi and we can get 
ˆ(1 ) ( )TY Y V ui i i i iiδ δ β∗= + − . Then we can get the varying 

coefficient model with missing response variables and 
measurement errors of the explanatory variable on the basis 
of ( , , , ) 1

nY X V Ui i i i i
∗

=  
0 ( )

1, ,
0 ˆ(1 ) ( )

TY X U ei ii i
V X i ni i i

TY Y ui i ii i

β

ξ

δ ξ β

⎧ = +⎪⎪ = + =⎨
⎪ ∗= + −⎪⎩

L         (2.7) 

where 0 +e Y Yi i ii ε= − is the model error. 
Similar to (2.2), we can through the minimization 

2[ { ( )} ] ( )0 0
1 1

pn
Y a b U u X K U ui j j i ij h i

i j
∗− + − −∑ ∑

= =
   (2.8) 

Further to estimate the following equation 
10 { ( ); , , }2 0

1

n
u Y X Ui i i ini

φ θ ∗= ∑
=

 

1 ( )( ( ) )0 0
1

n TK U u u Yh i i i iini
η η θ η ∗= − −∑

=
    (2.9) 

Among them, because of the errors, we remember: 
( , , ) ( ) , ( , , ) ( )T TE V V X U Y E X X E V Y X U Y E X Yi i i i i i i i i i i ii i ξ

∗ ∗ ∗ ∗= +Σ =

    Based on the correction technique, then we can get the 
following correction estimation equation 

10 { ( ); , , }2 0
1

n
u Y X Ui i i ini

φ θ∗ ∗= ∑
=

 

1 ˆ( ){( ) ( ) (1 ) ( ) }0 0 0
1

n TK U u u Y uh i i ii i i in i
η η γ θ η δ βξ⎛ ⎞

⎜ ⎟
⎝ ⎠

∗∗ ∗∗ ∗∗ ∗= − − − − − Σ∑
=

(2.10) 
where, iη

∗∗ , Xi were,respectively, replaced with iη , Vi . 
The solution to (2.10), we have the following estimates: 

1ˆ(1 ) ( ) }={D W D } D W0 00 0 0 0 0 0

1 1-1( )={ ( )( )} { ( )0 00 1 1
T TY u Y Cuu u u u u ui i

n nTu K U u K U uh i i h in ni i ii i
δ βξ

θ η η γ η

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎜ ⎟
⎝ ⎠
∗ − ∗− − Σ −Ω −

∗∗ ∗∗ ∗∗− − −∑ ∑
= =

%

     (2.11) 
Where, W diag{ ( ), , ( )}1 0 00 K U u K U uu h h n= − −L ,  

1 ( )0
( )00 2( ) [( ) ]1 0 0

U u hn i
K U uu h i

U u h U u hi i i
ξ

−⎛ ⎞
⎜ ⎟Ω = Σ ⊗ −∑ ⎜ ⎟− −= ⎝ ⎠

, 

( )ˆ ˆ(1 ) ( ), ,(1 ) ( )1 0 00
T

C u uu nδ β δ βξ ξ= − Σ − ΣL ,

( , , , )1 2
TY Y Y Yn

∗ ∗ ∗ ∗= L  
According to(2.11),the coefficient function is estimated 

as follows 
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( ) ( )1( ) {D W D } D WT Tu I O Y Cp p uu u u u u uβ − ∗= − Ω −%  

III. MAIN RESULTS 
The following assumptions we need: 

(A1) ( ), , ,
TT TX Ui ii iε ξ are independent and identically 

distributed random vectors, ( ),
TTX Uii and ( ),

TT
i iε ξ are 

independent, iε and iξ are independent. 
(A2) the random variableU has a bounded supportΠ , its 

density function ( )f ⋅ is Lipschitz continuous, and not to 0 on 
the support. 

(A3) the p p× matrix ( ), TE X U XX Uπ⎡ ⎤
⎢ ⎥⎣ ⎦

is nonsingular for 

any U∈Π . 
(A4)There is an 2s> such 

that 2sE X <∞ and 2sE ξ <∞ and for some 12k s−< − such 

that 2 1kn h− →∞ as n→∞ . 
(A5) ( )β ⋅ is a second order continuous derivatives 

inU∈Π . 
(A6) ( )K ⋅ is a function with compact support symmetric 

density function, and the bandwidth h satisfies 8 0nh → and 

( )22 lognh n →∞ and, as n→∞ . 
Let 

( ) ( ) ,0
iK t K t dtiμ

∞= ∫ ( ) ( ) ( ), , ,1
T

u u upβ β β⎡ ⎤′′ ′′ ′′= ⎣ ⎦L

( ) ( )2 ,0
iv K t K t dti

∞= ∫ ( ) ( )2 2u u uj jβ β′′ =∂ ∂ , 
then we obtain the following theorem properties: 
Theorem 1. Assuming the above assumptions, we can 

get the following conclusion  
2 2ˆ( ) ( ) ( ) ( ) ( )22

( ) 1 100, ( ) ( ) ( )
( )

h dnh u u K u o hP

v K
N u u u

f u

β β μ β

δ δ δ

⎧ ⎫⎪ ⎪⎯⎯→⎨ ⎬
⎪ ⎪⎩ ⎭

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

′′− − +

− −Γ Ω Γ

 

Where 
( ) ( )2 2( ) Γ ( ) Σ ( | ) 1 1 11 1 1

T Tu σ u σ E δ U u E δ η β u β u η U uδ δ ξ
⎡ ⎤
⎢ ⎥⎣ ⎦

Ω = + = + =

{ }( ) 1 1 11
Tu E X X U uδδΓ = = , T TXi i i i iη ξ ξ ξξ= Σ − −  

In order to make statistical inference with theorem 1, 

let 1ˆ ( ) ( )[ ]
1

n Tu n K U u V Vi h i i ii
δ ξδ

−Γ = − −Σ∑
=

 

1 2 2ˆ ˆˆ ( ) ( ){ [ ( )] ( )}
1

n Tu n K U u V Y V u ui i i i iihi
δ β βξδ

− ⊗Ω = − − +Σ∑
=

And it is easy to prove that 1 1ˆˆ ˆ( ) ( ) ( )u u uδ δ δ
− −Γ Ω Γ is a 

consistent estimate of ( ) 1 10 ( ) ( ) ( )( )
v K u u uf u δ δ δ

− −Γ Ω Γ . 

Theorem 2. Assuming the above assumptions, we can get 
the followingconclusion 

2 2( ) ( ) ( ) ( ) ( )22
dhnh u u K u o hPβ β μ β

⎧ ⎫
⎪ ⎪

⎯⎯⎯→⎨ ⎬
⎪ ⎪⎩ ⎭

′′− − +%

( ) 1 100, ( ) ( ) ( )
( )

v KN u u u
f u

⎛ ⎞− −Γ Ω Γ⎜ ⎟
⎝ ⎠

 

where   ( ) ( )2 2( ) ( ) 1 11
T Tu u E u u U uσ σ η β β ηξ

⎡ ⎤Ω = Γ + Σ + =⎢ ⎥⎣ ⎦
, 

{ }( ) 1 11
Tu E X X U uΓ = = , T TXi i i i iη ξ ξ ξξ= Σ − − , 

IV. NUMETRICAL SIMULATION  
In this section, by adopting stochastic simulation 

method,we will discuss the fitting degree of the estimators 
in the case of complete data and interpolation data and the 
real function. we consider the following model 

( ) , , 1, 2, , ,Ty x u v x e x ni i i i i i iβ ε= + = + = L  

where ( )2(0,1), (0,1), (0, 0.1 ), cos(6 )x N u U e N u uii i i iβ π→ → → =

the kernel function is ( )215 2( ) 1 116
K x x I X= − ≤ . In order to 

studying the effect of model error distribution to the final 
result, we consider the following two kinds of distribution 
of iε , that is (0,0.1)Niε → and ( 0.1,0.1)Uiε → − . If 0.8Xi≤ , 

1,iδ = else 0,iδ = the independent random missing data is 
produced like this. 

Our simulation results are as follows(To name only a 
few of the main results). We are to estimate the 100 time 
point on [0,1]. In the following figure, ( )uβ is showed by 
blue line, ( )ˆ uβ and ( )uβ% is showed by ‘*’. 

During the simulation, we consider the following 
situations 

(1) figure1,2:the sample size n=1000, the bandwidth 
h=1/50, (0,0.1)Niε →  

(2) figure3,4:the sample size n=1000, the bandwidth 
h=1/100, (0,0.1)Niε →  

(3) figure5,6:the sample size n=1000, the bandwidth 
h=1/100, ( 0.1,0.1)Uiε → −  

 
Figure1 ( )uβ and ( )ˆ uβ  
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Figure2 ( )uβ and ( )uβ%  

 
Figure3 ( )uβ and ( )ˆ uβ  

 
Figure4 ( )uβ and ( )uβ%  

 
Figure5 ( )uβ and ( )ˆ uβ  

 
Figure6 ( )uβ and ( )uβ%  

Generally, the simulation results show that the method 
we used to estimate is good. From our simulation result 
shows, when the sample size from 1000 generally can get 
good effect, due to the total simulation effect is good, the 
two window width here seems to be little difference. At the 
same time also can see the impact on the simulation results 
of the model error distribution also is not very big. And we 
found the interpolation estimates ( )uβ% is closer to the real 
function of value under the relatively complete data ( )ˆ uβ . 

V. PROOF OF THEOREM  
In order to prove the main results, we first introduce 

some lemmas and notations, note 

{ }, ,1diag nδ δΔ= L , ( ) ( ), ,11
TT TM X u X up pβ β⎡ ⎤=⎢ ⎥⎣ ⎦

L

( ) ( )2
0

iv K t K t dti ∞=∫ , ( ) ( ) ,0
iK t K t dtiμ ∞=∫

( ) 1 2log 12 h
c hn nh

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
 

Lemma 1. Let ( ) ( ), , , ,1 1X Y X Yn nL be i.i.d random vectors, 
where , 1,2, ,Y i ni = L is a random variable, Further, assume that 

sE y <∞ and ( )sup ,sy f x y dyx <∞∫ , f denote the joint density 
of ( ),X Y . Let K is be a bounded positive function with a 
bounded support, satisfying a Lipschitz condition. Then  

( ) ( )( ) ( ) 1 2log 11sup
1

n h
K X X Y E K X X Y Oh i i h i i pn nhx i

⎛ ⎞
⎧ ⎫⎜ ⎟⎪ ⎪⎡ ⎤ ⎜ ⎟⎨ ⎬⎢ ⎥⎣ ⎦ ⎜ ⎟⎪ ⎪⎜ ⎟⎩ ⎭⎝ ⎠

− − − =∑
=

 

where there are 2 1n hε − →∞ as 11 sε −< − . 
Proof. This lemma can be obtained by Mack and 

Silverman (1982). 
Lemma 2. Under the conditions in Sec.5, we have  

( ) ( ) ( )
1 0

1
0 2

TD W D pu u u u f u u opn

δ δ

μ
⎛ ⎞−Ω

⎯⎯→ Γ ⊗ +⎜ ⎟
⎝ ⎠

 

Proof. The proof of lemma similar to Cai et al.(2000) 
proof of theorem 1, we ignore the detailed proof. 

Proof of Theorems 1. Because in the field of u , ( )jβ ⋅  
is smooth, by Taylor expansion, we can obtain:  

( ) ( ) ( ) ( )
22

2
U u h U uT T T Ti iX U X u X h u X uii i i ih h

β β β β
− −⎛ ⎞′ ′′= + + ⎜ ⎟

⎝ ⎠

( )2o hp+  

By the definition of ( )ˆ uβ , we have 

( ) ( ) ( ) ( )1{D W D } D WT Tu u I O Y up p u u u u u u
δ δ δβ β β−− = −Ω −%  

( ) ( )21{D W D } D W
2

h uT TI O Ap p u u u u u u
βδ δ δ ′′−= − Ω  

( ) ( )1 2{D W D } D WT TI O I o hp p u u u u u u n p
δ δ δ−+ − Ω  

( ) 1{D W D } D WT TI Op p u u u u u u
δ δ δ ε−+ − Ω  

( ) ( ) ( )1{D W D } D WT TI O B up p u u uu u u u
δ δ δ δ θ−+ − Ω Ω −  

75



 

 

1 2 3 4I I I I= + + +  
where 

2
1 11 1 1

2 22
22 , 2

2

U uT U uX T T
h h

U uU u TT TXA B hh

T U u TnnU u nT n hXn h

ξ ξ

ξξ

ξ ξ

⎡ ⎤−⎛ ⎞ −⎢ ⎥ ⎡ ⎤⎜ ⎟⎢ ⎥⎝ ⎠ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−−⎢ ⎥ ⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥= =⎝ ⎠⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥−⎛ ⎞ ⎣ ⎦⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

M MM

  

By lemma 1 and lemma 2, it is easy to prove 

( ) ( ) ( )
2

11 22
hI K u opμ β′′= + , ( )2

2I o hp=  

and
2 2ˆ( ) ( ) ( ) ( ) 0 ( )22

hnh u u K u hPβ β μ β
⎧ ⎫⎪ ⎪′′− − +⎨ ⎬
⎪ ⎪⎩ ⎭

 

( ) ( ) ( ){ } ( )11 1 ( ) 1
1

n
f u u nh K U u V u oh i i i i pn i

ε η β− − ∑= Γ − + +
=

 

Therefore, by the central limit theorem can be 
2 2ˆ( ) ( ) ( ) ( ) 0 ( )22

( ) 1 100, ( ) ( ) ( )
( )

h dnh u u K u hP

v K
N u u u

f u

β β μ β

δ δ δ

⎧ ⎫⎪ ⎪⎯⎯→⎨ ⎬
⎪ ⎪⎩ ⎭

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

′′− − +

− −Γ Ω Γ

 

Its prove process smilar to Wei(2011) proof of theorem 
2.1. 

Proof of Theorems 2. Because in the field of u , ( )jβ ⋅  is 
smooth, by Taylor expansion, we can obtain: 

( ) ( ) ( ) ( )

( )

2

2
2

2

U u hT T T TiX U X u X h u X uii i i ih

U ui o hph

β β β β
−

′ ′′= + +

−⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

By the definition of ( )uβ% , we have 
( ) ( )

( ) ( )1{D W D } D W ( )

u u
T TI O Y C up p u u u u u u u

β β

β

−
− ∗= −Ω − −

%
 

( ) ( )2
1{D W D } D W

2
h uT TI O Ap p u u u u u u
β′′−= −Ω  

( ) ( )1 2{D W D } D WT TI O I o hp p u u u u u u n p
−+ −Ω  

( ) 1 ˆ{D W D } D W ( ) ( )T T TI O L up p u u u u u u δ ξ β−+ −Ω −  

( ) 1{D W D } D WT TI O Cp p u u u u u u u
−− − Ω  

( ) 1{D W D } D WT TI O ep p u u u u u u
−+ −Ω  

( ) ( ) ( )1{D W D } D WT TI O B up p u u u u u u u θ−+ −Ω Ω −  

+ +1 2 3 4 5 6I I I I I I= + + −  

Where, [ ]1, ,1 , ,1
T T

nδ δ δL LL= =( ，, )  
By lemma 1 and lemma 2, it is easy to prove 

( ) ( ) ( )
2

11 22
hI K u opμ β′′= + , ( )2

2I o hp= , 3 4I I=  

and
2 2( ) ( ) ( ) ( ) 0 ( )22

hnh u u K u hPβ β μ β
⎧ ⎫⎪ ⎪′′− − +⎨ ⎬
⎪ ⎪⎩ ⎭

%  

( ) ( ) ( ){ } ( )11 1 ( ) 1
1

n
f u u nh K U u V e u oh i i i i pn i

η β− − ∑= Γ − + +
=

 

Therefore, by the central limit theorem can be 
2 2( ) ( ) ( ) ( ) 0 ( )22

( ) 1 100, ( ) ( ) ( )
( )

h dnh u u K u hP

v K
N u u u

f u

β β μ β
⎧ ⎫⎪ ⎪⎯⎯→⎨ ⎬
⎪ ⎪⎩ ⎭

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

′′− − +

− −Γ Ω Γ

%  
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