Journal of Nonlinear Mathematical Physics 1999, V.6, N 3, 344-354. ARTICLE

Coadjoint Poisson Actions of Poisson-Lie Groups
Boris A. KUPERSHMIDT ' and Ognyan S. STOYANOV ¥

T Department of Mathematics, University of Tennessee Space Institute,
Tullahoma, TN 37388, USA
E-mail: bkupersh@uitsi.edu

I Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
E-mail: stoyanov@math.rutgers. edu

Received February 10, 1999; Accepted March 10, 1999

Abstract

A Poisson-Lie group acting by the coadjoint action on the dual of its Lie algebra
induces on it a non-trivial class of quadratic Poisson structures extending the linear
Poisson bracket on the coadjoint orbits.

1 Introduction

If G is a Lie group with Lie algebra G then the coadjoint action of G on the dual space
G* to G leaves invariant the linear Poisson bracket on G*. In other words, the action
map Ad* : G x G* — G* is a Poisson map, with the Poisson structure on G being the
trivial one. If G is a Poisson-Lie group then this action, in general, is no longer Poisson
unless the Poisson structure on G* could be suitably modified. In this paper we show
that this is indeed possible. We construct this extension explicitly and give necessary and
sufficient conditions for its existence. In particular, any Poisson structure on a finite-
dimensional connected simply-connected Poisson-Lie group G coming from an r-matrix
that satisfies the Classical Yang-Baxter Equation induces a Poisson structure on G* such
that the coadjoint action becomes Poisson. The existence of a modification of the linear
Poisson bracket for the case G = GL(n) and G* = gl(n)* was shown earlier in [1] (see also
the related article [2]). In [1] an equivariant quantization of the coadjoint action for the
case G = GL(2) and G* = gl(2)* was also constructed.

2 Main Theorem

We start with recalling some basics. Let G be a finite-dimensional connected simply-
connected Poisson-Lie group. Let the Poisson structure on G be given by the skew-
symmetric rank-2 contravariant tensor 7%. We write the group law G x G—G ((z,y) —
f(z,y)) in a neighbourhood of the identity as

it 2yt Ly, i=1,...,n=dimG,
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where f? are assumed smooth. Let ¢ : G — G be the map of taking an inverse. We recall
the properties of these maps [3]:

fi(ov"'aoaylv"'vyn):yiv (1)

fi(xl,...,x”,o,...,()):xi, (2)

fHa, (@) = 0= f(e(x),z). (3)
From these we deduce that

oft B oft

55(0,0) =0} = 5700 (4)
and

i, 09

05 + 6x1 (0) =0. (5)

For x € G let Ly(xz) = f(y,x) and Ry(x) = f(x,y) be the left and right actions
by an element y € G. The adjoint action Ady(z) = R,-1 o Ly(x) is described in local
coordinates by

F(fy, ), o). (6)

Let I C R be an open interval containing the origin and let x : I — G be a curve z(t)
with a direction vector £ € G = T,G at the identity e = x(0). Differentiating (5) in the
direction of { at t = 0 (with x(t) = exp(t£)) we obtain a formula for the action of Ad,

on G:
o df ft afk .
Ad,)ie = —| = ) I = 7. 7
(Ady)ig = 0| = S0 5 (5,006 = Aiy)e 7)
Here &' are the coorsinates of ¢ and u and v refer to the first and second argument of the
functions f respectively. (The Einstein convention of summation over repeated upper and
lower indices is in force throughout this text.) If n € G* relative to the form

(Ady(§),n) = (Ady)i&/ni = (€, Ad;(n)), (8)
and the coadjoint action G x G* — G* is defined to be:
. oFft ofk .
(Ads )i = S5 (o)) S ol O = A5 (™) i Q

where 7; are the coordinates of 7.

Remark 2.1 Recall that if ( € G is a direction vector of a curve y(s) in G, differentiating
(7) and (9) in the direction of ¢ at s = 0 we obtain formulae for the maps ad¢: G — G
and adc G* — G*. For example,

. o2 fi ofk o2 fi o fk 92 rk o
(adg;' = [ aukgus (0,0) 6fj (0,0) + ﬁukgus (0,0) af] (0,0) — ausgw‘ (0, 0)0f 0,0)] ¢
_[_F o2 fi N
B |:_ OusOvi (0’ 0) + ouJ Ovs (0’ 0) ¢ = _Cst )

and similarly for ad¢:. Here Ci~ are the structure constants of G, and we have used for-

mulae (3) and (4) and dfkg;s (O,()) =0.
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In addition, the group G is assumed to be equipped with a Poisson-Lie structure [4].
That is, a rank-2 contravariant skew-symmetric Poisson tensor 7" exists which is com-
patible with the group multiplication G x G — G (7 is a group 1-cocycle). The Poisson
bracket between two smooth functions f and g can be defined in three equivalent ways:

ij of g

xt Oxd

{fgy=m = 0"D;ifD;g = 0”D;fDjyg,

0
where D; = dL{(z) 823 and D} = dR$(x) 823 are left and right invariant vector fields and
dL(z) and dR(x) are the derivatives of the maps L, and R,. The tensors 7, o, and o are
related by

m(x) = o(x)dL(x)dL(x) = o(x)dR(z)dR(x). (10)

The Poisson structure on G x G is taken to be the product Poisson structure and thus
the multiplication map m : G x G — G must be Poisson, that is, {f, g}, (zy) =
{m*f,m*g} o (z,y). This implies that 7/ must satisfy the 1-cocycle functional equation

7 (wy) = dR},(y)dR] (y)7™ () + dLj,(x)d L] (x)7* (1), (11)
which is equivalent to
o' (zy) = 0" (z) + dR}.((yz) " )dR] ((yx) ') Ab(2) AL (2)dRE (yz)d R} (yx) o™ (y), (12)

where A(r) = dR(z~!)dL(x) = dL(z)dR(x~1) is the matrix of the adjoint representation.
Let again y : I — G be a one-parameter curve passing through the identity with direction
vector £. Differentiating (12) in the direction of £ at y = 0 we obtain the system of
differential equations

s, \Odl i p 4]
AL ()50 = Al(w)oi? Al(r), (13)
where azj = %;Z (0) = %;Z (0) are the components comprising a map « : G — G A G. The

integrability conditions for (13) after use of the Maurer-Cartan equations and evaluation
at z = 0 lead to

kKle~s . ml ok km ~l ml ~k km ~l

(14)

and therefore @ : G — G A G being a 1-cocycle is a necessary and sufficient condition
for the existence of a solution of (13). In particular, as is well known [4], if & = dr is a
coboundary, where r € G A G, then

ad = rsI 4 CI s, (15)
In this case (14) is identically satisfied and the equations (13) can be trivially integrated
yielding the solution

o (w) = AY(w)r P A(w) + (16)

where réj is a constant skew-symmetric matrix. (A formula of type (78) below, with dL
instead of dR, is used in the proof of this.) Substituting (16) back into the functional
equation (12), and using the fact that the left and right actions commute, we deduce that
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it is a solution of the original 1-cocycle equation if and only if réj = —r%. All of the above
is standard in the theory of Poisson-Lie groups. We recalled the relevant facts which we
shall need in the sequel.

Our goal is to make the action Ad* : G x G* — G* Poisson. Therefore we need to
construct (covariant) Poisson tensors w;; on G* compatible with the coadjoint action. Here
again the space G x G* is equipped with the product Poisson structure and thus the map
Ad* : GxG* — G* is required to be Poisson. This condition is equivalent to the condition
that locally w;; must satisfy the following system of functional equations

wij(B(y,n)) = o 8—mwkl(77) TaE ol (y),

where we have introduced B;(y,n) := Ag (y~1)n;, or equivalently

5 0A"
wii(Ay~")n) = AF (y ALy wi(n) + gﬁ; (yfl)a—y,](y”)nsnpﬂkl(y)- (17)

In order to construct solutions we pass to a system of differential equations which is the
infinitesimal part of (17). Differentiation of the above equations in the directions of the
coordinate axes yields

Owij OAL  9AF L OAL HAS DAL oyl

i A Al J
o, " By ) T A e (18)

o4y 047 0A; 047
7 Wy + A mTa T (Y)sTp-
8y oy™ 8y oy" dy 39

Evaluating at the identity y = 0 we obtain

8(,02'

Clnh 8775] Cluwrj + Clnwir — CiChap nstp, (19)
where af! = %’Tn (0) and we have used formulae A; (0) = 6;, 8y (0) C]Zn, and 7*(0) = 0.
We now seek solutions of the above system of differential equations.

Remark 2.2 If the Poisson tensor m on G were zero, then (19) reduces to

ctom 22— ok Clw; 20

sn'll 8775 nWkj gnil - ( )

It is immediate that the linear bracket w;j(n) = C;ins satisfies (20). Indeed, after substi-
tuting into (20) we obtain

(CinCli + ChiCiy + CuCi ) ms = 0,

which is identically satisfied. Moreover, any tensor of the form wi;(n) = C;ns©(n) is a
solution of (20) as long as © is a solution of the system

00
!
CL,Clmmg on

= 0. (21)

S
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The general solution of (19) is a linear combination of the general solution of the
homogeneous system (20) and a particular solution. We look for a particular solution in
the form

wi(n) = B3 ngnr, (22)

where ﬂff = —ﬁ;f are symmetric in the upper and skew-symmetric in the lower indices.
Substituting into (19) we obtain

1
OB} + Clufly = ity — G — 3 (15 + 1) ot =,
which leads to

s T s qar 1 r r s
an 72837'" + Cg /827 - Czsn/Bg] - Cjnﬁgs - 5 (Cq C 1t Ci Cq) anl =0. (23)

n is~j 15~ 51

Remark 2.3 The most general tensor ﬂff symmetric in the upper and skew-symmetric

in the lower indices that one can construct out of the tensors ol and ij 18
l-kjl =aq [afsCéj — oz?sCéi + aéSC’fj — aéSC’fi} , (24)
where a is a constant scalar. However, (24) falls short of satisfying (23) by the term
—aCy [0 Cy + aJCl (25)

where a = —1/4. The tensors o and ij are related by (14).
In the case when o is a coboundary and given by (15) equation (23) reads

s s Qqr s qor 1 r r s s
an ";j?n + anﬂfj - Cznﬁ;]j - Cjn/@z‘qs - 5 (Cq C 1T Cischl>(onprpl + CinT p) = Oa(26)

isJ

and (24) reduces to

1 1
b — (Cz C'js —+ Cz C'js) r P + _C’LJ |:Csmr —+ Csmr i| . (27)

It turns out that only the first half in the above formula yields a solution of (26).

Proposition 2.1 The tensor

1
kl k il 1 ik
is a solution of (26). Moreover, w;j(n) = ﬁiqunqm is a Poisson tensor, that is, it satisfies
the Jacobi identities

&ukl 8(,01]'

8wjk
Wi (977' + wik 877. 4
7 i

g on;

+w =0, (29)

if and only if r is a solution of the Classical Yang-Bazter Equation:
C;‘prsjrpl + C’ngSZTP" + Céprsnrpj =0, (30)

provided that a special linear map from G®3 to G¥3 ® G*®3 has a zero kernel.
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Proof: The proof is a straightforward calculation. First, substituting ﬁfjl from (28) into
the left hand side of (26) and rearanging terms we obtain:

(G308 + C3,Cl + CinC] Cr'® + | C3, 0, + €3Gy + C O | Clr

! I

+ [ 50w +CniCy + C, gj} Cipr™® + [ 4 Con + Cy;Co + lsncgj} Cipr'?,
which is identically equal to zero. To prove that w;;(n) = ﬁgnan is Poisson we note that
the Jacobi identities (after symmetrization) are equivalent to the following identitties for
the components of j:

& O+ B B3+ B Bik + cyclic(i, 4, k) = 0. (31)

After a lengthy calculation, with 3 given by (28), and using only the fact that the r-matrix
is skew-symmetric, 7" = —r'* and the identities

C;Cl, + ChiCl + Cp, Cl =0 (32)

for the structure constants Cz-kj of the group, we obtain from (31) the equations:

(€8 (CRCr, + €O + eyelic(q,m, )|

u T tw

(33)
X [Cgtruvrm + CYpsvput 4 C’;‘trw”r“] =0.

Let us sketch the major steps of the calculation. Substitution of (28) into the left hand
side of (31) results in a sum of 36 terms which we group into 9 groups each consisting of 4
summands:

Ci,C5 [CF C ropWt . Oy OrWt — CF Ot O OF ] (34)
+C§vC,§w[CfuCﬁr“”rwt + C{ZC}}T“”TW - ;tC;Zr“wr”t - T i) (35)
wCit [CL Oyt 4 C,Z’chwr“”rwt - ngcgjrw”r“t — O, C2 ytoptt] (36)
+C§HC,‘§,LU[C§”C}?T"”7’M + CZZC%T“”TM - C?tCZZT“wr“t — C}?Cfuruwr”t] (37)
+CC5y [C[ungr“”rm + Cfucgwr“”rwt — C};waurw”r“t — CZwC{urwvr“t] (38)
+C;ZC,§w[CZuCJ‘.Itr“”TM + CfuC;tr“”rWt - ;thurt”rw“ - C;?thurt”rw“] (39)
+C1.C3, [C;UC,?ZTUU?”wt + C%C};tr“”rw': - C,:tC%rt”rw“ - CZ}C;urt”rwu] (40)
+C,Cs [C'j‘-J,LLC',ZrtL7’“”7’“"5 + C’;ZCgtr“”rm - C,ZtC%rt”rw“ - C,Z?C;?urt”rw“] (41)

+CICs [C;uCgtTUUTWt + C]‘?uClztr“”rwt — C;-ZUC};trwrw“ — C’gtC;urt”rw“]. (42)
Each of the above 9 expressions is further transformed to an expression of only 2 sum-
mands. We describe in detail how this is done for the first of the above groups (34). Using

the Jacobi identities for the structure constants of G

C5Chi+ CGC0 + C4Ch = 0 = CL,C = —CGCF, — CLC; (43)

S sv~gt — Vg
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we transform (34) to
(03,Ct + G ) [-ChLr™ ™ — CICE™s ™ 4 CyCElr™s ™ 4 CR ]

—C4.0m s o uv, wt s o wvu,ut
= CiCku [—C;, Gl et + CF O Ve

qa.c0r s ym,uv, wt s ymwv, ut
+CsiChu [—C3,Chur™r™ + G, Clirrt]

(

(
+CL,Chh, [-CLCs 0 rt 4 CLC5 i r™ | (46)
+CruCl [-CLC "t + CLCo " r] (
Each of the terms (44)—(47) is now transformed as follows: for (44) we have

CLOT, [ Ch ™ + O O]

J tv~iu tv~iu

= C1.cm s o uv, wit s o uv wt
_Csjckw [_Ot’uciur r +Cvtciur T ]

—1.0m s U wt s wv _wt
_CSJCIWU[ ”UtCiur r +Cvtciur r :|

= 205,01, CoChr s (48)

for (45) we have

qa.c0r s ~ym, uv, wt s ~m, wu, ut
CLC, [-Ch,Clror™t + C5, Crarrtt]

—_ 49 r s ~m, uv, wt s uv, wit
_Csjckw [—CmC’iur r +CvtCiur r ]

—_ 49 r s ymouv, wit S uv, , wt
o Cs]Ckw [ UtCiuT r + C’UtC’L"u,T T ]

= 205 Cr, CrCor™ ™, (49)

J A )
for (46) we have
Cr.Chy [-CLCo ™t + CLCy ]

U

=CICcl 4 18 puvpwt q s, wt, uv
_Cl Ckw [_Cstcvj'r r ‘f‘CSUCth r ]

U

= 0 [~CLCs, — C4,08,] rvrtt

“ soljt
- L O Cl »
and finally for (47) we have
ChuCit [~CR O™ 4 ChClyr 1]
= Cp,Cin [-CLCs 0 rt + CL,Cp i r! |
- CLLC [-CAC - O3]
= —C};wCl?chjcgtruvrwt. .

Adding together (48)—(51) we obtain for (34) the following expression
(34) = ngCthﬂUCTur“”rm + CL.C5,CF,, Cptivpwt,

v sj vt
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Performing analogous manipulations as above with each of the terms (35)—(42) we deduce
that the left hand side of (31) is equivalent to

CLC3C Chrrt + CLC3,C, Chir e (52)
+C%.Cs, Cr,Crr et + CY, C R Chr ™t (53)
+CLC5,C Cl oyt + O, O3, CrnCE ot (54)
+C5Cr, Co, Chir o rt + O3, Cy Chi (55)
+CUCCr,CL o rt + Ol Cd Cs, Chyrr™ (56)
+CRCLCo Chrort + CR.CHL Cy Cryrt et (57)
+CLCT,C,Clir™ et + CLCTLC , Chyr o r™ (58)
+C5C5,Co Crrr + CLCR Co Clyr ot (59)
+CICY,Co, Clrort + CICd Cs Chir e, (60)

where each of the pair of terms in (52)—(60) are obtained from the quadruples of terms in
(34)—(42) correspondingly. We now rearange the above 18 terms in the following 6 groups
each consisting of 3 terms:

ng s.Cm O ot 4 C;ZC%C’SMC{UT“”TM + CgiC?uCiwCﬁT””rwt (61)
+CLC3,Cr, Chir™ r 4 C C, CinCr o + CpCE C Cryr O r (62)
+CLC3 O, CLr o rt + CRCE C, Chr™r™ + CLCT, C Clir ™ r™? (63)
+CLCHCmCE rort + O Cs CiClrrt + CLCF, O CR e (64)
+C4.Ch, Cr Coir ot 4 C Cy Cp, CF ™ et 4 CL O Cs Ol (65)

+C3,Cy,CL Clirort + CCl CF Cr rort + CLCT Cs Ol Or™™ (66)

w7 w St Ju

The 3 terms in each of the above 6 groups we manipulate further. We show the steps
for (61). Thus, for (61) we have

q s m orouv, wit m G S r o uv, wt T G S m,uv, wt
CsiCotCrwCiur " + CCh O, Cryr™r™ + 4O, O, Cry ™

st~ ju~vw

9 S Ymoor o uv, wt m g ~w uv,.ts r G U omo o sv tw
_Csj vtCkaiur r +ka’cjs vtciur r +Cui0js vtCkwT r

9 S m uv,wt m G ~wor o, uv, ts r g ~u m o, ,Ssv, tw
—_— CS] vtCkw CWT T + C’C’UJ CS] C,Utciur T + CWCSJ UtCkwT T

_ q ~m s uv, wt w,uv,.ts u ,,sv,.tw
= Cg; O iy [Coyr ™ r™ + Cyr™r™® 4+ Chyrtr

u W, st
utl T

T
¢ ¢
= ngCQZUC'{u Corrt + Crrt

[
r
J
T uz’I”Ut?"SU

[
[ -
— CLOPCE, (O3 + Ol +
Chu [ -

]
C;”tr“”r“”t]
C ]

t t
o | Cor i Cryr®ir?? i . (67)

— 1 0m
_stcku
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In a completely similar way we obtain for (62)—(66) the following expressions:

(62) = CLCmCE, [Cor®r™ + Clr*tr 4 Clrttr™] (68)
(6 ) Cku [ trwtruv Cutrstrw’v uzT,uthv] 7 (69)
(64) = CLOImOL, [Cor®tr™ + Clyr*tr “;r“trs”], (70)
(65) = CTCE, Chy [Coyr™ ™ 4 Clr™r 4 Clhrttr] | (71)
( ) Cmcq Ck‘u[ t?"U)t’I“M) Cu st WY ul)trutrsv] (72)

Finally, adding (67)—(72) we obtain (33).

Thus, we arrive at the following dichotomy. The “if” part in the statement of the
proposition follows immediately from (33). The “only if” part follows from (33), provided
the linear map C : G%% — %3 @ G*®3 with matrix components

CfImr _ qu (Cm Cr +CIZ Cm)

sj,kw,iu — ku ™~ 1w u -~ Tw

(73)

+ G5, (CR.Ch, + CLO) + O (CRLC, + CL.CT) »
has a zero kernel. We do not know how to interpret geometrically this condition on the
group G. On the other hand, if G is such that Cgﬁrw = 0, then any skew-symmetric

matrix r induces a Poisson structure on G*, given by (28). This concludes the proof. W

. 1 2 . . . -
Two Poisson tensors %(j) and ng) are said to form a Poisson pair if their linear com-

bination aw( ) + bw( ) is also a Poisson tensor for arbitrary constants a and b. It is easy

to see that the Poisson tensors wS) and wi(]?) form a Poisson pair if and only if

(2) (2) 2) (1) 1) 1)
oL VAN RN i SN L M. K MO K L SO
i 8771' ik o il am i 8771' ik o il 8771'
Proposition 2.2 The Poisson tensors
( ) = = C;msO(n ) and wg) =1/2 (CZ]‘;CJlS + C’leC]ks> r*Prem
form a Poisson pair.
Proof: After substituting wz(jl ) and wg) in (74) and collecting terms we obtain
(Cj]C}jp + CS Cu =+ Cs ) Clqr NsN
o v 50 (75)
+Crny |Cy Ckmunsan + cyclic(j, k, 1) = 0.
From (21) and (32) follows that this is an identity. |

We can thus summarize the above results in the following theorem.

Theorem 2.1 For any finite-dimensional connected simply connected Poisson-Lie group
there exists the family of Poisson structures

wij (1) = C5msO(n) + ChChrPmm, (76)

on the dual of its Lie algebra such that it makes the coadjoint action Poisson. Here © is
an arbitrary invariant function on G*.
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Proof: What remains to be proved is that the solution of the infinitesimal part of (17)
obtained above is actually an invariant Poisson bracket under the coadjoint action of
the group. In other words we need to show that the tensor (76) satisfies the functional
equation (17). For this we rewrite equation (17) in a new equivalent form. This is done
by using the following properties of the Lie group G and the map Ad. Let x : I — G be
a curve passing through the identity of G. We have

A5(f(a(t),y)) = Aj(x (1) A (y)- (77)
Differentiating at ¢ = 0 we obtain

O0A: . AL A

W,‘j(y)dR?(y) = ClAj(y) = W;ﬁ(y) = Cj, A5 (y)dR}(y™). (78)

From the identity A%(y)A$(y~") = 0% we have also (after differentiating in the coordinate
directions)

OAL . oA
(Y = — AN (DY P () AP (). 79
oy (y ) sy )8yk (¥)AS(y~) (79)
We note also the invariance of the constant tensor C;k:
= AL)Co Ay H ALY ). (80)

Now we substitute (79) into the original functional equation (17) and after an easy calcu-
lation using (78) and (80) we transform it to the equivalent equation

wij(Ay=")n) = AF(y=H) AL (y~Hwr(n)

+CR O A (y ) AR (Y msmpd Ry (y 1) dR) (y )7 (y).

(81)

Using the relation (10) between the tensors m and o we finally obtain

wij(Aly™"m) = AF (v DAYy Dwnn) + CirClL A (y ™) AL (v mempo™(y).  (82)

With o given by formula (16) it is now a straightforward calculation to verify that the
tensor w as given by formula (76) satisfies the functional equation (82). Indeed, the left
hand side of (82) after substitution of (76) reads

O ALy mp©(Aly™ ) — G307, AT (y ™) AR (y™ )i (83)
The right hand side of (82) yields
ARy Y AL(y™H)Cims©(n) — AF(y™1) AL (y=1)C5, CF ronany

(84)
+CH CT AL (™) ARy~ ey AL(y)r Ay (y) — ClCRAL (y™ ) An(y™ msmpr .
Using
m Aq s -1 (Eﬁ)) s Aq(,,—1 n At p(,—1 (8_0) P m(, —1
Cquu(y)Am(y ) - Cqqu (y )7 C]tAU(y)An(y ) - Cvaj (y )7 (85)

we transform the third term of (84) and after comparison of terms in the left and right
hand sides we conclude that the functional equation (82) is identically satisfied. Thus,
every solution r of the Classical Yang-Baxter Equation induces the Poisson structure (76)
on G* making it a homogeneous Poisson space under the coadjoint action of G. This
concludes the proof. [ |
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3 Discussion

Here we show that the newly obtained Poisson bracket on G* when specialized to the
case of G = GL(n) and G* = gl(n)* recovers the one obtained in [1]. Let z be the
components of a matrix representation = : GL(n) — Mat(n) of GL(n). The multiplication

map (x,y) — f(x,y) is given by
[z, y) = xdy;. (86)

Then it is easy to compute the structure constants

e (0,0) — 2 (0,0) | = 0509 8% — 595507 (87)
B guPar ouov’ IR v
77k k~"3
With these structure constants and the r-matrix components r?jﬁ = —r]@io‘ we have
{né, 77’5} = CinLO ) + Col iy,
= (530507 — 850567 )ni O (1) + (50587 — 836707 (550307 — 650567 )ttera

= (8Imfy — 8kn))O(n) + (SEn — 6 k) (Bm — Spmi)rns,
= (62l — 0ml)O(n) + rasnlnd + ribnin — ramnm — risnfng,  (88)

which is in agreement with the formula obtained in [1].

Since there is a canonical isomorphism 7T*G ~ G x G* and the Poisson tensor wg) on G*

forms a Poisson pair with the linear tensor wl(; ) on G*, the corresponding tensors on T*G

will also form a Poisson pair under this isomorphism. It will be interesting to construct
quantizations of the cotangent space T*G ~ G x G* and the group G and lift the coadjoint
Poisson action to an equivariant quantum action between non-commutative spaces in the
quantum case. We hope to address this problem in a future publication.
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