Remarks on Quantization of Classical r-Matrices

Boris A. KUPERSHMIDT

Department of Mathematics, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
E-mail: bkupersh@utsi.edu
Received May 6, 1999; Revised May 26, 1999; Accepted June 1, 1999

Abstract

If a classical r-matrix r is skewsymmetric, its quantization R can lose the skewsymmetry property. Even when R is skewsymmetric, it may not be unique.

Let r be a classical r-matrix. In general, it means that we have a family of vector spaces $\left\{V_{\alpha}\right\}, \alpha \in \mathcal{A}$, and a collection of linear operators

$$
\begin{equation*}
r(\alpha, \beta): V_{\alpha} \otimes V_{\beta} \rightarrow V_{\beta} \otimes V_{\alpha}, \quad \forall \alpha \neq \beta \in \mathcal{A} \tag{1}
\end{equation*}
$$

satisfying the misnamed "Classical Yang-Baxter" equation (CYB)

$$
\begin{align*}
{[c(r)]_{i j k}^{\varphi \psi \xi}(\alpha, \beta, \gamma):=} & \left(r(\alpha, \beta)_{i j}^{s \varphi} r(\beta, \gamma)_{s k}^{\xi \psi}+r(\alpha, \beta)_{i j}^{\psi s} r(\alpha, \gamma)_{s k}^{\xi \varphi}\right) \tag{2}\\
& +c . p .(i, j, k ; \varphi, \psi, \xi ; \alpha, \beta, \gamma)=0
\end{align*}
$$

where "c.p" stands for the sum on cyclically permuted triples of indices indicated, and $r(\alpha, \beta)_{i j}^{u v}$ are the matrix elements of the operators $r(\alpha, \beta)(1)$ in a collection of fixed basises:

$$
\begin{equation*}
r(\alpha, \beta)\left(e_{i}^{\alpha} \otimes e_{j}^{\beta}\right)=r(\alpha, \beta)_{i j}^{\ell k} e_{\ell}^{\beta} \otimes e_{k}^{\alpha} \tag{3}
\end{equation*}
$$

the convention of summation over repeated upper-lower indices is in force.
In most applications, all the vector spaces V_{α} are isomorphic to each other, $V_{\alpha} \approx V$; in addition, often, - but not always, - the operator $r: V \otimes V \rightarrow V \otimes V$ is skewsymmetric:

$$
\begin{equation*}
\operatorname{Pr} P=-r, \quad r_{i j}^{k \ell}=-r_{j i}^{\ell k} \tag{4}
\end{equation*}
$$

where P is the permutation operator,

$$
\begin{equation*}
P(x \otimes y)=y \otimes x \tag{5}
\end{equation*}
$$

We shall consider this particular framework from now on.

To quantize a given r-matrix r is to find an operator family

$$
\begin{equation*}
R=R(h): V \otimes V \rightarrow V \otimes V, \tag{6}
\end{equation*}
$$

depending upon a parameter h, such that

$$
\begin{equation*}
R(h)=P+h r+O\left(h^{2}\right), \tag{7}
\end{equation*}
$$

and R satisfies the Artin braid relation (also misnamed as the "Quantum Yang-Baxter" equation, QYB):

$$
\begin{equation*}
R^{12} R^{23} R^{12}=R^{23} R^{12} R^{23} \tag{8}
\end{equation*}
$$

where this equality of operators acting on $V \otimes V \otimes V$ employs the standard notation

$$
\begin{equation*}
R^{12}(x \otimes y \otimes z)=R(x \otimes y) \otimes z, \quad R^{23}(x \otimes y \otimes z)=x \otimes R(y \otimes z) . \tag{9}
\end{equation*}
$$

How does the skewsymmetry condition on r, (4), translate into $R=R(h)$?
There are at least two possible, logically independent, answers, only one of which is correct.

The first one is what is commonly accepted in the literature under the name of "unitarity":

$$
\begin{equation*}
R(h)^{-1}=R(h), \tag{10a}
\end{equation*}
$$

or

$$
\begin{equation*}
R(q)^{-1}=R(q) \tag{10b}
\end{equation*}
$$

in the multiplicative notation $q=e^{h}$.
The second one I shall call, for want of a better term, the mirror symmetry:

$$
\begin{equation*}
R^{\mathcal{M}}(h)=R(-h) . \tag{11}
\end{equation*}
$$

Here $R^{\mathcal{M}}$ is the operator acting as the mirror image of R. If

$$
\begin{equation*}
R\left(e_{i} \otimes e_{j}^{\prime}\right)=R_{i j}^{k \ell} e_{k}^{\prime} \otimes e_{\ell} \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
R^{\mathcal{M}}\left(R_{i j}^{k \ell} e_{\ell} \otimes e_{\kappa}^{\prime}\right)=e_{j}^{\prime} \otimes e_{i} . \tag{13}
\end{equation*}
$$

This definition, useful as it is, is not connected to skewsymmetry of r.
The classical r-matrix r appears as the h^{1}-term in the h-expansion of the Quantum R-matrix $R(h)$ around $h=0$. The terms in h of orders higher than 1 recede away in the quasiclassical passage. The examples that follow demonstrate that these higher-order terms can have distinctly anti-Prussian character and break out strict orders and symmetries. (In [1] Drinfel'd proved that every skewsymmetric classical r-matrix r represents h^{1}-part of some skewsymmetric Quantum R-matrix R. The question of additional parameters in R was not addressed there, or elsewhere.)

In the $1^{s t}$ example, $\operatorname{dim}(V)=2$ and the R-matrix $R=R(h ; \theta)$ acts on $V \otimes V$ (in a chosen basis) as

$$
\begin{equation*}
R\left(e_{0} \otimes e_{0}^{\prime}\right)=e_{0}^{\prime} \otimes e_{0}, \tag{14}
\end{equation*}
$$

$$
\begin{align*}
& R\left(e_{0} \otimes e_{1}^{\prime}\right)=\left(e_{1}^{\prime}+h e_{0}^{\prime}\right) \otimes e_{0}, \tag{15}\\
& R\left(e_{1} \otimes e_{0}^{\prime}\right)=e_{0}^{\prime} \otimes\left(e_{1}-h e_{0}\right), \tag{16}\\
& R\left(e_{1} \otimes e_{1}^{\prime}\right)=e_{1}^{\prime} \otimes e_{1}+\theta h^{2} e_{0}^{\prime} \otimes e_{0} . \tag{17}
\end{align*}
$$

Here θ is an arbitrary constant. The Artin relation (8) is easily verified. The h^{1}-terms comprise the r-matrix

$$
\begin{equation*}
r_{i j}^{k \ell}=\delta_{0}^{k} \delta_{0}^{\ell}\left(\delta_{i j}^{01}-\delta_{i j}^{10}\right) \tag{18}
\end{equation*}
$$

which is obviously skewsymmetric. The R-matrix $R(h ; \theta)$ is, however, not unitary unless $\theta=0$. Also, it's easy to see that

$$
\begin{equation*}
R^{\mathcal{M}}(h ; \theta)=R(-h ;-\theta), \tag{19}
\end{equation*}
$$

so that this R-matrix is not mirror-symmetric either, again unless $\theta=0$.
Our $2^{\text {nd }}$ example is a little bit more elaborate, $\operatorname{with} \operatorname{dim}(V)=3$. Here the R-matrix is both skewsymmetric and mirror-symmetric, but it depends upon one extra parameter, in addition to the quantization parameter h, thus exhibiting clearly nonuniqueness of quantization of classical r-matrices.

Fixing a basis $\left(e_{0}, e_{1}, e_{2}\right)$ in V, we set

$$
\begin{align*}
& R\left(e_{0} \otimes e_{0}^{\prime}\right)=e_{0}^{\prime} \otimes e_{0}, \tag{20.1}\\
& R\left(e_{0} \otimes e_{1}^{\prime}\right)=\left(e_{1}^{\prime}+h e_{0}^{\prime}\right) \otimes e_{0}, \tag{20.2}\\
& R\left(e_{1} \otimes e_{0}^{\prime}\right)=e_{0}^{\prime} \otimes\left(e_{1}-h e_{0}\right), \tag{20.3}\\
& R\left(e_{1} \otimes e_{1}^{\prime}\right)=e_{1}^{\prime} \otimes e_{1} ; \tag{20.4}\\
& R\left(e_{0} \otimes e_{2}^{\prime}\right)=\left(e_{2}^{\prime}+h e_{1}^{\prime}+\frac{h^{2}}{2} e_{0}^{\prime}\right) \otimes e_{0}, \tag{21.1}\\
& R\left(e_{2} \otimes e_{0}^{\prime}\right)= \tag{21.2}\\
& e_{0}^{\prime} \otimes\left(e_{2}-h e_{1}+\frac{h^{2}}{2} e_{0}\right), \tag{21.3}\\
& R\left(e_{1} \otimes e_{2}^{\prime}\right)= \tag{21.4}\\
& R\left(e_{2}^{\prime} \otimes\left(e_{1}+h e_{0}\right)+h^{2}\left(\frac{1}{2} e_{1}^{\prime}+\lambda h e_{0}^{\prime}\right) \otimes e_{0}^{\prime},\right. \tag{21.5}\\
& R\left(e_{1}^{\prime}-h e_{0}^{\prime}\right) \otimes e_{2}+h^{2} e_{0}^{\prime} \otimes\left(\frac{1}{2} e_{1}-\lambda h e_{0}\right), \\
& R\left(e_{2} \otimes e_{2}^{\prime}\right)= \\
&
\end{align*}
$$

Here λ is the new free parameter, and

$$
\begin{equation*}
\tilde{\lambda}=\lambda-\frac{1}{4} . \tag{22}
\end{equation*}
$$

From formulae (20) we see that the previous example (14)-(17) is embedded into this one, with $\theta=0$. It's immediate to check that

$$
\begin{align*}
& R(h ; \lambda)^{2}=\mathbf{1} \tag{23}\\
& R^{\mathcal{M}}(h ; \lambda)=R(-h ; \lambda) \tag{24}
\end{align*}
$$

so that our R-matrix is both skewsymmetric and mirror-symmetric. Also, the h^{1}-part of $R(h ; \lambda)$ is given by the flag-type formula

$$
\begin{equation*}
r_{i j}^{k \ell}=(i-c) \delta_{i}^{\ell} \delta_{j-1}^{k}-(j-c) \delta_{i-1}^{\ell} \delta_{j}^{k}, \quad 0 \leq i, j, k, \ell \leq \operatorname{dim}(V)-1, \tag{25}
\end{equation*}
$$

where c is an arbitrary constant. [In our case $c=1$, but this constant can be adjusted to any desired value by an appropriate nonlinear transformation; in particular, we can make

$$
\begin{equation*}
c=\frac{\operatorname{dim}(V)-1}{2} \tag{26}
\end{equation*}
$$

to have the determinant in $G L(V)$ being central in the induced Lie-Poisson structure [2]. In this language, the R-matrix (20)-(21) defines the Quantum Group $\operatorname{Mat}_{h ; \lambda}(3)$, a 3 -dimensional analog of the 2-dimensional Quantum Group $\operatorname{Mat}_{h}(2)$.] The checking of the Artin relation for the R-matrix (20)-(21) is easy but tedious; the mirror property (24) cuts the verification procedure by $1 / 3$; there are still more symmetries present in this R-matrix which will allow another $1 / 3$ of the checking labor to be avoided.

How many additional constants should one expect when quantizing a skewsymmetric classical r-matrix and requiring the Quantum R-matrix to be skewsymmetric and mirrorsymmetric? For the case of the r-matrix (25), I expect the total number of additional parameters (the λ 's) to be

$$
\begin{equation*}
\operatorname{dim}(V)-2, \tag{27}
\end{equation*}
$$

and in general it probably could never be larger no matter what r is; dropping off the mirror-symmetry condition increases the number of possible parameters by 1 .

References

[1] Drinfel'd V.G., On Constant Quasiclassical Solutions of Quantum Yang-Baxter Equation, Sov. Math. Dokl., 1983, V.28, 667-671.
[2] Kupershmidt B.A., Poisson Relations Between Minors and their Consequences, J. Phys. A, 1994, V.27, L507-L513.

