
Journal of Nonlinear Mathematical Physics 1999, V.6, N 1, 99–119. Article

Dynamical Correlation Functions for

an Impenetrable Bose Gas with Neumann

or Dirichlet Boundary Conditions

Takeo KOJIMA

Department of Mathematics, College of Science and Technology, Nihon University,
1-8, Kanda-Surugadai, Chiyoda Tokyo 101, Japan
E-mail: kojima@math.cst.nihon-u.ac.jp

Received September 09, 1998; Accepted September 28, 1998

Abstract

We study the time and temperature dependent correlation functions for an impenetra-
ble Bose gas with Neumann or Dirichlet boundary conditions 〈ψ(x1, 0)ψ†(x2, t)〉±,T .
We derive the Fredholm determinant formulae for the correlation functions, by means
of the Bethe Ansatz. For the special case x1 = 0, we express correlation functions with
Neumann boundary conditions 〈ψ(0, 0)ψ†(x2, t)〉+,T , in terms of solutions of nonlinear
partial differential equations which were introduced in [1] as a generalization of the
nonlinear Schrödinger equations. We generalize the Fredholm minor determinant for-
mulae of ground state correlation functions 〈ψ(x1)ψ†(x2)〉±,0 in [2], to the Fredholm
determinant formulae for the time and temperature dependent correlation functions
〈ψ(x1, 0)ψ†(x2, t)〉±,T , t ∈ R, T ≥ 0.

1 Introduction

In the standard treatment of quantum integrable models, one starts with a finite box
and impose periodic boundary conditions, in order to ensure integrability. Recently, there
has been increasing interest in exploring other possible boundary conditions compatible
with integrability. These other possible boundary conditions are called “open boundary
conditions”.

With open boundary conditions, the works on the two dimensional Ising model are
among the earliest. By the help of graph theoretical approach, B.M. McCoy and T.T. Wu
[3] studied the two dimensional Ising model with open boundary conditions. They cal-
culated the local magnetizations. E.K. Sklyanin [4] began the Bethe Ansatz approach to
open boundary problems. M. Jimbo et.al. [5] studied the antiferromagnetic XXZ chains
with open boundary conditions and derived an integrable representation of correlation
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functions, using Sklyanin’s algebraic Bethe Ansatz framework and representation theoret-
ical approach invented by Kyoto school [6, 7]. T. Kojima [2] studied the ground state
correlation functions for an impenetrable Bose gas with open boundary conditions:

〈ψ(x1)ψ†(x2)〉.
Kojima derived the Fredholm minor determinant representations for the ground state
correlation functions by the help of fermions, which have the integral kernel:

sin(λ − µ)
λ − µ

± sin(λ + µ)
λ + µ

.

The integral intervals depend on the space parameter x1, x2. In this paper we study an
impenetrable Bose gas with open boundary conditions. We are interested in the finite-
temperature dynamical correlation functions:

〈ψ(x1, 0)ψ†(x2, t)〉±,T .

We derive the Fredholm determinant representations for the dynamical correlation func-
tions by the coordinate Bethe Ansatz, which have the integral kernel:√

ϑ(λ) (L(λ, µ) ± L(λ,−µ))
√

ϑ(µ),

where we have used

L(λ, µ) =
e−

1
2
it(λ2+µ2)

λ − µ

{
eitλ

2
sin(x1(λ − µ)) + eitµ

2
sin(x2(λ − µ))

+
2
π

P.V.

∫ ∞

−∞

(
1

s − µ
− 1

s − λ

)
eits

2
sin((s − µ)x1) sin((s − λ)x2)ds

}
.

(1.1)

Here the notation P.V. represents Cauchy’s principle value and the measure ϑ(λ) is
given by

ϑ(λ) =
1

1 + exp
(
λ2−h
T

) . (1.2)

For an impenetrable Bose gas without boundaries, V. Korepin and N. Slavnov [8] has
derived the Fredholm determinant formulae for the dynamical correlation functions.

To describe the 2n point dynamical correlation functions for an impenetrable Bose gas
without boundaries, N. Slavnov [1] introduced a system of nonlinear partial differential
equations, which becomes the nonlinear Schrödinger equation in the simplest case. The
generalization of the nonlinear Schrödinger equations has 2n time variables tj , (1 ≤ j ≤ 2n)
and 2n space variables xj , (1 ≤ j ≤ 2n). In this paper, we consider the dynamical
correlation functions with Neumann boundary conditions for the special case that one
space parameter has the value x1 = 0: 〈ψ(0, 0)ψ†(x, t)〉T,+. We express the dynamical
correlation functions in terms of a solution of Slavnov’s generalization of the nonlinear
Schrödinger equations. The differential equations, which describe four-point correlation
functions without boundaries:

〈ψ(x1, t1)ψ†(x2, t2)ψ(x3, t3)ψ†(x4, t4)〉T ,
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describe the dynamical correlation functions with Neumann boundary conditions:

〈ψ(0, 0)ψ†(x, t)〉T,+.

Now a few words about the organization of the paper. In Section 2 we formulate the
problem and summarize the main results. In Section 3 we obtain the determinant formulae
for the field form factors. In Section 4 we obtain the Fredholm determinant representation
for the dynamical correlation functions. In Section 5 we consider the completely integrable
differential equation which describes the 2-point dynamical correlation functions with
Neumann boundary conditions. In Section 6 we consider the special case that time t = 0
and derive the Fredholm minor determinant representations for the finite-temperature
fields correlation functions. We show that our Fredholm formulae coincides with the one
which has been obtained [2] at temperature T = 0.

2 Formulation and Results

The purpose of this section is to formulate the problem and summarize the main results.
The Hamiltonian of our model is given by

H =
∫ L

0
dx
(
∂xψ

†∂xψ + cψ†ψ†ψψ − hψ†ψ
)

+ h0

(
ψ†(0)ψ(0) − ψ†(L)ψ(L)

)
.

Here the fields ψ(x) and ψ†(x) (x ∈ R) are canonical Bose fields given by

[ψ(x), ψ†(y)] = δ(x − y), [ψ(x), ψ(y)] = [ψ†(x), ψ†(y)] = 0, (x, y ∈ R),

and L > 0 is the size of box. The parameters h > 0 and h0 ∈ R represent the chemical
potential and the boundary chemical potential respectively. We only consider the case
of the coupling constant c = ∞, so-called “impenetrable case”. The Hamiltonian H acts
on the Fock space of the Bose fields defined by the following relations between the Fock
vacuum |0〉 and the Bose fields:

〈0|ψ†(x) = 0, ψ(x)|0〉 = 0, 〈0|0〉 = 1.

A N -particle state vector |ΨN 〉 is given by

|ΨN 〉 =
∫ L

0
dz1 . . .

∫ L

0
dzNψN (z1, . . . , zN )ψ†(z1) . . . ψ†(zN )|0〉,

where the integrand ψN (z1, . . . , zN ) is a C-valued function. The eigenvector problem:
H |ΨN 〉 = EN |ΨN 〉, (EN ∈ R), is equivalent to the quantum mechanics problem defined
by the following four conditions of the integrand function ψN (z1, . . . , zN ).

1. The wave function ψN = ψN (z1, . . . , zN ) satisfies the free-particle Schrödinger equa-
tion in the case of variables 0 < zi �= zj < L:

−
N∑
j=1

(
∂

∂zj

)2

ψN (z1, . . . , zN ) = EN · ψN (z1, . . . , zN ),

(0 < zi �= zj < L, EN ∈ R).
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2. The wave function ψN is symmetric with respect to the variables:

ψN (z1, . . . , zN ) = ψN (zσ(1), . . . , zσ(N)), (σ ∈ SN ).

3. The wave function ψN satisfies the integrable open boundary conditions:(
∂

∂zj
− h0

)
ψN

∣∣∣∣
zj=0

= 0,

(
∂

∂zj
+ h0

)
ψN

∣∣∣∣
zj=L

= 0, (j = 1, . . . , N).

4. The wave function ψN vanishes whenever the coordinates coincide:

ψN (z1, . . . , zi, . . . , zj , . . . , zN )|zi=zj
= 0.

This condition corresponds to the condition: c → ∞.

The wave functions ψN which satisfy the above four conditions were constructed [2].
They are parameterized by the spectral parameters

ψN (z1, . . . , zN |λ1, . . . , λN )

= Cons.
∏

1≤j<k≤N

sgn(zj − zk) det
1≤j,k≤N

(λj cos(λjzk) + h0 sin(λjzk)) .

Here the function sgn(x) =
x

|x| and the spectral parameters 0 ≤ λ1 < λ2 < · · · < λN are

determined by the so-called Bethe Ansatz equations:

λj =
π

L
Ij , (Ij ∈ N, j = 1, 2, . . . , N). (2.1)

Because the coupling constant c → ∞, the Bethe Ansatz equations become simple. The
constant factor “Cons.” is determined by

〈ΨN (λ1, . . . , λN )|ΨN (λ1, . . . , λN )〉 = (2L)N .

The eigenvalue EN ({λ}):

H |ΨN (λ1, . . . , λN )〉ε = EN ({λ})|ΨN (λ1, . . . , λN )〉ε,
is given by

EN ({λ}) =
N∑
j=1

(λ2
j − h).

We assume that the set {|ΨN (λ1, . . . , λN )〉}all{λ}N N∈N is a basis of physical space of
this model. Here the index all{λ}N represents all the solutions of the Bethe Ansatz
equations (2.1). This type assumption is usually called “Bethe Ansatz”. The following
lemma is a foundation of our analysis.
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Lemma 2.1 If the boundary condition h0 takes the special value h0 = 0,∞, the eigenvec-
tors |Ψ({λ})〉 satisfy orthogonality relations

〈ΨN (λ1, . . . , λN )|ΨN (µ1, . . . , µN )〉 = (2L)N
N∏
j=1

δλj ,µj , (h0 = 0,∞). (2.2)

Here δλ,µ is Kronecker Delta.

To prove the above lemma, we have used the Bethe-Ansatz equations of the spectral
parameters. In the sequel we use the orthogonality relations of the eigenstates, therefore
we concentrate our attentions to the case of the special boundary conditions: h0 = 0,∞.
The boundary conditions h0 = 0 and h0 = ∞ are called Neumann, Dirichlet, respectively.
In the sequel we use the following abberivations

|ΨN (λ1, . . . , λN )〉+ for Neumann, |ΨN (λ1, . . . , λN )〉− for Dirichlet.

The constant “Cons.” is given by

Cons. =



2N√
(1 + δλ1,0)N !

 N∏
j=1

λj

−1

, for Neumann,

1√
N !

(
2i
h0

)N

, for Dirichlet.

By using the orthogonal relations (2.2) and the so-called “Bethe Ansatz”, we arrive at
the completeness relation:

id =
∞∑

N=0

∑
all{λ}N

|ΨN (λ1, . . . , λN )〉ε ε〈ΨN (λ1, . . . , λN )|
ε〈ΨN (λ1, . . . , λN )|ΨN (λ1, . . . , λN )〉ε . (2.3)

The Bose fields ψ(x, t), ψ†(x, t) are developed by the time t by

i∂tψ = [ψ,H], i∂tψ
† = [ψ†, H].

More explicitly the time dependence of the Bose fields are written by

ψ(x, t) = eiHtψ(x)e−iHt, ψ†(x, t) = eiHtψ†(x)e−iHt.

In this paper we are interested in the dynamical correlation functions〈ψ(x1, t1)ψ†(x2, t2)〉ε,T
defined by the following way. For the nonzero temperature T > 0, the dynamical correla-
tion functions for N state are defined by the summation of the every states:

〈ψ(x1, t1)ψ†(x2, t2)〉ε,N,T

=

 ∑
all{λ}N

exp
(
−EN ({λ})

T

)
−1 ∑

all{λ}N

exp
(
−EN ({λ})

T

)

× ε〈ΨN (λ1, . . . , λN )|ψ(x1, t1)ψ†(x2, t2)|ΨN (λ1, . . . , λN )〉ε
ε〈ΨN (λ1, . . . , λN )|ΨN (λ1, . . . , λN )〉ε

}
,
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where the index ε = ± represents the boundary conditions. Now the index “+” represents
the dynamical correlation functions with Neumann boundary conditions. The index “−”
represents the dynamical correlation functions with Dirichlet boundary conditions. For
the ground state case T = 0, the dynamical correlation functions for N state are defined
by the vacuum expectation value of the ground state:

〈ψ(x1, t1)ψ†(x2, t2)〉ε,N,0

= ε〈ΨN (λ1, . . . , λN )|ψ(x1, t1)ψ†(x2, t2)|ΨN (λ1, . . . , λN )〉ε
ε〈ΨN (λ1, . . . , λN )|ΨN (λ1, . . . , λN )〉ε ,

where the spectral parameters (λ1, . . . , λN ) are given by

λj =


π

L
(j − 1), for Neumann,

π

L
j, for Dirichlet.

In this paper we are interested in the thermodynamic limit of the correlation functions,
for the temperature T ≥ 0 and the time t1, t2 ∈ R. For the nonzero temperature T > 0,
the dynamical correlation functions in the thermodynamic limit are defined by

〈ψ(x1, t1)ψ†(x2, t2)〉ε,T = lim
N,L→∞
N
L

=D(T )

〈ψ(x1, t1)ψ†(x2, t2)〉ε,N,T .

Here the density D(T ) =
N

L
[9] is given by

D(T ) =
1
π

∫ ∞

0
ϑ(λ)dλ, (2.4)

where the Fermi weight ϑ(λ) is defined in (1.2). For the ground state T = 0, the dynamical
correlation function in the thermodynamic limit is defined by

〈ψ(x1, t1)ψ†(x2, t2)〉ε,0 = lim
N,L→∞
N
L

=D(0)

〈ψ(x1, t1)ψ†(x2, t2)〉ε,N,0.

Here the density D(0) =
N

L
can be chosen arbitrary. In this paper we give the Fredholm de-

terminant representations for the dynamical correlation functions 〈ψ(x1, t1)ψ†(x2, t2)〉ε,T ,
(T ≥ 0, ε = ±). Because the following relation hols:

〈ψ(x1, 0)ψ†(x2, t2 − t1)〉ε,T = 〈ψ(x1, t1)ψ†(x2, t2)〉ε,T ,

we only need one time parameter t = t2 − t1, to describe correlation functions. In the
sequel, we use the abbreviation t = t2 − t1. Let us set

τ(s|x, t) = its2 − ixs, (2.5)

G(x) =
1

2π

∫ ∞

−∞
eτ(s|x,t)ds, (2.6)

and

P (λ|x1, x2) = e−
1
2
itλ2

{
eτ(λ|x1,t) − 2

π
P.V.

∫ ∞

−∞
1

s − λ
eτ(s|x1,t) sin(x2(s − λ))ds

}
.(2.7)

In Section 4 we derive the following formulae.
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Theorem 2.2 In the thermodynamic limit N,L → ∞, such that
N

L
= D, the ground

state dynamical correlation functions have the Fredholm determinant representations

〈ψ(x1, 0)ψ†(x2, t)〉ε,0

= e−iht

(
G(x1 − x2) + εG(x1 + x2) +

1
2π

∂

∂α

)
det
(

1 − 2
π

V̂ε − αÂε

)∣∣∣∣
α=0

,

where the function G(x) is given in (2.6). Here the integral operators V̂ε and Âε are
defined by

(V̂εf)(λ) =
∫ q

0
Vε(λ, µ)f(µ)dµ, (Âεf)(λ) =

∫ q

0
Aε(λ, µ)f(µ)dµ,

where the Fermi sphere q = πD and the integral kernel are given by Neumann or Dirichlet
sum:

Vε(λ, µ) = L(λ, µ) + εL(λ,−µ),

Aε(λ, µ) = ε (P (λ|x1, x2) + εP (−λ|x1, x2)) (P (µ|x2, x1) + εP (−µ|x2, x1)) .

Here we have used the function L(λ, µ) defined in (1.1) and the function P (λ|x1, x2) defined
in (2.7). Here we can choose the density D > 0 arbitrary.

We have succeeded to write the integral kernel by elementary functions:

P.V.

∫ ∞

−∞
eτ(s|y,t)

s − λ
ds,

and trigonometric functions. In Section 4, we consider the finite temperature case, too.

Theorem 2.3 In the thermodynamic limit: N,L → ∞, such that
N

L
= D(T ) (2.4), the

finite temperature dynamical correlation functions have the Fredholm determinant repre-
sentations

〈ψ(x1, 0)ψ†(x2, t)〉ε,T = e−iht

(
G(x1 − x2) + εG(x1 + x2) +

1
2π

∂

∂α

)
×det

(
1 − 2

π
V̂ε,T − αÂε,T

)∣∣∣∣
α=0

.

Here the temperature T > 0 and the integral operators V̂ε,T and Âε,T are defined by

(V̂ε,T f)(λ) =
∫ ∞

0
Vε(λ, µ)ϑ(µ)f(µ)dµ, (Âε,T f)(λ) =

∫ ∞

0
Aε(λ, µ)ϑ(µ)f(µ)dµ,

where the Fermi weight ϑ(λ) is given in (1.2).
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In Section 5, we derive the differential equations for correlation functions for the case
x1 = 0. To describe 2n point dynamical correlation functions for an impenetrabel Bose gas
without boundaries, N. Slavnov [1] introduced a system of nonlinear partial differential
equations, which becomes the nonlinear Schrödinger equation in the simplest case. In
this paper, we express the dynamical correlation functions 〈ψ(0, 0)ψ†(x, t)〉T,+, (T ≥ 0) in
terms of Slavnov’s generalization of the nonlinear Schrödinger equations [1]. For x1 = 0
and Dirichlet boundary case:

〈ψ(0, 0)ψ†(x2, t)〉T,− = 0,

because the wave functions become to zero. We consider the case x1 = 0 and Neumann
boundary conditions. First we consider T = 0 case. Let us set(

Ŵf
)

(λ) =
∫ q

0
W (λ, µ)f(µ)dµ, (q = πD), (2.8)

W (λ, µ) =
sin(x(λ − µ))

λ − µ
+

sin(x(λ + µ))
λ + µ

. (2.9)

Theorem 2.4 The correlation functions for an impenetrable Bose gas with Neumann
boundaries at the ground state are given by the following formulaes:

〈ψ(0, 0)ψ†(x, t)〉0,+ = 2e−iht det
(

1 − 2
π

Ŵ

)
b1,4

(
0 0 −x x
0 0 t t

)
.

Here the integral operator Ŵ is defined in (2.8) and the function b1,4 is a component of
matrix b defined in (5.5).

The matrix b defined in (5.5) satisfies a set of partial differential equations introduced
in [1]:

∂

∂tj
Lk − ∂

∂yk
Mj + [Lk,Mj ] = 0, (1 ≤ j, k ≤ 4). (2.10)

Here we have used

Lj(µ) = µPj + [b, Pj ], Mj(µ) = −µLj(µ) +
∂b

∂yj
,

where we have used the matrix Pj whose components are defined by

(Pj)l,m = iδl,jδm,j . (2.11)

The diffential equations (2.10) describe the logarithmic derivatives of the four point cor-
relation functions without boundaries, too:

〈ψ(y1, t1)ψ†(y2, t2)ψ(y3, t3)ψ†(y4, t4)〉0.
In Section 5, we consider the finite temperature case, too. Let us consider the finite
temperature case T > 0. Let us set(

ŴT f
)

(λ) =
∫ ∞

0
WT (λ, µ)f(µ)dµ, (2.12)

WT (λ, µ) = W (λ, µ)ϑ(µ), (2.13)

where the kernel W (λ, µ) is defined in (2.9) and ϑ(µ) is defined in (1.2).
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Theorem 2.5 The correlation functions for an impenetrable Bose gas with Neumann
boundaries are given by the following formulaes:

〈ψ(0, 0)ψ†(x, t)〉T,+ = 2e−iht det
(

1 − 2
π

ŴT

)
bT1,4

(
0 0 −x x
0 0 t t

)
,

Here the integral operator ŴT is defined in (2.12) and the function bT1,4 is a component of
the matrix bT defined in (5.6).

The matrix bT satisfy a set of diffential equations (2.10), too. (We substitute b to bT .)
T. Kojima [2] derived the Fredholm minor determinants formulae for the ground state

correlation functions: 〈ψ(x1)ψ†(x2)〉0,ε. In Section 6 of this paper, we consider the special
case for the time t = 0 of our Fredholm determinant formulae:

〈ψ(x1, 0)ψ†(x2, 0)〉T,ε, (ε = ±)

and derive the Fredholm minor determinant formulae for temperature T ≥ 0. This Fred-
holm minor determinant formulae for T = 0 coincide with the one which has been ob-
tained [2]. Let us set(

θ̂
(y1,y2)
ε,T f

)
(ξ) =

∫ ∞

0

(
(E(y1 − ξ′) + E(y2 − ξ′))θε,T (ξ, ξ′)

)
f(ξ′)dξ′, (2.14)

where

θε,T (ξ, η) =
∫ ∞

0
ϑ(ν) {cos((ξ − η)ν) + ε cos((ξ + η)ν)} dν,

and ϑ(λ) is defined in (1.2). Here E(ξ) represents the step function

E(ξ) =
{

1, for ξ ≥ 0,
0, for ξ < 0.

Theorem 2.6 For the temperature T ≥ 0, the field correlation functions have the first
Fredholm minor determinants representations

〈ψ(x1)ψ†(x2)〉ε,T =
1
2

det
(

1 − 2
π

θ̂
(x1,x2)
ε,T

∣∣∣∣ x2

x1

)
,

where the integral operator θ̂
(x1,x2)
ε,T is defined in (2.14).

Theorem 2.7 [2] The ground state correlation functions have the first Fredholm minor
determinant formulae

〈ψ(x1)ψ†(x2)〉ε,0 =
1
2

det
(

1 − 2
π

K̂(x1,x2)
ε

∣∣∣∣ x2

x1

)
.

Here the integral operator is defined by(
K̂(x1,x2)

ε f
)

(ξ) =
∫ x2

x1

Kε(ξ, ξ′)f(ξ′)dξ′,

where

Kε(ξ, η) =
sin D(ξ − η)

ξ − η
+ ε

sin D(ξ + η)
ξ + η

.

Here the density D =
N

L
can be chosen arbitrary.
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3 Form Factors

The purpose of this section is to derive the determinant formulae for the form factors.
First we prepare a lemma.

Lemma 3.1 For the sequences {fj,k}j=1,...,N+1, k=1,...,N and {gj}j=1,...,N+1, the following
holds:

∑
σ∈SN+1

sgn σfσ(N+1)

N∏
j=1

gσ(j),j =
(

fN+1 +
∂

∂α

)
det

1≤j,k≤N
(gj,k − αfj · gN+1,k)

∣∣∣∣∣∣
α=0

.(3.1)

Proof. Consider the coset decomposition:

SN+1 = SN (N + 1) ∪ SN (N) · (N,N + 1) ∪ · · · ∪ SN (1) · (1, N + 1),

where SN (j) is permutations of (1, . . . , j − 1, N + 1, j + 1, . . . , N). Rewrite the left side of
the equation (3.1) with respect to the coset decomposition:

(L.H.S.) =
N∑
j=1

gj
∑

τ∈SN (j)

sgn(τ · (j,N + 1))
N∏

k=1
k �=j

fτ(k),k · fτ(N+1),j

+gN+1

∑
τ∈SN (N+1)

sgn(τ · (N + 1, N + 1))
N∏
k=1

fτ(k),k = (R.H.S.)

Q.E.D.

Now let us consider the field form factor:

ε〈ΨN+1(λ1, . . . , λN+1)|ψ†(x)|ΨN (µ1, . . . , µN )〉ε

=
√

N + 1
∫ L

0
dz1 . . .

∫ L

0
dzNψ∗

N+1(z1, . . . , zN , x|λ1, . . . , λN+1)

×ψN (z1, . . . , zN |µ1, . . . , µN )

=
1√

(1 + δλ1,0)(1 + δµ1,0)

∑
σ∈SN+1

sgn σ(e−iλσ(N+1)x + εeiλσ(N+1)x)

×
N∏
j=1

{∫ L

0
dz sgn (z − x)(e−iλσ(j)z + εeiλσ(j)z)(eiµjz + εe−iµjz)

}
.

To derive the third line, we have used a simple fact:

∑
σ,τ∈SN

sgn στ
N∏
j=1

fσ(j),τ(j) = N !
∑
σ∈SN

sgn σ
N∏
j=1

fσ(j),j .

Using lemma 3.1, we arrive at the determinant formulae for the form factors.
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Lemma 3.2 The field form factors have the determinant formula

ε〈ΨN+1(λ1, · · · , λN+1)|ψ†(x)|ΨN (µ1, . . . , µN )〉ε =
(

Cε(x|λN+1) +
∂

∂α

)
× det

1≤j,k≤N
(Iε(x|λj , µk) − αCε(x|λj)Iε(x|λN+1, µk))

∣∣∣∣
α=0

.

Here we have used

Cε(x|λ) =
1√

1 + δλ,0
(e−iλx + εeiλx), (3.2)

Iε(x|λ, µ) =
1√

(1 + δλ,0)(1 + δµ,0)

{
4

λ − µ
sin(x(λ − µ))

+ ε
4

λ + µ
sin(x(λ + µ)) − 2L(δλ,µ + εδλ,0δµ,0)

}
.

(3.3)

We can write the field form factors without using integrals.
From the relation ψ†(x, t) = eiHtψ†(x)e−iHt, the dynamical form factors are given by

ε〈ΨN+1(λ1, . . . , λN+1)|ψ†(x, t)|ΨN (µ1, . . . , µN )〉ε

= exp

it

−h +
N+1∑
j=1

λ2
j −

N∑
j=1

µ2
j


× ε〈ΨN+1(λ1, . . . , λN+1)|ψ†(x)|ΨN (µ1, . . . , µN )〉ε.

(3.4)

4 Correlation Functions

The purpose of this section is to derive the Fredholm determinant formulas of the dynami-
cal correlation functions 〈ψ(x1, t1)ψ†(x2, t2)〉ε,T . First we consider the vacuum expectation
values of fields operators. Using the completeness relation (2.3), the vacuum expectation
values of two fields are given by

ε〈ΨN (µ1, . . . , µN )|ψ(x1, t1)ψ†(x2, t2)|ΨN (µ1, . . . , µN )〉ε
ε〈ΨN (µ1, . . . , µN )|ΨN (µ1, . . . , µN )〉ε

=
∑

all{λ}N+1

ε〈ΨN ({µ})|ψ(x1, t1)|ΨN+1({λ})〉ε ε〈ΨN+1({λ})|ψ†(x2, t2)|ΨN ({µ})〉ε
ε〈ΨN ({µ})|ΨN ({µ})〉ε ε〈ΨN+1({λ})|ΨN+1({λ})〉ε .

Using the equation (3.4) and the following relations:

ε〈ΨN ({µ})|ψ(x1, t1)|ΨN+1({λ})〉ε =ε 〈ΨN+1({λ})|ψ†(x1, t1)|ΨN ({µ})〉∗ε ,
ε〈ΨN ({λ})|ΨN ({λ})〉ε = (2L)N ,

we obtain
1

(N + 1)!

(
1

2L

)2N+1

e−i(t2−t1)(h+
∑N

j=1 µ
2
j )
∑

λ1∈ π
L
N

· · ·
∑

λN+1∈ π
L
N

ei(t2−t1)
∑N+1

j=1 λ2
j

× ε〈ΨN+1({λ})|ψ†(x1)|ΨN ({µ})〉∗ε ε〈ΨN+1({λ})|ψ†(x2)|ΨN ({µ})〉ε.
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The translation invariance of time holds

ε〈ΨN ({µ})|ψ(x1, t1)ψ†(x2, t2)|ΨN ({µ})〉ε
= ε〈ΨN ({µ})|ψ(x1, 0)ψ†(x2, t2 − t1)|ΨN ({µ})〉ε.

In the sequel we set the abberiviation t = t2 − t1. Remember a following simple fact. For
sequences {fj1,...,jn}j1,...,jn∈I , {gj1,...,jn}j1,...,jn∈I , (I: some index set), the following holds∑

j1,...,jn∈I
(Sym f)j1,...,jn(Sym g)j1,...,jn =

∑
j1,...,jn∈I

fj1,...,jn (Sym g)j1,...,jn .

Here we have used

(Sym f)j1,...,jn =
1
n!

∑
σ∈Sn

fjσ(1),...,jσ(n)
.

The form factors have the determinant formulae in lemma 3.2 and

ε〈ΨN+1({λ})|ψ†(x)|ΨN ({µ})〉ε =
∑

σ∈SN+1

Cε(x|λσ(N+1))
N∏
j=1

Iε(x|λσ(j), µj),

We obtain

e
−it

(
h+

N∑
j=1

µ2
j

) (
1

2L

)2N+1

×
∑

λ1∈ π
L
N

· · ·
∑

λN+1∈ π
L
N

(
eitλ

2
N+1C∗

ε (x1|λN+1)Cε(x2|λN+1) +
∂

∂α

)

× det
1≤j,k≤N

(
eitλ

2
j Iε(x1|λj , µk)Iε(x2|λj , µj) − αeitλ

2
j C∗

ε (x1|λj)Iε(x2|λj , µj)

× eitλ
2
N+1Cε(x2|λN+1)Iε(x1|λN+1, µk)

)∣∣∣
α=0

.

The j th line of the above matrix only depends on λj not on λk, (k �= j), therefore we can
insert the summations

∑
λ1

· · ·∑λN+1
into the matrix. Now we arrive at the following.

Proposition 4.1 The vacuum expectation values of two fields have the determinant for-
mulas

ε〈ΨN (µ1, . . . , µN )|ψ(x1, 0)ψ†(x2, t)|ΨN (µ1, . . . , µN )〉ε
ε〈ΨN (µ1, . . . , µN )|ΨN (µ1, . . . , µN )〉ε

= e−ith

 1
2L

∑
s∈ π

L
N

εeits
2
Cε(x1|s)Cε(x2|s) +

∂

∂α



× det
1≤j,k≤N

( 1
2L

)2 ∑
s∈ π

L
N

eits
2
Jε(x1|s, µk)Jε(x2|s, µj)
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−αε
1

2L

 1
2L

∑
s∈ π

L
N

eits
2
Cε(x1|s)Jε(x2|s, µj)



×
 1

2L

∑
s∈ π

L
N

eits
2
Cε(x2|s)Jε(x1|s, µk)

∣∣∣∣∣∣
α=0

.

Here we have used

Jε(x|s, µ) = e−
1
2
itµ2

Iε(x|s, µ).

and functions Cε(x|s) and Iε(x|s, µ) are defined in (3.2) and (3.3), respectively.

The size of the above matrix depends on the state number N , however, the element of
the matrix does not depend on N . By calculations, we obtain

1
2L

∑
s∈ π

L
N

εeits
2
Cε(x1|s)Cε(x2|s)

=
1

2L

∑
s∈ π

L
Z

eits
2−is(x1−x2) + ε

1
2L

∑
s∈ π

L
Z

eits
2−is(x1+x2),

(4.1)

1
2L

∑
s∈ π

L
N

eits
2
Cε(x1|s)Jε(x2|s, µ) =

e−
1
2
itµ2√

1 + δµ,0

[{
2
π

(π

L

)

×
∑
s∈ π

L
Z

eits
2−isx1

s − µ
sin(x2(s − µ)) − eitµ

2−iµx1

}
+ ε{µ ↔ (−µ)}

]
,

(4.2)

and (
1

2L

)2 ∑
s∈ π

L
N

eits
2
Jε(x1|s, µ)Jε(x2|s, λ) = δλ,µ − 2

π

(π

L

) e−
1
2
it(λ2+µ2)√

(1 + δλ,0)(1 + δµ,0)

×
[

1
λ − µ

{
eitλ

2
sin(x1(λ − µ)) + eitµ

2
sin(x2(λ − µ))

− 2
π

(π

L

) ∑
s∈ π

L
Z

eits
2

(
1

s − λ
− 1

s − µ

)
sin((s − µ)x1) sin((s − λ)x2)

}

+ε
1

λ + µ
{µ ↔ (−µ)}

]
.

(4.3)

It is straightforwards to take the thermodynamic limit of the right hand side of the equa-
tions (4.1), (4.2) and (4.3). We arrive at Theorem 2.2. Next we consider the finite tem-
perature thermodynamics. By statistical mechanics arguments, at temperature T > 0, the
thermodynamic equilibrium distribution of the spectral parameters is given by the Fermi
weight ϑ(λ) (1.2):

lim
(π

L

) 1
λj+1 − λj

= ϑ(λj).
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Therefore the density is given by

D(T ) =
N

L
=

1
π

∫ ∞

0
ϑ(λ)dλ.

Now we arrive at Theorem 2.3.

5 Differential equations

In this section we will study the most interesting case 〈ψ(0, 0)ψ†(x, t)〉ε,T , which only ap-
pears in open boundary model. For Dirichlet boundary case ε = −, 〈ψ(0, 0)ψ†(x, t)〉−,T = 0,
because the wave functions become zero. We will consider Neumann boundary case
〈ψ(0, 0)ψ†(x, t)〉+,T and derive the differentaial equations which describe the dynamical
correlation functions.

5.1 Preparations

First we will consider the zero temperature and general x1, x2 case.
By using the relation:

∂

∂α
det
(

1 − 2
π

V̂ε − αÂε

)∣∣∣∣
α=0

= −det
(

1 − 2
π

V̂ε

)
Tr

((
1 − 2

π
V̂ε

)−1

Âε

)
we obtain the following formulae

〈ψ(x1, 0)ψ†(x2, t)〉ε,0 = e−iht det
(

1 − 2
π

V̂ε

)

×
(

G(x1 − x2) + εG(x1 + x2) − 1
2π

Tr

((
1 − 2

π
V̂ε

)−1

Âε

))
.

Define the integral operator R̂ε by(
R̂εf

)
(λ) =

∫ q

0
Rε(λ, µ)f(µ)dµ.

The kernel function Rε(λ, µ) is characterized by the following integral equation:(
1 − 2

π
V̂ε

)(
1 +

2
π

R̂ε

)
= 1.

Define the integral operator Ŝ and L̂ by(
Ŝf
)

(λ) =
∫ q

−q
S(λ, µ)f(µ)dµ,

(
L̂f
)

(λ) =
∫ q

−q
L(λ, µ)f(µ)dµ,

where kernel function L(λ, µ) is defined in (1.1). The kernel function S(λ, µ) is character-
ized by the following integral equation:(

1 − 2
π

L̂

)(
1 +

2
π

Ŝ

)
= 1.



Dynamical Correlation Functions for an Impenetrable Bose Gas 113

Lemma 5.1 The kernel functions are related by the following linear relation

Rε(λ, µ) = S(λ, µ) + εS(λ,−µ).

Proof. The following characteristic relation holds:

S(λ, µ) − 2
π

∫ q

0
(L(λ, ν)S(ν, µ) + L(λ,−ν)S(−ν, µ)) dν = L(λ, µ).

Using the relations ε2 = 1, (ε = ±) and L(λ,−µ) = L(−λ, µ), we obtain the following
characteristic relation:

(S(λ, µ) + εS(λ,−µ)) − 2
π

∫ q

0
(S(λ, ν) + εS(λ,−ν)) (L(ν, µ) + εL(ν,−µ)) dν

= L(λ, µ) + εL(λ,−µ).

Q.E.D.

By using lemma 5.1, we obtain

Tr

((
1 − 2

π
V̂ε

)−1

Âε

)
= Tr

((
1 +

2
π

R̂ε

)
Âε

)

= Tr
((

1 +
2
π

Ŝ

)
Û

)
+ ε Tr

((
1 +

2
π

Ŝ

)
Û Âsy

)
.

Here we have used(
Ûf
)

(λ) =
∫ q

−q
U(λ, µ)f(µ)dµ, where U(λ, µ) = P (λ|x1, x2)P (µ|x2, x1). (5.1)

Here we have used(
Âsyf

)
(λ) = f(−λ).

In the sequel of this section we will consider the special case that x1 = 0, x2 = x and
ε = +. The following simplication occurs:

L(λ, µ)|x1=0,x2=x = e
1
2
it(−λ2+µ2) sin(x(λ − µ))

λ − µ
.

Therefore det
(

1 − 2
π

V̂+

)∣∣∣∣
x1=0,x2=x

dose not depend on time variable t:

det
(

1 − 2
π

V̂+

)∣∣∣∣
x1=0,x2=x

= det
(

1 − 2
π

Ŵ

)
,

where the operator Ŵ is defined in (2.8). By using the relation:

P (−λ|x1, x2) = P (λ| − x1, x2),
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we obtain the simplication:

Tr

((
1 − 2

π
V̂+

)−1

Â+

)
= 2 Tr

((
1 +

2
π

Ŝ

)
Û

)∣∣∣∣
x1=0,x2=x

.

We arrive at formulae

〈ψ(0, 0)ψ†(x, t)〉+,0

= 2e−iht det
(

1 − 2
π

Ŵ

) (
G(x) − 1

2π
Tr
((

1 +
2
π

Ŝ

)
Û

))∣∣∣∣
x1=0,x2=x

.

5.2 Differential Equations

In this section we will find the partial differential equations of variables t and x. By
discussion in the previous subsection, it is enough to consider the factor:

G(x1 + x2) − 1
2π

Tr
((

1 +
2
π

Ŝ

)
Û

)
.

It is convenient to consider the problem in more general situation. We introduce the
auxiliary functions Gp(λ) and the auxiliary vectors eLp (λ) and eRp (µ) defined by

Gp(λ) =
1

2π
P.V.

∫ ∞

−∞
1

s − λ
eτ(s|y2p−y2p−1 ,t2p−t2p−1)ds,

eLp (λ) =
(

−eit2p−1λ2−iy2p−1λ eit2p−1λ2−iy2p−1λGp(λ)
)

,

eRp (µ) =
2
π

(
e−it2pµ2+iy2pµGp(µ)

e−it2pµ2+iy2pµ

)
.

Let us set the integral operators K̂p by(
K̂pf

)
(λ) =

∫ ∞

−∞
Kp(λ, µ)f(µ)dµ,

where we have used the kernel defined by

Kp(λ, µ) =
π

2
1

λ − µ
eLp (λ)eRp (µ).

Let us set

EL(λ) =
(
EL

1 (λ) EL
2 (λ) EL

3 (λ) EL
4 (λ)

)
=
(

eL1 (λ)
((

1 + 2
π K̂1

)
eL2

)
(λ)

)
,

ER(µ) =


ER

1 (µ)
ER

2 (µ)
ER

3 (µ)
ER

4 (µ)

 =

( (
eR1

(
1 + 2

π K̂2

))
(µ)

eR2 (µ)

)
.
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By direct calculations we obtain the closed differential equations of the above vectors:

∂

∂yj
ER(µ) = lj(µ)ER(µ),

∂

∂tj
ER(µ) = mj(µ)ER(µ),

lj(µ) = µPj + [Q,Pj ], mj(µ) = −µlj(µ) +
∂Q

∂yj
.

Here we have used the matrix Pj defined in (2.11) and

Q =


− 1

2π

∫ ∞

−∞
eτ(s|y2−y1,t2−t1)dsσ+ −

∫ ∞

−∞
eR1 (s)eL2 (s)ds

0 − 1
2π

∫ ∞

−∞
eτ(s|y4−y3,t4−t3)dsσ+

 , (5.2)

where τ(s|y, t) is defined in (2.5). Define the integral operator M̂ by(
M̂f

)
(λ) =

∫ q

0
M(λ, µ)f(µ)dµ,

where we have used the kernel defined by

M(λ, µ) = −π

2
EL(λ)ER(µ)

λ − µ
. (5.3)

By direct calculations we obtain the following Propositions.

Proposition 5.2 The kernel L(λ, µ) is the special case of the kernel M(λ, µ)

L(λ, µ|t, x1, x2) = M

(
λ, µ

∣∣∣∣ −x1 x1 −x2 x2

0 0 t t

)
.

Define the vectors FL(λ) and FR(µ) by the integral equations

FL(λ) =
(
FL

1 (λ) FL
2 (λ) FL

3 (λ) FL
4 (λ)

)
= −

((
1 − 2

π
M̂

)−1

EL

)
(λ),

FR(µ) =


FR

1 (µ)
FR

2 (µ)
FR

3 (µ)
FR

4 (µ)

 =

(
ER

(
1 − 2

π
M̂

)−1
)

(µ).

By usual calculation procedure described in [10], we obtain the closed differential equations

∂

∂yj
FR(µ) = Lj(µ)FR(µ),

∂

∂tj
FR(µ) = Mj(µ)FR(µ), (5.4)

Lj(µ) = µPj + [b, Pj ], Mj(µ) = −µLj(µ) +
∂b

∂yj
.
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Here we have used matrix b defined by

b = B + Q, (5.5)

where Q is defined in (5.2) and the matrix B is defined by

Bj,k = Bj,k

(
y1 y2 y3 y4

t1 t2 t3 t4

)
=
∫ q

−q
FR
j (λ)EL

k (λ)dλ.

The compatibility condition of the above differential equations (5.4) yields the differential
equations (2.10).

Proposition 5.3 A factor of correlation functions can be written by an element of the
matrix b

G(x1 + x2) − 1
2π

Tr
((

1 +
2
π

Ŝ

)
Q̂

)
= b1,4

( −x1 x1 −x2 x2

0 0 t t

)
.

Proof. The kernel U(λ, µ) (5.1) is related to the vectors ER(λ) and EL(µ)

Q(λ, µ) = −2π ER
1 (λ)EL

4 (µ)
∣∣
y1=−y2=−x1;y3=−y4=−x2;t1=t2=0;t3=t4=t

.

By using Proposition 5.2, we arrive at the following

Tr
((

1 +
2
π

Ŝ

)
Û

)
= −2πB1,4

( −x1 x1 −x2 x2

0 0 t t

)
.

Q.E.D.

Now we arrive at Theorem 2.4. For finite temperature case T > 0, we prepare some
functions. Let us set

(MT f) (λ) =
∫ ∞

−∞
M(λ, µ)ϑ(µ)dµ,

where ϑ(µ) is defined in (1.2) and M(λ, µ) is defined in (5.3). Define the vectors FL(λ)T
and FR(µ)T by the integral equations

FL(λ)T = −
((

1 − 2
π

M̂T

)−1

EL

)
(λ), FR(µ)T =

(
ER

(
1 − 2

π
M̂T

)−1
)

(µ).

Define the matrix bT by

bT = BT + Q, (5.6)

where Q is defined in (5.2) and the matrix BT is defined by

BT
j,k = BT

j,k

(
y1 y2 y3 y4

t1 t2 t3 t4

)
=
∫ ∞

−∞
FR
j (λ)TEL

k (λ)Tdλ.

By the similar discussion as temperature T = 0 case, we arrive at Theorem 2.5.
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6 The time-independent Case

The purpose of this section is to derive the Fredholm minor determinant representations
for finite-temperature fields correlation functions:

〈ψ(x1)ψ†(x2)〉ε,T .

Our Fredholm minor determinant representations coincide with the one which has been
obtained in [2]. When we take the limit t → 0, the following simplifications occur:

G(x) → 0, L(λ, µ) → 1
λ − µ

(sin(x1(λ − µ)) + sin(x2(λ − µ))) ,

P (λ|x1, x2) → e−ix1λ.

Therefore we obtain

〈ψ(x1)ψ(x2)〉ε,T =
1

2π

(
∂

∂α

)
det
(

1 − 2
π
̂̃V ε,T − α̂̃W (x1,x2)

ε,T

)∣∣∣∣
α=0

= − 1
2π

det
(

1 − 2
π
̂̃V ε,T

)
Tr

[(
1 − 2

π
̂̃V ε,T

)−1 ̂̃W (x1,x2)

ε,T

]
.

Here the integral operators are given by(̂̃V ε,T f
)

(λ) =
∫ ∞

0
Ṽε,T (λ, µ)f(µ)dµ,

(̂̃W (ξ,η)

ε,T f

)
(λ) =

∫ ∞

0
W̃

(ξ,η)
ε,T (λ, µ)f(µ)dµ,

where the integral kernels are given by

Ṽε,T (λ, µ) =
√

ϑ(λ)
[

1
λ − µ

{sin(x1(λ − µ)) + sin(x2(λ − µ))}

+ ε
1

λ + µ
{sin(x1(λ + µ)) + sin(x2(λ + µ))}

]√
ϑ(µ),

W̃
(ξ,η)
ε,T (λ, µ) =

√
ϑ(λ)ε(eiξλ + εe−iξλ)(eiηµ + εe−iηµ)

√
ϑ(µ).

Pay attention to the Fourier transforms:

f(λ) =
1

2π
√

ϑ(λ)

∫ ∞

−∞
dξeiλξϕ(ξ), ϕ(ξ) =

∫ ∞

−∞
dλ
√

ϑ(λ)e−iλξf(λ).

The following identity holds for functions fε(ελ) = εf(ελ):∫ ∞

0
dµfε(µ)

√
ϑ(λ)ϑ(µ)

{
1

λ − µ
sin(x(λ − µ)) + ε

1
λ + µ

sin(x(λ + µ))
}

=
1

2π
√

ϑ(λ)

∫ ∞

−∞
dξeiλξ

(∫ x

0
dξ′θε,T (ξ′, ξ)

)∫ ∞

−∞
dµfε(µ)

√
ϑ(µ)e−iξ′µ,

where

θε,T (ξ, η) =
∫ ∞

0
ϑ(ν) {cos((ξ − η)ν) + ε cos((ξ + η)ν)} dν.
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Therefore we arrive at

det
(

1 − 2
π
̂̃V ε,T

)
= det

(
1 − 2

π

(
θ̂
(x1,x2)
ε,T

))
,

where the integral operator θ̂
(y1,y2)
ε,T is defined by(

θ̂
(y1,y2)
ε,T f

)
(ξ) =

∫ ∞

0

(
(E(y1 − ξ′) + E(y2 − ξ′))θε,T (ξ, ξ′)

)
f(ξ′)dξ′.

Here E(ξ) represents the step function

E(ξ) =
{

1, for ξ ≥ 0,
0, for ξ < 0.

Let us set

∆ε(ξ, η) =
det
(

1 − 2
π

(
θ̂
(x1,x2)
ε,T

) ∣∣∣∣ η
ξ

)
det
(

1 − 2
π

(
θ̂
(x1,x2)
ε,T

)) .

Here we have used the following notation of the r-th Fredholm minor determinants:

det
(

1 − λK̂I

∣∣∣∣ ξ1 · · · ξr
η1 · · · ηr

)

=
∞∑
n=0

(−λ)n+r

n!

∫
I
dλ1 · · ·

∫
I
dλnKn+r

(
ξ1 · · · ξr λ1 · · · λn

η1 · · · ηr λ1 · · · λn

)
,

where we have used

Km

(
ξ1 · · · ξm
η1 · · · ηm

)
= det

1≤j,k≤m
(K(ξj , ηk)) .

The integral operator K̂I is defined by using the integral kernel K(λ, µ) and the integral
interval I:

(K̂If)(λ) =
∫
I
K(λ, µ)f(µ)dµ.

From the above definition of the Fredholm minor determinants, the function ∆ε(ξ, η)
satisfies the integral equation:

∆ε(ξ, η) − 2
π

∫ x2

−x1

θε,T (ξ, ξ′)∆ε(ξ′, η)dξ′ = − 2
π

θε,T (ξ, η).

Let us take the Fourier transforms of this integral equation
1

2π
√

ϑ(λ)

∫ ∞

−∞
dξeiλξ∆ε(ξ, η) − 2

π

∫ ∞

0
dµṼε,T (λ, µ)

1
2π
√

ϑ(µ)

∫ ∞

−∞
dξ′eiµξ

′
∆ε(ξ′, η)

= − 1
π

√
ϑ(λ)(eiλη + εe−iλη).

Therefore we obtain

∆ε(ξ, η) = − 1
π

Tr

[(
1 − 2

π
̂̃V ε,T

)−1 ̂̃W (ξ,η)

ε,T

]
.

Now we arrive at Theorem 2.6. In much the same way as with finite temperature case
T > 0 we arrive at Theorem 2.7.
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