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Abstract

An eigenvalue problem with a reference function and the corresponding hierarchy
of nonlinear evolution equations are proposed. The bi-Hamiltonian structure of the
hierarchy is established by using the trace identity. The isospectral problem is non-
linearized as to be finite-dimensional completely integrable systems in Liouville sense
under Neumann and Bargmann constraints.

1 Introduction

A major difficulty in theory of integrable systems is that there is to date no completely
systematic method for choosing properly an isospectral problem ), = M1t so that the
zero-curvature representation M; — N, + [M, N] = 0 is nontrivial. By inserting a reference
function into AKNS and WKI isospectral problems, we have obtained successfully two
new hierarchies [1, 2].

The coupled KdV hierarchy associated with the isospectral problem

bp=My, M=| 7 (11)

is discussed by D. Levi, A. Sym and S. Wojciechowsk [3]. The isospectral problem (1.1)
has been nonlinearized as finite-dimensional completely integrable systems in Liouville
sense [4].
In this paper, we introduce the eigenvalue problem
1 1
——A+-u —v

Yy = M, M= 22 , (1.2)
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where u and v are two scalar potentials, A is a constant spectral parameter and f(v)
called reference function is an arbitrary smooth function. The bi-Hamiltonian structure
of the corresponding hierarchy is established by using the trace identity [5, 6]. Since the
reference function f(v) in (1.2) can be chosen arbitrarily, many new hierarchies and their
Hamiltonian forms are obtained.When f = (—v)? (8 > 0), the isospectral problem (1.2) is
nonlinearized as finite-dimensional completely integrable sysstems in Liouville sense under
Neumann and Bargmann constraints between the potentials and eigenfunctions.

2 Preliminaries

Consider the adjoint representation of (1.2)

a b > a; bz g
Ny =MN — NM, N:(C _a>:Z<Ci _ai)/\i (2.1)

=0
which leads to
co—=by=0, ag— —%a (constant), (2.2)
a =af(v), by = —aw, a; =0, (2.3)
c2 = a(f'(v)vy + uf(v)), by = a(vy — uv), ag = —awf(v), (2.4)
aj = =07 (vej + f(v)by), (2.5)

(1)-e() (32)5() s o

where 0 = i, 007 =070 =1,
dx

I O+u+2fo v 2f01f
- —200~ —0+u—200"1f |

It is easy from (1.2) and (2.1) to calculate that

oMY oMY oM\ ,
tr <Nﬁ> = —a, tr (N%> = a, tr (N@) = —c+ f (U)b

Noticing the trace identity [5, 6]

% 51) (~a) = (@, —c+ (D),

hence we deduce that

o 0 ) A2 ajt1
(550 ) #= (61062, h = 2.7

Zy = ay, Gﬁ-fz = —cj + f'(v)b;. (2.8)
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3 The hierarchy and its Hamiltonian structure

Let 1 satisfy the isospectral problem (1.2) and the auxiliary problem

— — A B
where
m—1 4 m ' m 4
A=Ap+ Y X", B=) bA"T, C=) A"
j=0 j=1 j=1

The compatible condition t;; = 11, between (1.1) and (3.1) gives the zero-curvature
representation My — N, + [M, N] = 0, from which we have

Ap = w0+ u)em +wf (v)(0 — u)bpy,

Ut B Cm, o Cm+1
<vt>‘90L<bm>‘90<bm+1>’ (3.2)

where w = %(vf’(v) + )
- (2 ), s

By (2.6) we know that Eqgs.(3.2) are equivalent to the hierarchy of nonlinear evolution
equations

<“t>:90Lm<0‘f(“)>, m=1,2,.... (3.4)

Vg —Qv

Let the potentials v and v in (1.2) belong to the Schwartz space S(—o0,400) over
(=00, +00). Noticing (2.5) and (2.8) we get

G .1 ’
¢\ j—2 [ 2wf'(v)0 —2wf
< b ) =0 a® ’ b1 = ( —2w0 2uv ) (3:5)

j—2
Then the recursion relations (2.5), (2.6) and the hierarchy (3.2) can be written as
Gy = —%a(ljo)T, G_1=—a(0,vf'(v)+ )T, Go=—af,uf +uvf (v)7T,
KGj_, = JG;, (3.6)
(ug, )T = JGm-1 = KGpno, (3.7)

where J = 63601 and K = 0yL0, are two skew-symmetric operators,

B 0 —20w ([ Kui Kip
J_<—2w8 0 >’ K_<K21 K22>’
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K11 = —20-— 48w(8f’(v) + f’(v)@)w@,

K9 = —20wu+ 40w(f'(v)0v — 0f)w,
Ko = —2wud + 4w(f0 — v f'(v))wa,
Ky = —4w(vdf + fov)w.

From (2.7) we obtain the desired bi-Hamiltonian form of (3.7)

9 9
Uy ou ou
=J Hy1=K H,,. 3.8
(o) =] 5 Jrma=s| (39
ov ov

4 Nonlinearization of the isospectral problem

Let \; and v(x) = (¢;(x),p;(z))T be eigenvalue and the associated eigenfunction of (1.2).

ON; OA;
Through direct verification we know that the functional gradient V(, ,)A; = (5—], 6—j>
u ' v
satisfies
V(u,v)>\j = (ijj) _p? - f’(v)q?) ) (41)

2 2 2
01V, = ( _péz > L< _pzﬁ > - Aj( _péz > (4.2)
J J J

in view of (1.2). Substituting the first expression of (4.2) into the second expression and
acting with 6y upon once, we have

KVA; = \jJVA;. (4.3)

So, the Lenard operator pair K, J and their gradient series G; satisfy the basic conditions
(3.6) and (4.3) given in Refs. [7, 8] for the nonlinearization of the eigenvalue problem (1.2).

Proposition 4.1. When f(v) = (=v)’ (8 > 0), the isospectral problem (1.2) can be
nonlinearized as to be a Neumann system.

N
In fact, the Neumann constraint G_1|o=1 = Y VA; gives
j=1

(a.p) =0,(p,p) = (B+1)(—v)’ + B(—=1)""{q, q). (4.4)

By differentiating (4.4) with respect to x and using (1.2), we have

1 <<Ap,p> +ﬁ<Aq,Q>> ’

R ) (¢,q)

v =(q,q).
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Substituting (4.5) into the equations for the eigenfunctions
1 1

Bl W —
Gz \ _ 37 Tt v qj .
Di - 1 1 pi )’ j=1,...,N,
I (—’U)B 5)\]—5@6 J

we obtain the Neumann system

1 (Ap.p)  ,{Agq)
B+1) < (p.p) o (g, 9) )q’

1 1 <<Ap,p> <Aq,q>)p’

1
:c:__A - )
q 54 (q q>p+2(

Pe = =Ap+ (p,p)g — 208+1) \ (p,p) o (¢,9)

(p,p) = (=D%q,9)%,  {a,p) =0.

(4.6)

where p = (p1,...,o8)7, ¢ = (q1,...,qn)T, A = diag(\1,...,An), and (,) stands for the

canonical inner product in RY.

Proposition 4.2. When f(v) = (—v)’ (8 > 0), the isospectral problem (1.2) can be

nonlinearized as to be a Bargmann system.

N
In fact, the Bargmann constraint Goloa=1 = > VA, gives
i=1

1

(¢,9){q,p)” 741,

__B_
(p,p)(q,p) P — 711

1
U=—-—
8+1

v=—(g,p)7.

Substituting (4.8) into (4.6), we obtain the finite-dimensional Hamiltonian system

@z = —%Aq+ (4,9)7Tp + m@,p)(q,m_%q
—ﬁ@,qﬂq,mﬂilq: %—ZI,

Pz = %Ap— m@?m(q,pwﬁlw (g, )7
+%<qm<q,p>_%p= aa—[:.

The Hamiltonian is

1

1 1 B
H = —§<Aq,p> + = (p,p)(g,p) 7T —

5 (¢, q) (q,p>%-

N —

5 Integrability of the Neumann system

(4.9)

The Poisson brackets of two functions in symplectic space (RQN ,dp A dq) are defined as

N
OF 0G  OF 0G
FG) = R I IT (R, G, — (F), Gy
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The functions defined by (m =0,1,2,...)

(Ng,q) (N'g,p) |

1 1
Fo=—=(A""g,p) — : :
2< ) 2 2 (Mp,q) (Np,p)

i+j=m

are in involution in pairs (see, [9]).
Consider the Moser constraint on the tangent bundle

_ 1
TSN = {(p,q) eR™F=(q,p)=0, G= 5

s () — (-1 @0 =0}

Through direct calculations we have

(FaFm):0> (F,G):<p,p>,

(F, G) = —ﬁ ((Am“p,m + (-1)°B(q, q)" (A q, q>) :

Thus the Lagrangian multipliers are

 (Fu, @) 1 (<Am+1p,p> (_1)%M<Am+lq,q>> :

m="Fa) ~ B+ \ o) (p.p)

Since F = 0 on the tangent bundle TSV =1 the restriction of the canonical equation of
H* = Fy — pioF on TSN is

Gz = Fop — poFplrsv-1,
Pz = —Foq + MOFq’Tstl
which is exactly the Neumann system (4.7).

Theorem 5.1. The Neumann system (4.7) (TSN=1 dp A dq|pgn-1, H* = Fy — uoF) is
completely integrable in Liouville sense.

Proof. Let F;;, = Fy, — pmF, m=1,..., N — 1, then it is easy to verify (F}, F]) =0 on
TSN=!. Hence {F%} is an involutive system.

6 Integrability of the Bargmann system

Let
N 2
BZ.
Tp= ). S (6.1)
: Ak — Aj
j=1
i#k

where Bj; = prq; — pjqr, we have (see Refs. [9, 10])

Lemma 6.1.

(.0, 07) =201, ((¢:p). 4f) = =247, (6.2)
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—4B, —4B
2 Ik 2 Ik
F - F =
(pz.T) L (g, T1) o
- (6.3)
—2By
(qrpr, 1) = VY (Prar + qrp1)-
1 — Mk
Lemma 6.2.
Tk, Tv) = ({g,p), 1) = ({g, p), aip1) = 0, (6.4)
(% 97) = (4> @) = (akpr aupr) = 0, (6.5)
(akpr.P}) = 2pkpidi, (a7, 97) = 4akpidn, (a7 miat) = 2q10651- (6.6)
Proposition 6.1. Let
1 1 1 B 1 1
E == Brip? — = BHig2 — )\ S
k= 5@ P) TPk = S {ap) P g — S Akakpr — 5Tk
the Fn, ..., En constitute an N -involutive system.

Proof. Obviously (Ey, E;) = 0 for k = [. Suppose k # [, in virtue of (6.4)—(6.6) and the
property of Poisson bracket in (R*V,dp A dgq), we have

1—

T ({g,p),p})

p
B+1
B

ﬁ+1q;3 ((a.p),p}) —

i

o

A(Ey, By) = 2(q,p) 71 (vis (a,p))

L ) 4
ﬁ‘i‘ Pr\4,DP ﬁ—l—lp

_ =

i (@p), @) - g (02, (¢,p)) — (g,p) P+ (p},T))

RS

1 1
—{q,p) 7 (Tk,p}) — i 11?12 (a2, {a,p))

p

F+1¢ Ha.p) 7 (a2 (0.p))

B=1
- g, p) 7 ((¢,p), @) +

5+ 1Y

B8 B8
+ (g, p) 7 (g2, T1) + (q,p) P71 (Ths @) + Ne(@p, T1) + N (Tro i)

Substituting (6.2) and (6.3) into the above equation yields (Ey, E;) = 0.
Consider a bilinear function Q,(¢,1) on RY:

Qu(em) = (2= A) Mg,y = S S S ometpme
The generating function of I'y, is (see, [9, 10])

Q:(¢,9) Q:(q,p) :i L'y
Qz(p7Q) Qz(p7p) k:lz_)\k'

Hence the generating function of Ej, is

(0.0 71Q-(0.0) — 5Q-(Ag.p)

2
_ L
_Zz—)\k'

k=1
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Substituting the Laurent expansion of @), and
oo
(z=X) 't =)
m=0

in to both sides of (6.7) respectively, we have
Proposition 6.2. Let

N
Fro =Y A'Ey, m=0,1,2,...
k=1

then
1 1 1 B 1
Fy = 5{a,p)™(p,p) = 5(a:p)7* (0,4) — 5(Ag.p),
1 LN 1 B m
Fr = 5{a.0) 71 (A"p.p) — 5{0.) 7% (A"q, )

1
— (A, p)

Moreover, (Fy, Fy) = 0.
Hence we arrive at the following theorem.

Theorem 6.1. The Bargmann system defined by (4.9) is completely integrable in Liouville
sense in the symplectic manifold (R*N,dp A dq).

Acknowledgement

I am very grateful to Professor Cao Cewen for his guidance. This project is supported by
the Natural Science Fundation of China.

References

[1] Jiang Z.M., Physics Letters A, 1997, V.228, 275-278.

[2] Jiang Z.M., Physica A, 1998, V.253, 154-160.

[3] Levi D., Sym. A. and Wojciechowsk S., Phys. A: Math. Gen., 1983, V.16, 2423-2432.
[4] Cao C.W. and Geng X.G., J. Phys. A: Math. Gen., 1990, V.23, 4117-4125.

[5] Tu G.Z., J. Math. Phys., 1989, V.30, 330-338.

(6] Tu G.Z., J. Phys. A, 1989, V.22, 2375-2342.

[7] Cao C.W. and Geng X.G., in: Nonlinear Physics, Research Reports in Physics, eds. Gu C.H. et al.,
Springer, Berlin, 1990, 68-78.

[8] Cao C.W., Sci. China A, 1990, V.33, 528-536.

[9] Moser J., in: Proc. 1983 Beijing Symp. on Diff. Geometry and Diff. Egs., Science Press, Beijing,
1986, 157-229.

[10] Cao C.W., Henan Sci., 1987, V.5, 1-10.



