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Abstract

Similarity reductions and new exact solutions are obtained for a nonlinear diffusion
equation. These are obtained by using the classical symmetry group and reducing
the partial differential equation to various ordinary differential equations. For the
equations so obtained, first integrals are deduced which consequently give rise to
explicit solutions. Potential symmetries, which are realized as local symmetries of a
related auxiliary system, are obtained. For some special nonlinearities new symmetry
reductions and exact solutions are derived by using the nonclassical method.

1 Introduction

Equation

ut = (un)xx +
C

x+ λ
(un)x , (1)

with n ∈ Q\{0, 1} and λ ∈ R, corresponds to nonlinear diffusion with convection. When
C = 0 equation (1) becomes the one-dimensional porous medium equation

ut = (un)xx . (2)

A complete group classification for (2) was derived by Ovsiannikov [23] and by Bluman
[2, 4]. A classification for Lie-Bäcklund symmetries was obtained by Bluman and Kumei
[5]. The main known exact solutions of nonlinear diffusion (2) are summarized by Hill
[15]. In [15, 16, 17], Hill et al deduced a number of first integrals for stretching similarity
solutions of the nonlinear diffusion equation, and of general high-order nonlinear evolu-
tion equations, by two different integration procedures. King [18] obtained approximate
solutions to the porous medium equation (2).
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The basic idea of any similarity solution is to assume a functional form of the solution
which enables a PDE to be reduced to an ODE. The majority of known exact solutions
of (2) turn out to be similarity solutions, even though originally they might have been
derived, say by a separation of variable technique or as traveling wave solutions. For

ut = (un)xx + C (u
n)x ,

which is the Boussinesq equation of hydrology involved in various fields of petroleum
technology and ground water hydrology, several exact solutions have been obtained by
using isovector method [1].
More often than not the spatial dependent factors are assumed to be constant, al-

though there is no fundamental reason to assume so. Actually, allowing for their spatial
dependence enables one to incorporate additional factors into the study which may play
an important role. For instance, in a porous medium this may account for intrinsic fac-
tors, like medium contamination with another material, or in plasma, this may express
the impact that solid impurities arising from the walls have on the enhancement of the
radiation channel. Knowing the importance of the effect of space-dependent parts on the
overall dynamics of the nonlinear diffusion equation, a group classification for

ut = (un)xx + f(x)u
sux + g(x)um (3)

was derived in [11], by studying those spatial forms which admit the classical symmetry
group. Both the symmetry group and the spatial dependence was found through consistent
application of the Lie-group formalism. The behaviour of the interface of a related problem
with (1) has been studied by Okrasinski [22].
In this work we use the invariance of equation (1) under one-parameter group of trans-

formations to reduce the PDE (1) to various ordinary differential equations. Most of the
required theory and description of the method can be found in [6, 14, 19, 23, 24]. Following
Hill [15, 16, 17], we have deduced some exact solutions of equation (1) by fully integrating
the ODE’s derived.
An obvious limitation of group-theoretic methods based in local symmetries, in their

utility for particular PDE’s, is that many of these equations do not have local symmetries.
It turns out that PDE’s can admit nonlocal symmetries whose infinitesimal generators
depend on integrals of the dependent variables in some specific manner.
In [5, 6] Bluman introduced a method to find a new class of symmetries for a PDE. By

writing a given PDE, denoted by R{x,t,u}, in a conserved form, a related system denoted
by S{x,t,u,v} with potentials as additional dependent variables, is obtained. Any Lie
group of point transformations admitted by S{x,t,u,v} induces a symmetry for R{x,t,u};
when at least one of the generators of the group depends explicitly on the potential;
then the corresponding symmetry is neither a point nor a Lie-Bäcklund symmetry. These
symmetries of R{x,t,u} are called potential symmetries.
The nature of potential symmetries allows one to extend the uses of point symmetries to

such nonlocal symmetries. In particular: Invariant solutions of S{x,t,u,v} yield solutions
of R{x,t,u} which are not invariant solutions for any local symmetry admitted by R{x,t,u}.
Potential symmetries for equation (3), when it can be written in a conserved form, have
been recently derived [12].
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In order to find potential symmetries of (1), we write this equation in the conserved
form

DxF −DtG. (4)

The associated auxiliary system S{x,t,u,v} is then given by
vx = (x+ λ)u, vt = (x+ λ) (un)x + (C − 1)un. (5)

Suppose S{x,t,u,v} admits a local Lie group of transformations with infinitesimal generator

XS = p(x, t, u, v)
∂

∂x
+ q(x, t, u, v)

∂

∂t
+ r(x, t, u, v)

∂

∂u
+ s(x, t, u, v)

∂

∂v
. (6)

This group maps any solution of S{x,t,u,v} to another solution of S{x,t,u,v} and hence
induces a mapping of any solution of R{x,t,u} to another solution of R{x,t,u}. Thus (6)
defines a symmetry group of R{x,t,u}. If(

∂p

∂x

)2

+
(
∂q

∂v

)2

+
(
∂r

∂v

)2

�= 0 (7)

then (6) yields a nonlocal symmetry of R{x,t,u}. Such nonlocal symmetry is called a
potential symmetry of R{x,t,u} [5, 6].
Motivated by the fact that symmetry reductions for many PDE’s are known that are

not obtained by using the classical Lie group method, there have been several generaliza-
tions of the classical Lie group method for symmetry reductions. Bluman and Cole [3]
introduced the nonclassical method to study the symmetry reductions of the heat equation
and Clarkson and Mansfield [8] presented an algorithm for calculating the determining
equations associated with the nonclassical method. The basic idea of the method is that
the PDE (1) is augmented with the invariance surface condition

pux + qut − r = 0, (8)

which is associated with the vector field

V = p(x, t, u)
∂

∂x
+ q(x, t, u)

∂

∂t
+ r(x, t, u)

∂

∂u
. (9)

By requiring that both (1) and (8) are invariant under the transformation with infinite-
simal generator (9) one obtains an overdetermined nonlinear system of equations for the
infinitesimals p(x, t, u), q(x, t, u), r(x, t, u). The number of determining equations arising
in the nonclassical method is smaller than for the classical method, consequently the
set of solutions is in general, larger than for the classical method as in this method one
requires only the subset of solutions of (1) and (8) to be invariant under the infinitesimal
generator (9). However, the associated vector fields do not form a vector space. These
methods were generalized and called conditional symmetries by Fushchych and Nikitin [9]
and also by Olver and Rosenau [20, 21] to include “weak symmetries”, “side conditions”
or “differential constraints”.
The nonclassical symmetries of the nonlinear diffusion equation (3) with an absorption

term and f(x) = 0, as well as new exact solutions were derived in [13]. In this work we
obtain the special values of the parameter n such that nonclassical symmetries for (1) can
be derived. We also report the reduction obtained as well as some new exact solutions.
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2 Classical symmetries: Exact solutions

In this case, we find that the most general Lie group of point transformations admitted
by (1) is:

1. For n �= 0, 1 and C �= 3n+ 1
n+ 1

we obtain a three-parameter group G3. Associated with

this Lie group is its Lie algebras L3, which can be respectively represented by the
set of all the generators {Vi}3

i=1. These generators are:

∂

∂t
, V2 = (x+ λ)

∂

∂x
+ 2t

∂

∂t
, V3 = −t ∂

∂t
+

u

n− 1
∂

∂u
. (10)

2. For n �= −1, 0, 1 and C =
3n+ 1
n+ 1

, we obtain a four-parameter group G4. Its

infinitesimal generators {Vi}4
i=1 are:

V ′
1 = V1, V ′

2 = V2, V ′
3 = V3,

V ′
4 =

(x+ λ)2−C

(C − 2)(C − 1)
∂

∂x
− 2(x+ λ)1−C

(C − 1)(n− 1)u
∂

∂u
.

(11)

To ensure that an optimal set of reductions is obtained from the symmetries of (1), the
optimal system is determined for λ �= 0. The case λ = 0 was derived in [11]. In Table 1, we
list the nontrivial optimal system {Ui} with i = 1, 2, 3, 4. We also list the corresponding
similarity variables and similarity solutions.

Table 1: Each row show the infinitesimal generators of the optimal system, the
corresponding similarity variables and similarity solutions.

i Ui zi ui

1 V ′
2 + aV

′
3

(x+ λ)2−a

t
h(z)(x+ λ)

a
n−1

2 aV ′
1 + V

′
2 + 2V

′
3 e−at(x+ λ) h(z)(x+ λ)

2
n−1

3 aV ′
3 + V

′
4 c1 (n− 1) (x+ λ)C−1 + log t

h(z)ec1(x+λ)
2n

n+1

(x+ λ)
2

n+1

4 aV ′
1 + V

′
4

a(C − 2)(x+ λ)C−1

t
h(z)[(n− 1)(x+ λ)] 2(2−C)

n−1

In Table 1, case i = 1, the constant a ∈ Q\ {2} and, in case i = 3, c1 = a

n+ 1
.



238 M.L. Gandarias, P. Venero and J. Ramirez

The ODE to which the PDE (1) is reduced by means of the infinitesimal generator U1

is

dh

dz

(
1

(a− 2)2 hn−1n
− C1 + n+ a− 1
(a− 2) (n− 1) z

)

+
ah (C1 − n+ 1)
(a− 2)2 (n− 1)2 z2

+
n− 1
h

(
dh

dz

)2

+
d2h

dz2
= 0,

with

C1 = Cn+ an− C,

after taking h = y
1
n it becomes

−dy
dz

(
C1 + n+ a− 1
(a− 2) (n− 1) z − y

1
n
−1

(a− 2)2 n

)
+

an (C1 − n+ 1) y
(a− 2)2 (n− 1)2 z2

+
d2y

dz2
= 0.

In particular, the second order nonlinear differential equation for y(z) obtained for i = 1,
admits first integrals for some values of a. As an example, we consider

a = 2− 2n.
The first integral for a = 2− 2n is

−y
z
+
Cy

2nz
− y

2nz
+
dy

dz
+
y

1
n

4n2
= c1,

where c1 is the integration constant. If this constant is zero we obtain for a = 2− 2n

y =

(
(1− n) z

4n2+k2
4n2 +

(
4k1n

3 + k1k2n− k1k2

)
z

k2
4n3

) n
n−1

(4n3 + k2n− k2)
n

n−1 z
k2

4n2−4n

,

with

k2 = (2c− 2)n− 4n2,

h =

(
(1− n) z

4n2+k2
4n2 +

(
4k1n

3 + k1k2n− k1k2

)
z

k2
4n3

) 1
n−1

(4n3 + k2n− k2)
1

n−1 z
k2

4n3−4n2

.

Substituting in the similarity solution we obtain the exact solution

u =

(
(n− 1) z

4n2+k2
4n2 +

(−4k1n
3 − k1k2n+ k1k2

)
z

k2
4n3

) 1
n−1

(−4n3 − k2n+ k2)
1

n−1 z
k2

4n3−4n2

.

When C = 0 this is the well-known dipole solution [15].
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In particular, the second order nonlinear differential equation for h(z) obtained for
i = 2, is

dh

dz

(
Cn+ 4n− C
(n− 1) z +

a

hn−1nz

)
+
2h (Cn+ n− C + 1)

(n− 1)2 z2
+
n− 1
h

(
dh

dz

)2

+
d2h

dz2
= 0.

For the special value

C = −n+ 1
n− 1 ,

we integrated once to obtain

hn−1dh

dz
z +

hn (3n− 1)
(n− 1)n − hn

n
+
ah

n
= c1.

After taking

h = y
1

n−1

it becomes

2y
z

− a

nz
+
a

z
+
dy

dz
= c1,

where c1 is the integration constant. If this constant is zero we obtain

y =
c

z2
− a (n− 1)

2n
,

so that

h =
(
ce2at

x2
− a (n− 1)

2n

) 1
n−1

x
2

n−1 .

Substituting in the similarity solution we obtain the exact solution

u =
(
ce2at

x2
− a (n− 1)

2n

) 1
n−1

x
2

n−1 .

The second order nonlinear ODE obtained, after taking h(z) = y1/n, for i = 3 is

−(n+ 1)
2 y

1
n
−1e−z

4c12 (n− 1)2 n3

dy

dz
+
d2y

dz2
+

2n
n− 1

dy

dz
+

n2y

(n− 1)2 = 0,

where c1 =
a

n+ 1
.

The second order nonlinear ODE obtained, after taking h(z) = y1/n, for i = 4, is

d2y

dz2
+

(
1
2z
+ c1y1/n−1

)
dy

dz
= 0,

where c1 =
(n− 1)n−3

n+1 (n+ 1)3

16an3
.
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3 Potential Symmetries

In order to find potential symmetries of (1), we write this equation in the conserved
form (4), where

G = (x+ λ)u,

F = (x+ λ) (un)x + (C − 1)un.

The associated auxiliary system is given by (5). Besides X1 =
∂

∂t
and X2 =

∂

∂v
we obtain

X3, . . . , X6, given in Table 2.

Table 2: Each row show the infinitesimal generators, the corresponding similarity
variables and similarity solutions.

(a) p q r s n C

X3 x+ λ 0
2u
n− 1

2nv
n− 1 �= 0, 1 arbitrary

X4 (x+ λ) 2nt −2u 0 �= 0, 1 arbitrary

X5 k(x+ λ)
1−n
1+n 0 − 2k

n+ 1
(x+ λ)−

2n
n+1 0 �= −1, 0, 1 3n+ 1

n+ 1

X6 2(x+ λ)v 0 −2(x+ λ)2u2 − 2uv v2 −1 −1
2

X3, X4 and X5 project onto point symmetries of (1); while X6 induces potential sym-
metries admitted by (1).
Solving the characteristic equation, we obtain the similarity variable z = t and similarity

solution v =
√
x+ λE(t). In this case, E(t) satisfies E′(t) = 0, so E = const and we obtain

the trivial solution

v = C1

√
x+ λ, u =

C1

2(x+ λ)
3
2

.

We must note that, although the infinitesimal p depends explicitly on v, the similarity
variable does not depend on v.

4 Nonclassical symmetries

To apply the nonclassical method to (1) we require (1) and (8) to be invariant under
the infinitesimal generator (9). In the case q �= 0, without loss of generality, we may
set q(x, t, u) = 1. The nonclassical method applied to (1) give rise to four determining
equations for the infinitesimals.

∂2p

∂u2
u− n∂p

∂u
+
∂p

∂u
= 0,
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−
(
n
∂2r

∂u2
− 2n ∂

2p

∂u∂x
+ 2

nC

x+ λ
∂p

∂u

)
un−1

− (n− 1)n∂r
∂u
un−2 + (n− 1)nrun−3 − 2p∂p

∂u
= 0,

−
(
2n

∂2r

∂u∂x
− n∂

2p

∂x2
+

nC

x+ λ
∂p

∂x
+

−nC
(x+ λ)2

p

)
un+1

−2 (n− 1)n∂r
∂x
un +

(
2
∂p

∂u
r − 2p∂p

∂x
− ∂p

∂t

)
u2 + (n− 1) pru = 0,

−
(
n
∂2r

∂x2
+

nC

x+ λ
∂r

∂x

)
un +

(
∂r

∂t
+ 2

∂p

∂x
r

)
u− (n− 1) r2 = 0,

where f(x) =
nC

x+ λ
. Solutions of this system depend in a fundamental way on the values

of n. By solving the determining equations we obtain

p = p2(x, t)un + p1(x, t).

We can distinguish now the following: if n ∈
{
0,−1,−1

2

}
we recover the classical sym-

metries, and if n /∈
{
0,−1,−1

2

}
, we obtain that

r = a2un+2 + a3un+1 + a1un+1 +
r2
un−1

+ a4u2 + r1u,

where

a1 = − Cp2
n(x+ λ)

, a2 = − 2p2
2

(n+ 1) (2n+ 1)
, a3 =

1
n

∂p2
∂x
, a4 = −2p1p2

n+ 1

and p1, p2, r1, and r2 are related by two conditions. After considering the special values
for n for which new symmetries different from Lie classical symmetries can be obtained,
we can now distinguish the following:

• for n �= 1
2
we recover the classical symmetries,

• for n = 1
2
it follows that p2 = 0 and p1, r1, and r2 are related by the following

conditions

−p1r1 − 4p1
∂p1

∂x
− 2∂p1

∂t
= 0,

−p1r2 − ∂r1
∂x

+
∂2p1

∂x2
− 2 nC

x+ λ
∂p1
∂x

+ 2
nC

(x+ λ)2
p1 = 0,

2
∂r1
∂t
+ r12 + 4

∂p1

∂x
r1 = 0,
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2
∂r2
∂t
+ 2r1r2 + 4

∂p1

∂x
r2 − ∂2r1

∂x2
− 2 nC

x+ λ
∂r1
∂x

= 0,

−∂
2r2
∂x2

− 2 nC
x+ λ

∂r2
∂x

+ r22 = 0.

We do not solve the above equations in general, but consider some special solutions:

1. Choosing p1 = k, r1 = 0 and C = 2, then r2 =
2

(x+ λ)2
and we obtain the

nonclassical ansatz

z = x− kt, u =
(
h(z)− 1

k(x+ λ)

)2

,

where k �= 0 and h(z) satisfies the following ODE
h′′ + 2khh′ = 0; (12)

whose solutions are

h(z) =
k4 tanh(k4(z + k2))

k
, if kk3 > 0 and k4 =

√
kk3,

h(z) = −k4 tan(k4(z + k2))
k

, if kk3 < 0 and k4 =
√−kk3.

This leads to the exact solutions

u(x, t) =
(
k4 tanh(k4(z + k2))

k
− 1
k(x+ C)

)2

if kk3 > 0,

u(x, t) =
(
k4 tan(k4(z + k2))

k
− 1
k(x+ C)

)2

, if kk3 < 0.

2. Choosing p1 = p1(x), r1 = r1(x) and r2 = r2(x) we obtain

r(x, t, u) = −4p′u+
[
5p′′1
p1

− Cp′1
(x+ λ)p1

+
C

(x+ λ)2

]√
u,

where p1 must satisfy the following equations

C

2(x+ λ)
=
3p′1
2p1

− p′′1
2p′1

− c1
2p1p′1

,

− 2C
x+ λ

[
2p21p

′′′
1 + 4p1p

′
1p

′′
1 − (p′1)3

]
+

cp1
(x+ λ)2

[
Cp1p

′′
1 + 8p1p

′′
1 + 2(p

′
1)

2
]

− C

(x+ λ)3
(3C − 2)p21p′1 +

3
(x+ λ)4

(C − 2)Cp31 − 5p21p′′′′1

+10p1p′1p′′′1 + 30p1(p
′′
1)

2 − 10(p′1)2p′′1 = 0.

We observe that these condition are satisfied for p1 = k1(x+λ)
C−1

2 if C ∈
{
5
3
,−1, 3

}
.
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• For C = 3, p1 = k1(x+ λ) we recover classical symmetries.

• For C = 5
3
, we obtain

p1 = k1(x+ λ)1/3, r = − 4k1u

3(x+ a)2/3
.

Hence a nonclassical ansatz is

z =
3k1

2
(x+ λ)2/3 − kt, u = (x+ λ)−4/3h(z),

where h(z) satisfies the following ODE

−2hh′′ + (h′)2 +−4kk2
1h

3/2h′ = 0,

whose solutions are

h(z) =
k2

4k2
1k
tan(k1k4(z + k3)) if kk2 > 0, k4 =

√
kk2 and k1 < 0

h(z) =
k2

4k2
1k
tanh(k1k4(z + k3)) if kk2 < 0, k4 =

√−kk2 and k1 > 0

• For C = −1, we obtain

p1 =
k1

x+ λ
, r =

4(k1u+ 2
√
u)

(x+ λ)2
.

Hence a nonclassical reduction is

z =
x2 + 2λx
k1

− t, u =
1
k2

1

(h(z)(x+ λ)2 − 2)2,

where h(z) satisfies (12) with k = k1.

3. Choosing p2 = r2 = 0 and p1 = p1(x), we obtain r1 = −4p′1 and f =
5p′1 − 2k1

2p1
,

where p1 satisfies

p21p
′′
1 + 2p1(p

′
1)

2 − 2k1p1p
′
1 − k2p1 = 0,

which is a classical reduction [11].

5 Concluding Remarks

In this paper we have used the invariance of (1) under group of transformations to re-
duce (1) to ODEs. We desired to minimize the search for group-invariant solutions to that
of finding non-equivalent branches of solutions, consequently we have constructed all the
invariant solutions with respect to the one-dimensional optimal system of subalgebras, as
well as all the ODEs to which (1) is reduced. For the equations so obtained, first integrals
have been deduced which give rise to explicit solutions. Potential symmetries as well as
nonclassical symmetries were used to obtain new solutions of (1). The new solutions are
unobtainable by Lie classical symmetries.
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