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Abstract

The paper considers a linear regression model in high-dimension for which the predictive variables can
change the influence on the response variable at unknown times (called change-points). Moreover, the
particular case of the heavy-tailed errors is considered. In this case, least square method with LASSO or
adaptive LASSO penalty can not be used since the theoretical assumptions do not occur or the estimators
are not robust. Then, the quantile model with SCAD penalty or median regression with LASSO-type
penalty allows, in the same time, to estimate the parameters on every segment and eliminate the irrelevant
variables. We show that, for the two penalized estimation methods, the oracle properties is not affected
by the change-point estimation. Convergence rates of the estimators for the change-points and for the
regression parameters, by the two methods are found. Monte-Carlo simulations illustrate the performance
of the methods.
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1. Introduction

A model which changes at some observations is called a change-point model. The location of these changes
(called also change-points, breaks, changes) may be known or unknown. In this paper, we consider a model
with multiple change-points at unknown locations. Moreover, as very often in practice, for example in genetics,
the response variable is studied function of a very large number of regressors. However, only a small number of
regressors is going to influence the response variable. In recent years, change-point models and high-dimension
regression have received much attention in the literature, most often in the case of a model with zero mean errors
and bounded variance. A L1 or adaptive L1 penalty in the context of least squares model can be considered. We
obtain then the popular method introduced by Tibshirani and called LASSO (Least Absolute Shrinkage and
Selection Operator) method1. On the other hand, it is well known that, the presence of outliers in model may
cause a large error in a least squares estimator. This can happen especially when the error distribution is not
Gaussian and distribution tail is large enough. The outliers can also create problems in the detection of the
jumps. An alternative method is then the quantile estimation.
To be more precise, if the errors (εi)16i6n of the regression model are such that IP[εi < 0] = τ , then the τth
quantile regression is considered, i.e. the regression parameters are found by minimizing the function ρτ(ε) =

∑
n
i=1 εi[τ11εi>0− (1− τ)11εi60]. The choice of τ = 1/2 yields the median regression and the L1-estimator, also
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G. Ciuperca

known as least absolute deviation (LAD) estimator.
Moreover, when the model has a very large regressor variable number, a penalty is necessary to estimate

simultaneously the parameters on every segment and to eliminate the irrelevant regressors without crossing
every time by a hypothesis test. The SCAD (Smoothly Clipped Absolute Deviation) and LASSO penalties
have the advantage of selection and parameter estimation. It was established that these two methods have the
oracle properties in a model without change-points: the zero components of the true parameters are estimated
(shrunk) as 0 with probability tending to 1 (also called sparsity property) and the nonzero components have an
optimal estimation rate (furthermore they are asymptotically normal). See (Ref. 2) for the SCAD method in a
τth quantile regression and (Ref. 3) for the LASSO-type method in a median regression, both models without
change-points. Recall also for a median regression in high dimension the paper of Wang,4 where a L1 penalized
least absolute deviation method is considered, when the overall variable number is larger than the observation
number.

In a multiple change-point model, the break estimation could affects the estimator properties. This is the
main interest of this paper. The difficulty to study a change-point model results first from the dependence of the
model of two parameter types: the regression parameters and the change-points.
A change-point linear model in high-dimension was also considered by Ciuperca but under stronger assumptions
that the errors have mean zero and bounded variance5. An adaptive LASSO estimator was studied. It was proved
that it has the oracle properties on each estimated segment. However, when the model contains outliers, the
adaptive LASSO estimator may not be robust and moreover, the observation number should be greater than the
parameter number to be estimated.

In the present work we restrict our attention to the quantile regression in high-dimension with multiple
change-points when the classical conditions on the errors do not occur. The change-points and the regression
parameters on each segment are first estimated by the SCAD method. After, for a median regression (τ = 1/2),
these parameters are estimated by the LASSO-type method. The asymptotic and oracle properties of these
estimators are studied. We also carry out simulations to investigate the properties of the two proposed estimators.

The paper is organized as follows. The model and assumptions are introduced in Section 2. In Section 3, the
SCAD estimator in a change-point model is proposed and its asymptotic behavior is studied. Next, LASSO-type
estimator is given in Section 4. For both methods, the oracle properties and convergence rate of the estimators
are obtained. Section 5 reports some simulations results which illustrate the methods interest. In Section 6
we give the proofs of Theorems. Finally, Section 7 contains some lemmas which are useful to prove the main
results.

2. Model and general notations

In this section we introduce the models without and with change-points, general assumptions, notations. Some
general results used required for the two estimation methods are given.
We consider the linear model without change-points

Yi = Xt
iφφφ + εi, i = 1, · · · ,n (1)

where the response variable Yi is an univariate random variable, Xi ∈ Rp is a p-vector of regressors (covariates)
and the εi is the error. The errors (εi)16i6n are independent identically distributed (i.i.d) random variables. The
regression parameters are φ ∈ Γ ⊂ Rp, with Γ a compact set and φφφ

0 true value (unknown) of the parameter φφφ .
Contrary to the classic suppositions for a regression model, we do not impose the condition that the mean of
errors εi is zero or that their variance is bounded.
All throughout the paper, vector and matrices are written in bold face.

With regard to the errors εi and the design Xi, we make the following assumptions:
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Quantile regression in high-dimension with breaking

(A1) Let f be the density of εi and F its distribution function. We suppose that f (0) > 0, F(0) = τ , | f (y)−
f (0)|6 c|y|1/2, for all y in a neighborhood of 0. The quantile τ is a real number in the interval (0,1).
(A2) (Xi)16i6n is a deterministic sequence, such that n−1

∑
n
i=1 XiXt

i converges, as n→ ∞, to a non negative def-
inite matrix;
(A3) (Xi)16i6n is uniformly bounded.
These conditions are typical for a quantile regression (see e.g. (Ref. 6)). These assumptions are also classic con-
ditions for a model estimated by LAD method: the first condition is found in (Ref. 7) and the last two in (Ref. 8).

It is of interest to note that by assumption (A1) we have IP[εi < 0] = τ , but the expectation IE[εi] cannot exist.
A regression model (1) with the errors (εi) satisfying the condition IP[εi < 0] = τ is called quantile regression.
In order to estimate the unknown regression parameter φφφ , we consider the function

ρτ(r) = r[τ11r>0− (1− τ)11r60] (2)

and the corresponding estimator

φ̂φφ
(τ)

n = argmin
φφφ∈Γ

n

∑
i=1

ρτ(Yi−Xt
iφ). (3)

In order to study the quantile regression and the estimator (3), let be the random processes

G(τ)
i (φφφ ;φφφ

0) = ρτ(εi−Xt
i(φφφ −φφφ

0))−ρτ(εi), G
(τ)
n (φφφ ;φφφ

0) = ∑
n
i=1 G(τ)

i (φφφ ;φφφ
0),

Di = (1− τ)11εi60− τ11εi>0, Wn = ∑
n
i=1 DiXt

i,

R(τ)
i (φφφ ;φφφ

0) = G(τ)
i (φφφ ;φφφ

0)−DiXt
i(φφφ −φφφ

0).

(4)

Obviously IE[Di] = 0. The relation between G
(τ)
n and R(τ)

i is

G
(τ)
n (φφφ ;φφφ

0)− IE[G (τ)
n (φφφ ;φφφ

0)] =
n

∑
i=1

[R(τ)
i (φφφ ;φφφ

0)− IE[R(τ)
i (φφφ ;φφφ

0)]]+Wn(φφφ −φφφ
0). (5)

For the parameter regression vector φφφ , we shall use the notation φφφ = (φ,1, · · · ,φ,p).
Throughout the paper, C denotes a positives generic constant not dependent on n which may take different values
in different formula or even in different parts of the same formula. For a vector v = (v1, · · · ,vp) let us denote
|v|= (|v1|, · · · , |vp|) and 1

v = ( 1
v1
, · · · , 1

vp
). On the other hand, ‖v‖2 is the Euclidean norm and ‖v‖1 = ∑

p
i=1 |vi| is

the L1 norm. All vectors are column and vt denotes the transposed of v.

For coherence, we try to use the same notations as in the paper of Wu and Liu2. By elementary calculations,
we obtain, with the probability 1, |R(τ)

i (φφφ ;φφφ
0)|6 |Xt

i(φφφ −φφφ
0)|11|εi|6|Xt

i(φφφ−φφφ
0)|. This inequality, the definition of

G(τ)
i and the assumption (A3) allow to obtain G

(τ)
n (φφφ ;φφφ

0)6Cn‖φφφ−φφφ
0‖2. Following result proves that for every

parameter φφφ and for every quantile order τ , the process G(τ)
i (φφφ ;φφφ

0) has positive expectation, indifferently of the
design Xi.

Proposition 1. Under assumption (A1), we have, for all φφφ ∈ Γ, IE[G(τ)
i (φφφ ;φφφ

0)]> 0.

Remark 1. In (Ref. 8), the behavior in a neighborhood of φφφ
0 of the process G

(τ)
n − IE[G (τ)

n ] is obtained in
the particular case τ = 1/2. By a similar demonstration, we can prove that the result holds in general, for any
τ ∈ (0,1): let be a positive sequence (cn) such that cn → 0 and nc2

n/ logn→ ∞. Under the assumptions (A1)-
(A3), there exists a constant C > 0 such that ∀ε > 0, IP[sup‖φφφ−φφφ

0‖26cn
(nc2

n)
−1|G (τ)

n (φφφ ;φφφ
0)− IE[G (τ)

n (φφφ ;φφφ
0)]|>
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ε]6 exp(−ε2nc2
nC).

The proof sketch of this remark is given at the end of Section 6.
As a consequence of this Remark, by the Borel-Cantelli lemma, we have for any ε > 0,

limsup
n→∞

( sup
‖φφφ−φφφ

0‖26cn

1
nc2

n
|G (τ)

n (φφφ ;φφφ
0)− IE[G (τ)

n (φφφ ;φφφ
0)]|)6 ε, a.s. (6)

It is well known that the estimator (3) has all nonzero components. For estimations and choosing the re-
gressors simultaneously, penalized methods can be used: SCAD or LASSO-type. These estimation methods all
become more interesting for a model with K change-points

Yi = Xt
iφφφ 11116i<l1 +Xt

iφφφ 211l16i<l2 + · · ·+Xt
iφφφ K+111lK6i6n + εi, i = 1, · · · ,n, (7)

where 11(.) denotes the indicator function.
The model parameters are the regression parameters (φφφ 1, · · · ,φφφ K+1) and the change-points (l1, · · · , lK). The true
values (unknown) are (φφφ 0

1, · · · ,φφφ
0
K+1), (l

0
1 , · · · , l0

K), respectively. The observations lr−1 + 1, · · · , lr between two
consecutive change-points will be called the rth segment (interval, phase).
Concern the distance between two consecutive change-points, we impose the assumption
(A4) lr+1− lr > n3/4, for all r = 0,1, · · · ,K.

In order to study the properties of the penalized estimators in a model with breaking, we need corresponding
results obtained without change-points when τ = 1/2: by (Ref. 9), (Ref. 3) and for a some τ ∈ (0,1) by
(Ref. 2).

In the next section we investigate theoretical properties of the smoothly clipped absolute deviation (SCAD)
method in a change-point model.

3. SCAD estimator

We begin this section by recalling the SCAD estimator for the quantile regression model (1) without change-
points, introduced by (Ref. 10) and developed later by (Ref. 2)

φ̂φφ
(τ,λ )

n ≡ argmin
φφφ

(
n

∑
i=1

[ρτ(Yi−Xt
iφφφ)+

p

∑
j=1

pλ (|φ, j|)]). (8)

The penalty pλ (φ, j) is defined by its first derivative

p′
λ
(|φ, j|)≡ λ{11|φ, j|6λ +

(aλ −|φ, j|)+
(a−1)λ

11|φ, j|>λ}, (9)

for all j = 1, · · · , p, with λ > 0, a > 2 deterministic tuning parameters. For real x we use the notation sgn(x) for
the sign function sgn(x) = x

|x| when x 6= 0 and sgn(0) = 0. We also denote x+ = max{0,x}.

In order to study the estimator φ̂φφ
(τ,λ )

n , introduce the function, for i = 1, · · · ,n,

G(τ,λ )
i (φφφ ;φφφ

0)≡ G(τ)
i (φφφ ;φφφ

0)+ [pλ (|φφφ |)−pλ (|φφφ 0|)]t1p,

with 1p ≡ (1, · · · ,1) a p×1 vector and pλ (φφφ)≡ (pλ (φ,1), · · · pλ (φ,p)) also p×1 vector, with φφφ = (φ,1, · · · ,φ,p).
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Quantile regression in high-dimension with breaking

For this purpose, we first give the Karush-Kuhn-Tucker (KKT) conditions for the quantile model (1) without
change-points.

For the estimator φ̂φφ
(τ,λ )

n given by the relation (8), let us consider the index set of the variables selected by the
SCAD method

An ≡
{

j; φ̂
(τ,λ )
n, j 6= 0

}
,

with φ̂
(τ,λ )
n, j the jth component of φ̂φφ

(τ,λ )

n .

Proposition 2. For the estimator (8), the KKT conditions are

• for j ∈An :

τ

n

∑
i=1

Xi j−
n

∑
i=1

Xi j11Yi<Xt
i φ̂φφ

(τ,λ )

n
= nλ sgn(φ̂ (τ,λ )

n, j ){11|φ̂ (τ,λ )
n, j |6λ

+
(aλ −|φ̂ (τ,λ )

n, j |)+
(a−1)λ

11|φ̂ (τ,λ )
n, j |>λ

}.

• for j 6∈An :

|τ
n

∑
i=1

Xi j−
n

∑
i=1

Xi j11Yi<Xt
i φ̂φφ

(τ,λ )

n
|6 nλ .

For the model (7), in order to study the SCAD estimators of the regression parameters (φφφ 1, · · · ,φφφ K+1), and
of the change-points (l1, · · · , lK), let us consider the function

S(l1, · · · , lK)≡
K+1

∑
r=1

inf
(φφφ 1,··· ,φφφ K+1)∈ΓK+1

lr

∑
i=lr−1+1

[
ρτ(Yi−Xt

iφφφ r)+pλ ;(lr−1;lr)(|φφφ r|)1p]
]
. (10)

In each interval (lr−1, lr) another penalty pλ ;(lr−1;lr) can be considered, with l0 = 1 and lK+1 = n. For simplicity
of notation, we denote the penalty of (10) by pλ ;(lr−1;lr) for some (lr−1, lr) and by p

λ ;(l0
r−1;l0

r )
for the true change-

points, but it is understood that the series λ are in fact λ(lr−1;lr), λ(l0
r−1;l0

r )
, respectively. For the interval (1, · · · ,n),

the tuning parameter λ(0,n) is λn.
We define the SCAD change-point estimator by

(l̂(τ,λ )1 , · · · , l̂(τ,λ )K )≡ argmin
(l1,··· ,lK)∈RK

S(l1, · · · , lK), (11)

with the function S defined by (10). Between two consecutive change-points lr−1 and lr, the SCAD estimator of
the corresponding regression parameter φφφ r is

φ̂φφ
(τ,λ )

(lr−1;lr) ≡ argmin
φφφ r

lr

∑
i=lr−1+1

[ρτ(Yi−Xt
iφφφ r)+pλ ;(lr−1;lr)(|φφφ r|)1p] = argmin

φφφ r

lr

∑
i=lr−1+1

G(τ,λ )
i (φφφ r;φφφ

0
r ).

Then, the SCAD regression parameter estimator for the rth segment is obtained by considering for the change-

points their corresponding estimators: φ̂φφ
(τ,λ )

(l̂(τ;λ )
r−1 ;l̂(τ;λ )

r )
. The following two theorems state the asymptotic behaviors

of the estimators (11) and of φ̂φφ
(τ,λ )

(l̂(τ;λ )
r−1 ;l̂(τ;λ )

r )
. The first result gives the convergence rate of the change-point estimator.

Theorem 3. Under the assumptions (A1)-(A4), with the tuning parameter (λ(lr−1,lr))16r6K+1 a sequence, de-
pending on n, converging to zero, (lr− lr−1)

1/2λ(lr−1,lr) → ∞ and for a deterministic sequence (cn), such that
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cn→ 0, nc2
n/ logn→ ∞ and λnc−2

n → 0, as n→ ∞, then we have l̂(τ,λ )r − l0
r = OIP(1), for every r = 1, · · · ,K.

Remark 2. We have following relations between the sequences (λn) and (cn), λn � c2
n � cn. Example of

sequence (cn) that satisfies the conditions in the Theorem 3: c2
n = λn logn, for any sequence (λn) converging to

zero and n1/2λn→ ∞, as n→ ∞. An example of tuning parameter sequence (λn) is the following λn = n−2/5.

By the Theorem 1 of Wu and Liu,2 for tuning sequence λ(lr−1,lr) converging to zero as n→ ∞, we have that
the convergence rate of the estimators of φφφ in each segment is of order (l0

r − l0
r−1)

−1/2. Hence, taking into ac-

count Theorem 3, we deduce that ‖φ̂φφ
(τ,λ )

(l̂(τ,λ )r−1 ;l̂(τ,λ )r )
−φφφ

0
r‖2 = OIP(l̂

(τ,λ )
r − l̂(τ,λ )r−1 )−1/2, for every r = 1, · · · ,K+1, with

l̂(τ,λ )0 = 1 and l̂(τ,λ )K+1 = n.

We suppose that for each interval we have that the matrix (lr− lr−1)
−1

∑
lr
i=lr−1+1 XiXt

i converges to Cr, as
n→ ∞, with Cr a non-negative definite matrix, which can be singular. Let us denote by C0

r the limiting matrix
for the true change-points l0

r , r = 1, · · · ,K. We also denote by C0
r,k j the (k, j)th component of matrix C0

r .
The following result proves that on every segment, the SCAD estimator for the regression parameters has

the oracle properties: nonzero parameters estimator on each estimated segment is asymptotically normal and
zero parameters are shrunk directly to 0 with a probability converging to 1. Let us underline that the limiting
distribution not depend on the penalty pλ , but only of the quantile order τ . For that purpose, for each two con-
secutive true change-points l0

r−1, l0
r consider the set with the index of nonzero components of the true regression

parameters
A(l0

r−1,l
0
r )
≡
{

j;φ
0
r, j 6= 0

}
=noted A 0

r (12)

and with the index of the nonzero components of the SCAD regression parameter estimator An;(l0
r−1,l

0
r )
≡{ j; φ̂

(τ,λ )

(l0
r−1,l

0
r ), j
6=

0}. Consider also the similar index set when the change-points are estimated A
n;(l̂(τ,λ )r−1 ,l̂(τ,λ )r )

≡ { j; φ̂
(τ,λ )

(l̂(τ,λ )r−1 ,l̂(τ,λ )r ), j
6=

0}. We denoted by φφφA 0
r

the sub-vector of φφφ containing the corresponding components of A 0
r and by qr ≡

Card{A 0
r } the true number of nonzero components in the rth segment.

Theorem 4. Under the assumptions (A1)-A4), the tuning parameter sequence (λ(lr−1,lr))16r6K+1 on each inter-
val (lr−1, lr) as in Theorem 3, then we have

(i) (l̂(τ,λ )r − l̂(τ,λ )r−1 )1/2(φ̂φφ
(τ,λ )

(l̂(τ;λ )
r−1 ;l̂(τ;λ )

r )
− φφφ

0
r )A 0

r
= (l0

r − l0
r−1)

1/2(φ̂φφ
(τ,λ )

(l̂(τ;λ )
r−1 ;l̂(τ;λ )

r )
− φφφ

0
r )A 0

r
(1 + oIP(1))

L−→
n→∞

N (0,τ(1−
τ)/ f 2(0)(Ω0

r )
−1), where Ω0

r ≡ (C0
r,k j)k, j∈A

(l0r−1,l
0
r )

is a qr×qr matrix.

(ii) limn→∞ IP[An;(l0
r−1,l

0
r )
= A

n;(l̂(τ,λ )r−1 ,l̂(τ,λ )r )
= A 0

r ] = 1.

4. LASSO-type estimator

An important theoretical fact is that, as Zou showed recently,11 the oracle properties do not hold for the LASSO
estimator. We have just seen that considering the SCAD method, the obtained estimators have this property.
But the last method is difficult to put into practice with regard to numerical algorithms. Thus, Xu and Ying
proposed,3 for model (1), that the tuning parameter λ change from one component to the other of the parameter
φφφ .
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In this section the median model ( τ = 1/2) is studied.

Let us first consider, the model (1) without change-points, mentioned in Section 2. The parameter φφφ is
estimate by

φ̂φφ
L
n = argmin

φφφ

(
n

∑
i=1
|Yi−Xt

iφφφ |+λλλ
t
n|φφφ |). (13)

Compared with the SCAD method seen in the previous section, now, the tuning parameter λλλ n = (λn,1, · · · ,λn,p)
is a random p-vector with different components. The fact that λλλ n has different components, makes possible that
the estimator φ̂φφ

L
n have the oracle property, obviously, choosing the components of λλλ n in a judicious way.

For the regression model (1) without change-points, and for the estimator φ̂φφ
L
n given by (13), consider the

index set of estimator nonzero components A L
n ≡ { j; φ̂ L

n, j 6= 0} where φ̂ L
n, j the jth component of φ̂φφ

L
n . Similar to

the Proposition 2, we obtain that the KKT relations are in this case:
−∑

n
i=1 Xi jsgn(Yi−Xt

iφ̂φφ
L
n)+λn, jsgn(φ̂ L

n, j) = 0, for all j ∈A L
n ,∣∣∣∑n

i=1 Xi jsgn(Yi−Xt
iφ̂φφ

L
n)
∣∣∣6 λn, j, for all j 6∈A L

n ,

with λn, j the jth component of λλλ n and φ̂ L
n, j of φ̂φφ

L
n . These results will be useful to prove the oracle properties for

the LASSO-type estimators of the regression parameters on each segment, in a model with change-points.

Consider now the change-point problem (7), with K (known) changes. For this estimation method, the
change-point estimator is

(l̂L
1 , · · · , l̂L

K)≡ argmin
(l1,··· ,lK)∈RK

K+1

∑
r=1

inf
(φφφ 1,··· ,φφφ K+1)

lr

∑
i=lr−1+1

[|Yi−Xt
iφφφ r|+

λλλ
t
n,(lr−1,lr)

lr− lr−1
|φφφ r|].

The LASSO-type estimator of the regression parameters for the rth segment is φ̂φφ
L
(l̂L

r−1;l̂L
r )

, for each r = 1, · · · ,K+1,

with l̂L
0 = 1 and l̂L

K+1 = n. Taking into account that a particular case (τ = 1/2) to the quantile regression is
considered, following processes are introduced

G(1/2)
i (φφφ ,φφφ 0)≡ |εi−Xt

i(φφφ −φφφ
0)|− |εi|, i = 1, · · · ,n

ηL
i;( j1, j2)

(φφφ ,φφφ 0)≡ G(1/2)
i (φφφ ,φφφ 0)+( j2− j1)−1λλλ

t
n;( j1, j2)(|φφφ |− |φφφ

0|), i = j1 +1, · · · , j2,
(14)

with 0 6 j1 < j2 6 n and φφφ
0 the true parameter. In the particular case j1 = 0 and j2 = n, let us denote λn;(0,n) by

λn.
Observe that, since we will study the model (7) with change-points, by the least absolute deviation method

(τ = 1/2) with LASSO-type penalty, the related results are obtained when there is no penalty by Bai,8 Ciuperca
are needed9.

Following result yields that, even if the penalty is different, this estimator has the same convergence rate as
the estimator obtained by the SCAD method.

Theorem 5. If the tuning parameter λλλ n,(lr−1,lr) satisfies the conditions ‖λλλ t
n,(lr−1,lr)‖2→∞, (lr−lr−1)

−1/2‖λλλ t
n,(lr−1,lr)‖2

IP−→
n→∞

M > 0, under the assumptions (A1)-(A4), we have l̂L
r − l0

r = OIP(1), for every r = 1, · · · ,K.
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Combining the Theorem 5 and the
√

n-consistency of the parameter estimator in a model without change-
points (see Theorem 2 of (Ref. 3)), we have that the convergence rate of the regression parameter LASSO-type
estimator on each segment is ‖φ̂φφ

L
(l̂L

r−1,l̂
L
r )
− φφφ

0
r‖2 = (l0

r − l0
r−1)

−1/2OIP(1), for r = 1, · · · ,K + 1, with l0
0 = 1 and

l0
K+1 = n.

For this type of method, the most important is to verify that if the oracle properties are preserved in a change-
point model. The sparsity property is the most interesting and it risk to be influenced by the change-point
estimation. We would like to point out that, due to a penalty different, the proof of this result differs from that
for the SCAD estimator.

Theorem 6. Under the assumptions (A1)-(A4), with the tuning sequence (λλλ n,(lr−1,lr)) as in Theorem 5 and the
index set A 0

r defined by (12), we have:

(i) (l̂L
r − l̂L

r−1)
1/2(φ̂φφ

L
(l̂L

r−1;l̂L
r )
−φφφ

0
r )A 0

r
= (l0

r − l0
r−1)

1/2(φ̂φφ
L
(l̂L

r−1;l̂L
r )
−φφφ

0
r )A 0

r
(1+oIP(1)) converges in distribution to the

p-dimensional Gaussian vector N (0,1/(4 f 2(0))(Ω0
r )
−1), as n→ ∞.

(ii) limn→∞ IP[A L
n;(l0

r−1,l
0
r )
=A L

n;(l̂L
r−1,l̂

L
r )
=A 0

r ] = 1, with A L
n;(l0

r−1,l
0
r )
≡{ j; φ̂ L

(l0
r−1,l

0
r ), j
6= 0} and A L

n;(l̂L
r−1,l̂

L
r )
≡{ j; φ̂ L

(l̂L
r−1,l̂

L
r ), j

6= 0}.

It is worthwhile to mention that, if the same model (7) is estimated by least squares, under certain conditions
on design (Xi), with a LASSO penalty, the sparsity property (i.e. the claim (ii) of the Theorem 6), is not satisfied
(see (Ref. 11)). Moreover, as the model contains change-points, this condition is more difficult to check on
each interval that has random bounds. Then, an adaptive LASSO method can be considered downside to remedy
this. But, it is necessary that in each segment (lr−1, lr) parameter number is smaller than observation number
lr−1− lr. On the other hand, the adaptive LASSO for least squares method holds only under the assumptions
that the errors have mean zero and bounded variance.

An example of tuning random sequence λλλ n,(lr−1,lr): in each segment (lr−1, lr) the LAD estimator φ̂φφ
(1/2)
(lr−1,lr) of

φφφ r is calculated by a corresponding relation to (3), for τ = 1/2. Obtained estimators have all nonzero components
and they have a convergence rate vn,(lr−1,lr) to the true parameter, with (lr− lr−1)vn,(lr−1,lr)→ ∞ (see Theorem 1

of (Ref. 9)). Consider then λλλ n,(lr−1,lr) =

(
1

|φ̂ (1/2)
(lr−1,lr),1

|
, · · · , 1

|φ̂ (1/2)
(lr−1,lr),p

|

)
.

5. Simulation study

We now give some simulation results. All simulations were performed using the R language. To calculate Least
squares estimation the function lm was used. While, for the quantile estimations, SCAD and LASSO-type, the
function rq of the package quantreq were called. To compare these estimates when the classical conditions on
the error distribution do not occur, we consider also the adaptive LASSO estimation using the function lqa of
the package lqa and quantile estimation with LASSO penalty.

The number of phases is assumed to be known: the models contain two change-points (three phases). We
consider 10 latent variables X1, · · · ,X10 with X3 ∼N (2,1), X4 ∼N (4,1), X5 ∼N (1,1) and X j ∼N (0,1)
for j ∈ {1,2,6,7,8,9,10}. The true values of the regression parameters (coefficients) on the three segments
are respectively: (1,0,4,0,−3,5,6,0,−1,0), (0,3,−4,−3,0,1,2, −3,0,10), (1,3,4,0,0,1,0,0,0,1). Three er-
ror patterns were considered: exponential, Cauchy and standard normal distributions. For the exponential er-
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Table 1: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, SCAD, LASSO-type and
adaptive LASSO methods for n = 200, K = 2, l0

1 = 30, l0
2 = 100, εi ∼ E xp(−1.5,1).

Method LS QUANT QLASSO SCAD LASSO-type aLASSO
median of (l̂1, l̂2) (31,100) (31,100) (31,100) (30,100) (30,100) (30,100)

% of trues 0 0 0 46 75 97 94
% of false 0 0 0 1 3 3 8

Table 2: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, SCAD, LASSO-type and
adaptive LASSO methods for n = 200, K = 2, l0

1 = 30, l0
2 = 100, εi ∼N (0,1).

Method LS QUANT QLASSO SCAD LASSO-type aLASSO
median of (l̂1, l̂2) (31,100) (30,100) (30,100) (30,100) (30,100) (30,100)

% of trues 0 0 0 37 65 98 94
% of false 0 0 0 0.5 5 2 8

Table 3: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, SCAD, LASSO-type and
adaptive LASSO methods for n = 200, K = 2, l0

1 = 30, l0
2 = 100, εi ∼Cauchy.

Method LS QUANT QLASSO SCAD LASSO-type aLASSO
median of (l̂1, l̂2) (31,100) (30.5,100) (30,100) (30,100) (30,100) (30,100)

% of trues 0 0 0 36 62 95 48
% of false 0 0 0 1 3 3 12

Table 4: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, LASSO-type and adaptive
LASSO methods for n = 60, K = 2, l0

1 = 17, l0
2 = 40, εi ∼ E xp(−1.5,1).

Method LS QUANT QLASSO LASSO-type aLASSO
median of(l̂1, l̂2) (18,40) (18,40) (18,40) (18,40) (17,40)

% of trues 0 0 0 60 91 75
% of false 0 0 0 27 27 17

Table 5: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, LASSO-type and adaptive
LASSO methods for n = 60, K = 2, l0

1 = 17, l0
2 = 40, εi ∼N (0,1).

Method LS QUANT QLASSO LASSO-type aLASSO
median of(l̂1, l̂2) (18,40) (18,40) (18,40) (17,40) (17,40)

% of trues 0 0 0 51 92.5 82
% of false 0 0 0 7 13 15
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Table 6: Median of change-point estimations, percentage of true 0 and of false 0 by LS, QUANT, QLASSO, LASSO-type and adaptive
LASSO methods for n = 60, K = 2, l0

1 = 17, l0
2 = 40, εi ∼Cauchy.

Method LS QUANT QLASSO LASSO-type aLASSO
median of(l̂1, l̂2) (17,40) (18,40) (18,40) (17,40) (17,40)

% of trues 0 0 0 48.5 82 43
% of false 0 0 0 18 26 16

Table 7: The average of estimation error ‖φ̂φφ−φφφ
0‖1 in each segment under different distributions for LASSO-type and adaptive LASSO

methods, n = 200, K = 2, l0
1 = 30, l0

2 = 100.

LASSO- type adaptive LASSO
(1, l1) (l1; l2) (l2,n) (1, l1) (l1; l2) (l2,n)

εi ∼N (0,1) 0.33 0.11 0.12 0.74 0.48 0.47
εi ∼ E xp(−1.5,1) 0.38 0.11 0.12 0.82 0.52 0.48

εi ∼Cauchy 0.51 0.17 0.13 4.6 4.84 4.83

rors, we generate a n-sample of distribution E xp(−1.5,1), with the density exp(−(x+ 1.5))11x>−1.5. For each
model, we generated 500 Monte-Carlo random samples of size n, with n = 60 or n = 200. The percentage
of zero coefficients correctly estimated to zero(true 0) and the percentage of nonzero coefficients estimated
to zero(false 0) are computed (see Tables 1-6) by least squares(LS), quantile(QUANT), quantile with LASSO
penalty(QLASSO), SCAD, LASSO-type and adaptive LASSO methods. The reader can find in the paper of
Ciuperca more details on the adaptive LASSO method in a change-point model5. The adaptive LASSO estima-
tors of the change-points and of the regression parameters are the minimizers of the following penalized sum
∑

K+1
r=1 [∑

lr
i=lr−1+1(Yi +Xt

iφφφ)
2 +λn;(lr−1,lr)ω̂ωω(lr−1,lr)|φφφ |], where the adaptive penalty p-vector ω̂ωω(lr−1,lr) is considered

here that |φ̂φφ
LS
(lr−1,lr)|

−9/40. Let us specify that φ̂φφ
LS
(lr−1,lr) is the LS estimator of φφφ calculated between lr−1 and lr.

Recall also that the adaptive LASSO estimator of the regression parameters has the oracle properties under the
assumptions for the errors ε that IE[ε] = 0 and IE[ε2]< ∞. For the quantile method with the LASSO penalty, the
sum ∑

lr
i=lr−1+1 ρτ(Yi +Xt

iφφφ) is penalized with λn;(lr−1,lr)|φφφ |. The tuning parameters λn;(lr−1,lr) are log(lr− lr−1)1p

for the quantile estimation with LASSO penalty, (lr− lr−1)
−2/5 for SCAD and (lr− lr−1)

2/5 for adaptive LASSO

methods. For the LASSO-type method, the tuning parameter is (lr− lr−1)
2/5/φ̂φφ

QLASSO
(lr−1,lr) , where φ̂φφ

QLASSO
(lr−1,lr) is the

corresponding estimate by the quantile method (for the index quantile of the errors equal to τ) with LASSO
penalty. Since the asymptotic distribution of the change-points estimators can not be symmetric, in each table
we also give the median of the change-point estimations. Because the results by the SCAD method are poorer
than by the LASSO-type method, and also because there may be convergence problem (the function rq not re-
sponding), in Tables 4-6 the SCAD estimator is not considered.

The outliers of the errors do not affect the precision of the change-point estimations, by all six methods,
while the sparsity property of the QLASSO and adaptive LASSO are affected. More specifically, when n is
large enough (n = 200) and the errors ε are normal, then IE[ε] = 0 and IE[ε2] < ∞, the two methods, adaptive
LASSO and LASSO-type, give the same (very satisfactory) sparsity results (as (Ref. 5), also indicates, for
the adaptive LASSO estimators in a change-point model). When n or number of observations in a segment is
small, the LASSO-type method is better than the adaptive LASSO method, in terms of detection of irrelevant
regressors (true and false zeros). If the errors are E (−1.5,1), then IE[ε] 6= 0, the results for LASSO-type are
relatively better than for adaptive LASSO method (see Tables 1 and 4). This difference is accentuated when
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the moments of errors don’t exist, ε ∼Cauchy (see Tables 3 and 6). Since LASSO-type and adaptive LASSO
methods gave the best results, we calculate the average of estimation error ‖φ̂φφ −φφφ

0‖1 in each segment, for the
index corresponding to the true values different to zero, over 500 simulations for different error distributions,
for n = 200 and two change-points l0

1 = 30, l0
2 = 100 (see Table 7). For Gaussian and exponential distributions

these two estimation methods, yield similar results. On the other hand, for Cauchy distribution, the obtained
estimations by adaptive LASSO method are biased.

In conclusion, the LASSO-type method provides very satisfactory estimations in any case even for small
sample size. The only less favorable result is obtained for n = 60 when the errors are exponential. The percent-
age of false zero is large enough.

6. Proofs of Theorems and Propositions

In order to simplify the proofs of theorems and propositions, we give in this section their demonstrations and in
Section 6 some lemmas and their proofs which will useful.

Proof. of Proposition 1
Let us consider the notations hi(φφφ) = Xt

i(φφφ
0− φφφ) and F(x) for the distribution function of εi. By definition

IE[G(τ)
i (φφφ ;φφφ

0)] =
∫
R[ρτ(x+hi(φφφ))−ρτ(x)]dF(x). Using F(0) = τ , a simple algebraic computation gives:

IE[G(τ)
i (φφφ ;φφφ

0)] =
∫ −hi(φφφ)

0
[|hi(φφφ)|− x]dF(x), if hi(φφφ)< 0 (15)

and

IE[G(τ)
i (φφφ ;φφφ

0)] =
∫ 0

−hi(φφφ)
[|hi(φφφ)|+ x]dF(x), if hi(φφφ)> 0. (16)

Taking into account the relations (15) and (16) we can write IE[G(τ)
i (φφφ ;φφφ

0)]> 11hi(φφφ)>0
∫ 0
− hi(φφφ)

2
[|hi(φφφ)|+x]dF(x)+

11hi(φφφ)<0
∫ − hi(φφφ)

2
0 [|hi(φφφ)|−x]dF(x)> 11hi(φφφ)>0

|hi(φφφ)|
2
∫ 0
− hi(φφφ)

2
dF(x)+11hi(φφφ)<0

|hi(φφφ)|
2
∫ − hi(φφφ)

2
0 dF(x)= |hi(φφφ)|

2 [11hi(φφφ)>0[F(0)−

F(−hi(φφφ)
2 )]+11hi(φφφ)<0[F(−hi(φφφ)

2 )−F(0)]]> 0.

Hence, IE[G(τ)
i (φφφ ;φφφ

0)]> 0 , for all i = 1, · · · ,n, φφφ ∈ Γ.

6.1. For SCAD estimator

Proof. of Proposition 2
If j ∈An. According to the definition (8), the SCAD estimator of φφφ is the solution of the following equation

0=∑
n
i=1

∂G(τ,λ )
i (φ̂φφ

(τ,λ )

n )
∂φ, j

=∑
n
i=1(−τXi j+Xi j11Yi<Xt

i φ̂φφ
(τ,λ )

n
+λ{11|φ̂ (τ,λ )

n, j |6λ
sgn(φ̂ (τ,λ )

n, j )+
(aλ−|φ̂ (τ,λ )

n, j |)+
(a−1)λ sgn(φ̂ (τ,λ )

n, j )11|φ̂ (τ,λ )
n, j |>λ

}).

We obtain τ ∑
n
i=1 Xi j−∑

n
i=1 Xi j11Yi<Xt

i φ̂φφ
(τ,λ )

n
= nλ sgn(φ̂ (τ,λ )

n, j ){11|φ̂ (τ,λ )
n, j |6λ

+
(aλ−|φ̂ (τ,λ )

n, j |)+
(a−1)λ 11|φ̂ (τ,λ )

n, j |>λ
}.

If j 6∈An. In this case 0 ∈ ∑
n
i=1

∂G(τ,λ )
i,n (φ̂

(τ,λ )
n, j )

∂φ, j
= −τ ∑

n
i=1 Xi j +∑

n
i=1 Xi j11Yi<Xt

i φ̂φφ
(τ,λ )

n
+∑

n
i=1 p′

λ
(|φ̂ (τ,λ )

n, j |). Since

p′
λ
(|φ, j|)≡

∂ pλ (|φ, j|)
∂φ, j

= λ sgn(φ, j)11|φ, j|6λ +
(aλ−|φ, j|)+sgn(φ, j)

a−1 11|φ, j|>λ , it follows that 0∈∑
n
i=1

∂G(τ,λ )
i,n (φ̂

(τ,λ )
n, j )

∂φ, j
=−τ ∑

n
i=1 Xi j+

∑
n
i=1 Xi j11Yi<Xt

i φ̂φφ
(τ,λ )

n
+nλ · [−1,1]. Then, |τ ∑

n
i=1 Xi j−∑

n
i=1 Xi j11Yi<Xt

i φ̂φφ
(τ,λ )

n
|6 nλ .
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Proof. of Theorem 3
The proof is similar to that of Theorem 5. It is omitted. The Lemmas 8 and 11 stated in Section 6 are needed.

Proof of Theorem 4
(i) The statement results from Theorem 3 together with Theorem 2(b) of (Ref. 2).
(ii) By the Theorem 2(a) of Wu and Liu,2 we have: limn→∞ IP[An;(l0

r−1,l
0
r )
= A(l0

r−1,l
0
r )
] = 1. The asymptotic

normality of the estimators implies: for all k ∈A(l0
r−1,l

0
r )

, we have φ 0
r,k− φ̂

(τ,λ )

(l̂(τ,λ )r−1 ,l̂(τ,λ )r ),k

IP−→
n→∞

0. It follows that

lim
n→∞

IP
[
A

n;(l̂(τ,λ )r−1 ,l̂(τ,λ )r )
⊇A(l0

r−1,l
0
r )

]
= 1. (17)

By similar arguments that for the Lemma 1 of Wu and Liu,2 we prove that

IP[∃k ∈ {1, · · · , p},k 6∈A(l0
r−1,l

0
r )
,k ∈A

n;(l̂(τ,λ )r−1 ,l̂(τ,λ )r )
] →
n→∞

0. (18)

The Theorem results from the relations (17) and (18).

6.2. For LASSO-type estimator

Proof. of Theorem 5
The proof has three steps. First, we show that the all SCAD estimators of the change-points are to a smaller dis-
tance than n1/2 from the corresponding true value. Then, for each true change-point l0

r , with r ∈ {1, · · · ,K}, we
consider the function S given by (10), but calculated on the change-points l1, · · · , lK , l0

1 , · · · , l0
r−1, l

0
r − [nα ], l0

r +

[nα ], l0
r+1, · · · , l0

K , with α ∈ (1/2,1). For the penalized sums involving observations between l0
t−1 and l0

t , for
t ∈ {1, · · · ,r−1,r+1, · · · ,K}, consider the change-points k1,t < · · ·< kJ(t),t ≡ {l1, · · · , lK}∩{ j; l0

r−1 < j 6 l0
r }.

Then for each t ∈ {1, · · · ,r− 1,r + 1, · · · ,K}, we have 0 > ∑
J(t)+1
j=1 minφφφ j∈Γ[∑

k j,t
i=k j−1,t+1 |εi −Xt

i(φφφ j − φφφ
0
t )|+

λλλ
t
n;(k j−1,t ;k j,t)|φφφ j|]−∑

J(t)+1
j=1 [∑

k j,t
i=k j−1,t+1 |εi|+λλλ

t
n;(k j−1,t ;k j,t)|φφφ

0
j |]>−2(K+1)sup16l< j6n | infφφφ [∑

j
i=l+1 ηL

i;(l, j)(φφφ ,φφφ
0)]|,

which is, using the Lemma 12, −OIP(max(nα ,λλλ n)), with α ∈ (1/2,1). The rest of proof is similar to that in
(Ref. 5), Theorem 1, using also the Lemma 14 stated in Section 7 and the Remark 1. The details are omitted.

Proof. of Theorem 6
(i) The assertion follows from the Theorem 5 and from the Theorem 3(b) of (Ref. 3).
(ii) By Xu and Ying,3 we have: limn→∞ IP[A L

n;(l0
r−1,l

0
r )
= A(l0

r−1,l
0
r )
] = 1. The asymptotic normality of the

estimators implies that, for all k ∈ A(l0
r−1,l

0
r )

we have φ 0
r,k − φ̂ L

n;(l̂L
r−1,l̂

L
r ),k

IP−→
n→∞

0. Thus k ∈ A L
n;(l̂L

r−1,l̂
L
r )

. Hence

limn→∞ IP[A L
n;(l̂L

r−1,l̂
L
r )
⊇A L

(l0
r−1,l

0
r )
] = 1. The proof is finished if we show the claim IP[∃k∈{1, · · · , p},k 6∈A L

(l0
r−1,l

0
r )
,k∈

A L
n;(l̂L

r−1,l̂
L
r )
]→0, as n→ ∞. Since k ∈A L

n;(l̂L
r−1,l̂

L
r )

we have that, with the probability 1,

sgn(φ̂ L
(l̂L

r−1,l̂
L
r ),k

) 6= 0. (19)

We suppose, without loss of generality, that sgn(φ̂ L
(l̂L

r−1,l̂
L
r ),k

) = 1. Then, using the KKT conditions, we have with

the probability 1,

λn,(l̂L
r−1,l̂

L
r ),k

sgn(φ̂ L
(l̂L

r−1,l̂
L
r ),k

) =
l̂L
r

∑
i=l̂L

r−1+1

Xiksgn(Yi−Xt
iφ̂φφ

L
(l̂L

r−1;l̂L
r )
). (20)
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On the other hand, since k 6∈A L
(l0

r−1,l
0
r )

, we have φ 0
r,k = 0, then sgn(φ 0

r,k) = 0. By the proof of the Proposition 4 in

the paper of Xu and Ying,3 for φ 0
,k = 0, we have that for every φφφ such that ‖φ,k‖6Cn−1/2,

IP[sgn

(
−

n

∑
i=1

Xiksgn(Yi−Xt
iφφφ)+λn,ksgn(φ,k)

)
= sgn(φ,k)]−→

n→∞
1.

Then, taking into account the assertion (i), we apply the previous relation for φ̂ L
(l̂L

r−1;l̂L
r ),k

and we obtain

lim
n→∞

IP[sgn(−
n

∑
i=1

Xiksgn(Yi−Xt
iφ̂φφ

L
(l̂L

r−1;l̂L
r )
)+λn,(l̂L

r−1;l̂L
r ),k

sgn(φ̂ L
(l̂L

r−1;l̂L
r ),k

) = sgn(φ,k)] = 1,

where φ̂ L
(l̂L

r−1;l̂L
r ),k

is the kth component of the random vector φ̂φφ
L
(l̂L

r−1;l̂L
r )

. Moreover, by (20), sgn(−∑
n
i=1 Xiksgn(Yi−

Xt
iφ̂φφ

L
(l̂L

r−1;l̂L
r )
)+λn,(l̂L

r−1;l̂L
r ),k

sgn(φ̂ L
(l̂L

r−1;l̂L
r ),k)

)) is 0, with the probability 1. Then limn→∞ IP [0 = sgn(φ,k)] = 1. Con-

tradiction with (19). Thus the claim holds.

The demonstration of the Remark 1 is similar to that of Bai8. Then we give only the main idea.

Proof. of Remark 1
Similar as for the proof of the Lemma 7, we obtain, for ‖φφφ 1− φφφ 2‖2 6 cnn−1/2, that (nc2

n)
−1|(G (τ)

n (φφφ 1;φφφ
0)−

G
(τ)
n (φφφ 2;φφφ

0)− IE[G (τ)
n (φφφ 1;φφφ

0)]+ IE[G (τ)
n (φφφ 2;φφφ

0)])|6Cc−2
n ‖φφφ 1−φφφ 2‖2 6Cn−1/2c−1

n , which converges to 0 for
n→∞. We also have IP[sup j |n−1c−2

n [G
(τ)
n (φφφ j;φφφ

0)−IE[G (τ)
n (φφφ j;φφφ

0)]]|> ε]6 ∑ j IP[|[G (τ)
i (φφφ j;φφφ

0)−IE[G (τ)
n (φφφ j;φφφ

0)]]|>
nc2

nε], where j = 1, · · · ,np/2. By the relations (22) and (23), we have |G(τ)
i (φφφ ;φφφ

0)− IE[G(τ)
i (φφφ ;φφφ

0)]|6C|Xt
i(φφφ−

φφφ
0)|<Ccn. The rest of proof is similar to that of the Lemma 4 of Bai8.

7. Lemmas

We present in this section the lemmas with proofs, which are useful to prove the main results. Following Lemma
gives the asymptotic behavior of the objective function G(τ)

i without penalty. In fact, Lemma 7 will be necessary
to prove the Lemmas 8 and 12, where the penalized objective functions are studied.

Lemma 7. Under the assumptions (A1), (A3), for all α > 1/2, we have sup16l<k6n | infφφφ∈Γ ∑
k
i=l G(τ)

i (φφφ ;φφφ
0)|=

OIP(nα).
Proof. of Lemma 7

By direct calculations R(τ)
i (φφφ 1;φφφ

0)−R(τ)
i (φφφ 2;φφφ

0) can be written as

{Xt
i(φφφ 1−φφφ 2)[(1− τ)11εi60− τ11εi>0])}+{[εi−Xt

i(φφφ 1−φφφ
0)][τ11

εi>Xt
i(φφφ 1−φφφ

0)− (1− τ)11
εi6Xt

i(φφφ 1−φφφ
0)]}

−{[εi−Xt
i(φφφ 2−φφφ

0)][τ 11
εi>Xt

i(φφφ 2−φφφ
0)− (1− τ)11

εi6Xt
i(φφφ 2−φφφ

0)]} ≡ S1,i +S2,i−S3,i.
(21)

Obviously S1,i = Xt
i(φφφ 1−φφφ 2)Di. For S2,i−S3,i we have:

If εi > Xt
i(φφφ 1−φφφ

0). When εi > Xt
i(φφφ 2−φφφ

0), we have S2,i−S3,i = τXt
i(φφφ 2−φφφ 1). In the case εi 6 Xt

i(φφφ 2−
φφφ

0), we have S2,i−S3,i = τXt
i(φφφ 2−φφφ 1)+[εi−Xt

i(φφφ 2−φφφ
0)]6 τXt

i(φφφ 2−φφφ 1). Then, in the both cases, S2,i−S3,i 6
τXt

i(φφφ 2−φφφ 1).
If εi 6 Xt

i(φφφ 1−φφφ
0). When εi 6 Xt

i(φφφ 2− φφφ
0), we have S2,i− S3,i = (1− τ)Xt

i(φφφ 1− φφφ 2). In the case εi >
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Xt
i(φφφ 2−φφφ

0), we have S2,i−S3,i = (1− τ)[Xt
i(φφφ 1−φφφ 2)+ εi−Xt

i(φφφ 1−φφφ
0)]6 (1− τ)Xt

i(φφφ 1−φφφ 2). Then, in the
both cases, S2,i−S3,i 6 (1− τ)Xt

i(φφφ 1−φφφ 2).
In conclusion, with the probability 1,

S1,i +S2,i−S3,i 6 Xt
i(φφφ 1−φφφ 2)Di +max(τXt

i(φφφ 2−φφφ 1),(1− τ)Xt
i(φφφ 1−φφφ 2)). (22)

Similarly
S1,i +S2,i−S3,i > Xt

i(φφφ 1−φφφ 2)Di +min(τXt
i(φφφ 2−φφφ 1),(1− τ)Xt

i(φφφ 1−φφφ 2)). (23)

Hence, the relations (21), (22) and (23), for ‖φφφ 1−φφφ 2‖2 6Cn−1/2 together the assumption (A3), imply that

|∑n
i=1[R

(τ)
i (φφφ 1;φφφ

0)−R(τ)
i (φφφ 2;φφφ

0)− IE[R(τ)
i (φφφ 1;φφφ

0)]+ IE[R(τ)
i (φφφ 2;φφφ

0)]]|
6C ∑

n
i=1 ‖Xi‖2 · ‖φφφ 2−φφφ 1‖2 6 OIP(n1/2).

(24)

By an argument similar to the one used in the Lemma 3 of Bai,8 together the Proposition 1, we obtain

sup
16l<k6n

| inf
φφφ

k

∑
i=l

G(τ)
i (φφφ ;φφφ

0)|6 2 sup
16k6n

sup
φφφ

|
k

∑
i=1

[G(τ)
i (φφφ ;φφφ

0)− IE[G(τ)
i (φφφ ;φφφ

0)]]|.

On the other hand ∑
k
i=1[G

(τ)
i (φφφ ;φφφ

0)− IE[G(τ)
i (φφφ ;φφφ

0)]] = ∑
k
i=1[R

(τ)
i (φφφ ;φφφ

0)− IE[R(τ)
i (φφφ ;φφφ

0)]] +∑
k
i=1 DiXt

i(φφφ −
φφφ

0). Let us consider the random process ξk = supφφφ |∑k
i=1[G

(τ)
i (φφφ ;φφφ

0)− IE[G(τ;φφφ 0)
i (φφφ ;φφφ

0)]]|. Then, since by

Proposition 1 we have that IE[G(τ)
i (φφφ ;φφφ

0)] > 0, follows that {ξk,Fk}k=1,··· ,n is a sub-martingale, where Fk =

σ− f ield{ε1, · · · ,εk}, which implies, using Doob’s inequality IP[sup16k6n ξk > nα ]6 n−αmCmIE[ξ m
n ], Cm >

0, with m > 1. We divide the parameter set Γ into mp/2 cells, such that the cell diameter is 6 n−1/2. Thus
|∑n

i=1[G
(τ)
i (φφφ 1;φφφ

0)−IE[G(τ)
i (φφφ 1;φφφ

0)]−G(τ)
i (φφφ 2;φφφ

0)+IE[G(τ)
i (φφφ 2;φφφ

0)]]|6 |∑n
i=1[R

(τ)
i (φφφ 1;φφφ

0)−IE[R(τ)
i (φφφ 1;φφφ

0)]−
R(τ)

i (φφφ 2;φφφ
0)+ IE[R(τ)

i (φφφ 2,φφφ
0)]]|+ |∑n

i=1 DiXt
i(φφφ 1−φφφ 2)| and using the relation (24), we obtain, with the proba-

bility 1, that the last relation is smaller than ∑
n
i=1 |Xt

i(φφφ 2−φφφ 1)|6Cnn−1/2 =Cn1/2. By an argument similar to
the one used in Bai,8 we have IE|∑n

i=1[G
(τ)
i (φφφ r;φφφ

0)− IE[G(τ)
i (φφφ r;φφφ

0)]]|6Cnm/2. The rest of proof is similar to
that of the Lemma 3 of Bai8.

7.1. For SCAD estimator

Following result will be useful in the study of the convergence rate of the change-point SCAD estimator in a
model with breaking.

Lemma 8. Under the assumptions (A1), (A3), for a positive sequence (λn)n such that λn→ 0, we have

sup
06 j1< j26n

∣∣∣∣∣inf
φφφ

j2

∑
i= j1+1

G(τ,λ )
i (φφφ ;φφφ

0)

∣∣∣∣∣= OIP(nα ,nλn).

Proof. of Lemma 8

Using the triangle inequality, we deduce that

sup
06 j1< j26n

| inf
φφφ

j2

∑
i= j1+1

G(τ,λ )
i (φφφ ;φφφ

0)|6 sup
06 j1< j26n

| inf
φφφ

j2

∑
i= j1+1

G(τ)
i (φφφ ;φφφ

0)|+nsup
φφφ

|(pλ (|φφφ |)−pλ (|φφφ 0|))t1p|.
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Considering Lemma 7 and the definition of p′
λ

, we have that the last quantity is smaller than OIP(nα)+nλn.

In the following Lemma, the behavior of G
(τ)
n is studied in the outside of the ball center β

0 and radius cn.

Lemma 9. Under the assumptions (A1), (A2), with (cn) a positive sequence such that cn→ 0 and nc2
n/ logn→∞,

there exists ε > 0 such that we have with probability 1

liminf
n→∞

(
inf

‖φφφ−φφφ
0‖2>cn

1
nc2

n
G

(τ)
n (φφφ ;φφφ

0)

)
> ε > 0.

Proof. of Lemma 9

Let u in an open subset of Rp. By the proof of the Lemma 3 of Wu and Liu,2 taking into account the assumptions
(A1) and (A2), we have

IE[G (τ)
n (φφφ 0 +

u√
n

;φφφ
0)] =

f (0)
2n

ut(
n

∑
i=1

XiXt
i)u+o(1).

If cn→ 0 and nc2
n→∞, we have similarly IE[G (τ)

n (φφφ 0+ucn;φφφ
0)] = f (0)

2 c2
nut(∑n

i=1 XiXt
i)u+oIP(1). The function

G(τ)
i (φφφ ;φφφ

0) is convex, hence G
(τ)
n (φφφ ;φφφ

0) is convex in φφφ . Thus, its minimum over ‖φφφ − φφφ
0‖2 > cn is realized

for ‖φφφ − φφφ
0‖2 = cn. Then, for ‖u‖2 = 1, using the assumption (A2) we obtain that IE[G (τ)

n (φφφ 0 +ucn;φφφ
0)] =

f (0)
2 nc2

n(C+o(1)). The rest of proof follows using the the Lemma 5 of Bai,8 taking into account the relation (6).

Lemma 10. Under the assumptions (A1), (A2), for two positive sequences (cn) and (λn) such that λn → 0,
cn→ 0, nc2

n/ logn→ ∞ and λnc−2
n → 0, we have, with probability 1,

liminf
n→∞

(
inf

‖φφφ−φφφ
0‖2>cn

1
nc2

n

n

∑
i=1

G(τ,λ )
i (φφφ ;φφφ

0)

)
> ε.

Proof. of Lemma 10

Applying the mean value theorem, we write G(τ,λ )
i (φφφ ;φφφ

0) = G(τ)
i (φφφ ;φφφ

0)+ [|φφφ |− |φφφ 0|]tp′
λ
(φ̃φφ), with φ̃φφ = φφφ

0−
b(φφφ −φφφ

0), b ∈ [0,1]p. Then, using the relation (9), we have, with probability 1,

inf
‖φφφ−φφφ

0‖2>cn

(nc2
n)
−1

n

∑
i=1

G(τ,λ )
i (φφφ ;φφφ

0)> inf
‖φφφ−φφφ

0‖2>cn

(nc2
n)
−1G

(τ)
n (φφφ ;φφφ

0)− (nλn)/(nc2
n).

Since λnc−2
n → 0, for every ε > 0 there exists a nε ∈ N such that λnc−2

n < ε/2. An application of Lemma 9
leads to inf‖φφφ−φφφ

0‖2>cn
((nc2

n)
−1G

(τ)
n (φφφ ;φφφ

0))> 3ε/2, with probability 1, and Lemma is proved.

By similar calculus as in Lemma 10 of Bai,8 we have following result for the estimator (3) of φφφ .

Lemma 11. For (λn), (cn) as in the Lemma 10, under assumptions (A1)-(A3), for all n1,n2 ∈ N such that
n1 > nu, with 3/4 6 u 6 1, n2 6 nv, v < 1/4, let us consider the model

Yi = Xt
iφφφ

0
1 + εi, i = 1, · · · ,n1

Yi = Xt
iφφφ

0
2 + εi, i = n1 +1, · · · ,n1 +n2

with the assumption φφφ
0
1 6= φφφ

0
2. Consider A(τ,λ )

n1+n2
(φφφ) = ∑

n1
i=1 G(τ,λ )

i (φφφ ;φφφ
0
1)+∑

n1+n2
i=n1+1 G(τ,λ )

i (φφφ ;φφφ
0
2) and φ̂φφ

(τ,λ )

n1+n2
≡

argminφφφ A(τ,λ )
n1+n2

(φφφ).
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(i) ‖φ̂φφ
(τ,λ )

n1+n2
−φφφ

0
1‖2 6 n−1/2

1 n
v+δ

2u
1 6 n−(u−v−δ )/2.

(ii) ∑
n1
i=1 G(τ,λ )

i

(
φ̂φφ
(τ,λ )

n1+n2
;φφφ

0
1

)
= OIP(1).

Proof. of Lemma 11

(i) A(τ,λ )
n1+n2

(φ̂φφ
τ,λ

n1+n2
)6 ∑

n1+n2
i=n1+1 G(τ,λ )

i (φφφ 0
1;φφφ

0
2) = ∑

n1+n2
i=n1+1 G(τ)

i (φφφ 0
1;φφφ

0
2)+n2[pλ (|φφφ 0

1|)−pλ (|φφφ 0
2|)]1p = oIP(1)+

O(n2). By Lemma 10, for G(τ,λ )
i , i = n1 +1, · · · ,n2, we arrive to a contradiction.

(ii) Let Z(τ)
n (φφφ)≡∑

n1
i=1 G(τ)

i (φφφ ;φφφ
0
1), t(τ)n (φφφ)≡∑

n1+n2
i=n1+1[ρτ(εi−Xt

i(φφφ−φφφ
0
2))−ρτ(εi−Xt

i(φφφ
0
1−φφφ

0
2))], t(τ,λ )n (φφφ)≡

t(τ)n (φφφ)+n2[pλ (|φφφ |)−pλ (|φφφ 0
1|)]1p, Z(τ,λ )

n (φφφ)≡ Z(τ)
n (φφφ)+n1[pλ (|φφφ |)−pλ (|φφφ 0

1|)]1p. Then

A(τ,λ )
n1+n2

(φφφ) = Z(τ,λ )
n (φφφ)+ t(τ,λ )n (φφφ)+n2[pλ (|φφφ 0

1|)−pλ (|φφφ 0
2|)]1p +

n1+n2

∑
i=n1+1

[ρτ(εi−Xt
i(φφφ

0
1−φφφ

0
2))−ρτ(εi)].

We have |t(τ,λ )n (φ̂φφ
(τ,λ )

n1+n2
)|6 |t(τ)n (φ̂φφ

(τ,λ )

n1+n2
)|+n2‖pλ (|φ̂φφ

(τ,λ )

n1+n2
|)−pλ (|φφφ 0

1|)‖1 and similarly that for the relation (22),

6 C ∑
n1+n2
i=n1+1 |Xi|1‖φ̂φφ

(τ,λ )

n1+n2
− φφφ

0
1‖2 + n2‖pλ (|φ̂φφ

(τ,λ )

n1+n2
|)− pλ (|φφφ 0

1|)‖1. The rest of proof is similar to that of the
Lemma 3(ii) of Ciuperca,5 taking into account the assumption (A3).

We have the equivalent of Lemma 4 of the same paper5.

7.2. For LASSO-type estimator

Lemma 12. Under the assumptions (A1), (A3), we have, for α > 1/2, that

sup
06 j1< j26n

| inf
φφφ

j2

∑
i= j1+1

η
L
i;( j1, j2)(φφφ ,φφφ

0)|= OIP(max(nα , sup
06 j1< j26n

‖λλλ n;( j1, j2)‖2)).

Proof. of Lemma 12

By the Lemma 3 of Bai,8 Lemma holds for G(1/2)
i instead of ηL

i;( j1, j2)
. For ηL

i , we have |ηL
i;( j1, j2)

(φφφ ;φφφ
0)−

G(1/2)
i (φφφ ;φφφ

0)| = ( j1− j1)−1/2|λλλ t
n;( j1, j2)(|φφφ |− |φφφ

0|)|. Then, by triangular inequality together the Lemma 7 and
the compactness of the set Γ, we obtain

sup
06 j1< j26n

| inf
φφφ

j2

∑
i= j1+1

η
L
i;( j1, j2)(φφφ ;φφφ

0)|6 sup
06 j1< j26n

| inf
φφφ

j2

∑
i= j1+1

G(1/2)
i (φφφ ;φφφ

0)|+C sup
06 j1< j26n

‖λλλ n;( j1, j2)‖1

= OIP(nα)+OIP(λλλ n).

Lemma 13. Under the assumptions (A1), (A2), if n−1/2‖λλλ n‖2
IP−→

n→∞
λ0, with λ0 > 0, then

liminf
n→∞

(
inf

‖φφφ−φφφ
0‖2>n−1/2

n−1
n

∑
i=1

η
L
i;(0,n)(φφφ ;φφφ

0)

)
> ε.

Proof. of Lemma 13
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Using (A2), by the Lemma 6 of Ciuperca,5 we have for G(1/2)
i , with the probability 1

liminf
n→∞

( inf
‖φφφ−φφφ

0‖2>n−1/2
n−1

n

∑
i=1

G(1/2)
i (φφφ ;φφφ

0))>
3ε

2
. (25)

We also have the inequality

inf
‖φφφ−φφφ

0‖2>n−1/2

n

∑
i=1

η
L
i;(0,n)(φφφ ;φφφ

0)> inf
‖φφφ−φφφ

0‖2>n−1/2

n

∑
i=1

G(1/2)
i (φφφ ;φφφ

0) − sup
‖φφφ−φφφ

0‖2>n−1/2

λλλ
t
n(|φφφ |− |φφφ 0|). (26)

Since ‖λλλ n‖2 = OIP(n−1/2) and φφφ belongs to a compact set, then the last term of the right-hand-side of (26) is
oIP(n−1). Hence

sup
‖φφφ−φφφ

0‖2>n−1/2

(n−1
λλλ

t
n(|φφφ |− |φφφ 0|))< ε

2
, n > nε . (27)

The conclusion follows, combining the relations (25), (26) and (27).

Lemma 14. For all n1,n2 ∈ N such that n1 > nu, with 3/4 6 u 6 1, n2 6 nv, v < 1/4, let us consider the model

Yi = Xt
iφφφ

0
1 + εi, i = 1, · · · ,n1

Yi = Xt
iφφφ

0
2 + εi, i = n1 +1, · · · ,n1 +n2

with the assumption φφφ
0
1 6= φφφ

0
2. Under the assumptions (A1)-(A3) and (λn) as in the Lemma 13, let us consider

AL
n1+n2

(φφφ) = ∑
n1
i=1 ηL

i;(0,n1)
(φφφ ;φφφ

0
1)+∑

n1+n2
i=n1+1 ηL

i;(n1,n1+n2)
(φφφ ;φφφ

0
2) and φ̂φφ

L
n1+n2

≡ argminφφφ AL
n1+n2

(φφφ). Then

(i) ‖φ̂φφ
L
n1+n2

−φφφ
0
1‖2 6 n−1/2

1 n
v+δ

2u
1 6 n−(u−v−δ )/2.

(ii) ∑
n1
i=1 ηL

i;(0,n1)
(φ̂φφ

L
n1+n2

,φφφ 0
1) = OIP(1).

Proof. of Lemma 14

We denote φ̂φφ n1+n2
≡ argminφφφ ∑

n1
i=1 G(1/2)

i (φφφ ,φφφ 0
1)+∑

n1+n2
i=n1+1 G(1/2)

i (φφφ ,φφφ 0
2). Using the assumptions (A1) and (A3),

by Lemma 10 of (Ref. 8) we have that (i) and (ii) are true for φ̂φφ n1+n2
and G(1/2)

i .

(i) We suppose the contrary ‖φ̂φφ
L
n1+n2

−φφφ
0
1‖2 > n1. On the other hand, we have by definition:

AL
n1+n2

(φ̂φφ
L
n1+n2

)6
n1+n2

∑
i=n1+1

η
L
i;(n1,n1+n2)

(φφφ 0
1,φφφ

0
2) =

n1+n2

∑
i=n1+1

G(1/2)
i (φφφ 0

1,φφφ
0
2)+λλλ

t
n(|φφφ 0

1|− |φφφ
0|). (28)

By Lemma 10(ii) of Bai,8 we have: ∑
n1+n2
i=n1+1 G(1/2)

i (φφφ 0
1,φφφ

0
2) = oIP(1), then taking into account the relation (28),

we obtain
AL

n1+n2
(φ̂φφ

L
n1+n2

)6 oIP(1)+OIP(n1/2). (29)

On the other hand, using the Lemma 13, we deduce

n1

∑
i=1

η
L
i;(0,n1)

(φ̂φφ
L
n1+n2

,φφφ 0
1)> OIP(n1). (30)

There is a contradiction between the relations (29) and (30).
(ii) Introduce ν(φφφ 1,φφφ 2)

(Xi) ≡ Xt
i(φφφ 1 − φφφ 2). For τ = 1/2, let us recall the notations given in Lemma 11:
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Z(1/2)
n (φφφ) ≡ ∑

n1
i=1 G(1/2)

i (φφφ ,φφφ 0
1), t(1/2)

n (φφφ) ≡ ∑
n1+n2
i=n1+1[|εi− ν(φφφ ,φφφ 0

2)
(Xi)| − |εi− ν(φφφ 0

1,φφφ
0
2)
(Xi)|]. By the Lemma 7

of Ciuperca,9 we have that: Z(1/2)
n (φ̂φφ

L
n1+n2

,φφφ 0
1) = OIP(1). Introduce now tL

n (φφφ) ≡ t(1/2)
n (φφφ)+ λλλ

t
(n1,n1+n2)[|φφφ | −

|φφφ 0
1|], ZL

n (φφφ) ≡ Z(1/2)
n (φφφ)+ λλλ

t
(0,n1)[|φφφ | − |φφφ

0
1|]. Thus AL

n1+n2
(φφφ) = Z(1/2)

n (φφφ)+ λλλ
t
(0,n1)[|φφφ | − |φφφ

0
1|] + t(1/2)

n (φφφ)+

∑
n1+n2
i=n1+1[|εi−ν(φφφ 0

1,φφφ
0
2)
(Xi)|−|εi|]+λλλ

t
(n1,n1+n2)[|φφφ |−|φφφ

0
2|] =ZL

n (φφφ)+tL
n (φφφ)+λλλ

t
(n1,n1+n2)[|φφφ

0
1|−|φφφ

0
2|]−∑

n1+n2
i=n1+1[|εi−

ν(φφφ 0
1,φφφ

0
2)
(Xi)|−|εi|]. Then φ̂φφ

L
n1+n2

≡ argminφφφ AL
n1+n2

(φφφ)= argminφφφ [Z
L
n (φφφ)+tL

n (φφφ)]. But |tL
n (φ̂φφ

L
n1+n2

)|6 |t(1/2)
n (φ̂φφ

L
n1+n2

)|+

|λλλ t
(n1,n1+n2)[|φ̂φφ

L
n1+n2
| − |φφφ 0

1|]| and using the elementary inequality ||a| − |b|| 6 |a− b|, we have |tL
n (φ̂φφ

L
n1+n2

)| 6

∑
n1+n2
i=n1+1 ‖φ̂φφ

L
n1+n2

− φφφ
0
1‖1 · ‖Xt

i‖1 + |λλλ t
(n1,n1+n2)[|φ̂φφ

L
n1+n2
| − |φφφ 0

1|]| 6 oIP(1), we have used (i) and the assumptions

(A3) and ‖λλλ (n1,n1+n2)‖2 = oIP(n
1/2
2 ).

We have also ZL
n (φφφ

0
1) = tL

n (φφφ
0
1). Thus 0 > infφφφ (ZL

n (φφφ) + tL
n (φφφ)) = ZL

n (φ̂φφ
L
n1+n2

) + tL
n (φ̂φφ

L
n1+n2

) = ZL
n (φ̂φφ

L
n1+n2

)−
|oIP(1)|> infφφφ ZL

n (φφφ)−|oIP(1)|. But infφφφ Zn(φφφ) = OIP(1). The rest of proof is similar to that of the Lemma 3(ii)
of Ciuperca12.
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