Matrix Exponential via Clifford Algebras

Rafat ABEAMOWICZ

* Department of Mathematics and Physics, Gannon University, Erie, PA 16541

E-mail:ablamowicz@gannon.edu
Received March 17, 1998; Accepted May 15, 1998
Expanded version of a talk presented at the Special Session on 'Octonions and Clifford Algebras', 1997 Spring Western Sectional 921st Meeting of the American Mathematical Society, Oregon State University, Corvallis, OR, 19-20 April 1997.

Abstract

We use isomorphism φ between matrix algebras and simple orthogonal Clifford algebras $C \ell(Q)$ to compute matrix exponential e^{A} of a real, complex, and quaternionic matrix A. The isomorphic image $p=\varphi(A)$ in $C \ell(Q)$, where the quadratic form Q has a suitable signature (p, q), is exponentiated modulo a minimal polynomial of p using Clifford exponential. Elements of $C \ell(Q)$ are treated as symbolic multivariate polynomials in Grassmann monomials. Computations in $C \ell(Q)$ are performed with a Maple package 'CLIFFORD'. Three examples of matrix exponentiation are given.

1 Introduction

Exponentiation of a numeric $n \times n$ matrix A is needed when solving a system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\mathbf{x}_{0}$, in order to represent its solution in a form $\mathrm{e}^{A t} \mathbf{x}_{0}$. It is well known that the exponential form of the solution remains valid when A is not diagonalizable, provided the following definition of e^{A} is adopted:

$$
\begin{equation*}
\mathrm{e}^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}, \quad \text { where } \quad A^{0}=I \tag{1}
\end{equation*}
$$

Equation (1) means that the sequence of partial sums $S_{n} \equiv \sum_{k=0}^{n} A^{k} / k!\rightarrow \mathrm{e}^{A}$ entrywise. Equivalently, (1) implies that $\left\|S_{n}-\mathrm{e}^{A}\right\|_{1} \rightarrow 0$ where $\|A\|_{1}$ denotes matrix 1-norm defined as the maximum of $\left\{\left\|A_{j}\right\|_{1}, j=1, \ldots, n\right\}, A_{j}$ is the j th column of a A, and $\left\|A_{j}\right\|_{1}$ is

Copyright (c) 1998 by R. Abtamowicz

* Address after July 1, 1998: Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, TN 38505, E-mail: rablamowicz@tntech.edu
the 1-vector norm on \mathbb{C}^{n} defined as $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. However, for several reasons, there is no obvious way ${ }^{1}$ to implement definition (1) on a computer, unless of course A is diagonalizable, that is, when A has a complete set of linearly independent eigenvectors (cf. [2]).

Another approach to solving $\mathrm{x}^{\prime}=A \mathrm{x}$ is to find Jordan canonical form J of the matrix A. Let P be a nonsingular matrix such that $P^{-1} A P=J$. Then, if a change of basis is made such that $\mathbf{x}=P \mathbf{y}$, the matrix equation $\mathbf{x}^{\prime}=A \mathbf{x}$ is transformed into $\mathbf{y}^{\prime}=J \mathbf{y}$ and, at least theoretically, its solution is represented as $\mathrm{e}^{J t} \mathbf{c}$ for some constant vector \mathbf{c}. However, since the Jordan form is extremely discontinuous on a set of all $n \times n$ matrices, numeric computations of J are seriously ill-posed (cf. [2, 3]).

In this paper we present another approach to exponentiate a matrix, let it be numeric or symbolic, with real, complex, or quaternionic entries, totally different from the linear algebra methods. It relies on the well-known isomorphism between matrix algebras over \mathbb{R}, \mathbb{C}, or \mathbb{H}, and simple orthogonal Clifford algebras (cf. $[4,5,6,7]$). This is not a matrix method in the sense that elements of the real Clifford algebra $C \ell(Q)$ are not viewed here as matrices but instead they are treated as symbolic multivariate polynomials in some basis Grassmann monomials. This is possible due to the linear isomorphism $C \ell(V, Q) \simeq \bigwedge V$. The critical exponentiation is done in the real Clifford algebra $C \ell_{p, q}$ over Q with a suitable signature (p, q) depending whether the given matrix A has real, complex, or quaternionic entries. Three examples of computation of the matrix exponential with a Maple package 'CLIFFORD' (cf. [8, 9, 10]) are presented below. The Reader is encouraged to repeat these computations.

In order to find matrix exponential e^{A}, the following steps will be taken:

- We will view elements of $C \ell_{p, q}$ as real multivariate polynomials in basis Grassmann or Clifford monomials.
- We will find explicit spinor (left-regular) representation γ of $C \ell_{p, q}$ in a minimal left ideal $S=C \ell_{p, q} f$ generated by a primitive idempotent f.
- For a matrix A (numeric or symbolic) in the matrix $\operatorname{ring} \mathbb{R}(n), \mathbb{C}(n)$ or $\mathbb{H}(n)$ where $n=2^{m-1}, m=\left[\frac{1}{2}(p+q)\right]$, we will find its isomorphic image $p=\varphi(A)$ in $C \ell_{p, q} .{ }^{2}$
- We will find a real minimal polynomial $p(x)$ of p and then a formal power series $\exp (p) \bmod p(x)$ in $C \ell_{p, q}$.
- We will check the truncation error of the power series $\exp (p)$ in $C \ell_{p, q}$ via a polynomial norm, or in a matrix norm, both built into Maple. ${ }^{3}$
- We will map $\exp (p)$ back to the matrix ring $\mathbb{R}(n), \mathbb{C}(n)$ or $\mathbb{H}(n)$ to get $\exp (A)$.

Before we proceed, let's recall certain useful facts about orthogonal Clifford algebras $C \ell_{p, q}$. For more information see [4].

[^0]- If $p-q \neq 1 \bmod 4$ then $C \ell_{p, q}$ is a simple algebra of dimension $2^{n}, n=p+q$, isomorphic with a full matrix algebra with entries in \mathbb{R}, \mathbb{C}, or \mathbb{H}.
- If $p-q=1 \bmod 4$ then $C \ell_{p, q}$ is a semi-simple algebra of dimension $2^{n}, n=p+q$, containing two copies of a full matrix algebra with entries in \mathbb{R} or \mathbb{H} projected out by two central idempotents $\frac{1}{2}\left(1 \pm \mathbf{e}_{1} \mathbf{e}_{2} \cdots \mathbf{e}_{n}\right) .{ }^{4}$
- $C \ell_{p, q}$ has a faithful representation as a matrix algebra with entries in $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or $\mathbb{R} \oplus \mathbb{R}, \mathbb{H} \oplus \mathbb{H}$ depending whether $C \ell_{p, q}$ is simple or semisimple.
- Any primitive idempotent f in $C \ell_{p, q}$ is expressible as a product

$$
\begin{equation*}
f=\frac{1}{2}\left(1 \pm e_{T_{1}}\right) \frac{1}{2}\left(1 \pm e_{T_{2}}\right) \cdots \frac{1}{2}\left(1 \pm e_{T_{k}}\right) \tag{2}
\end{equation*}
$$

where $\left\{e_{T_{1}}, e_{T_{2}}, \ldots, e_{T_{k}}\right\}, k=q-r_{q-p}$, is a set of commuting basis monomials with square 1 , and r_{i} is the Radon-Hurwitz number defined by the recursion $r_{i+8}=r_{i}+4$ and

i	0	1	2	3	4	5	6	7
r_{i}	0	1	2	2	3	3	3	3

- $C \ell_{p, q}$ has a complete set of 2^{k} primitive idempotents each with k factors as in (2).
- The division ring $\mathbb{K}=f C \ell_{p, q} f$ is isomorphic to \mathbb{R} or \mathbb{C} or \mathbb{H} when $(p-q) \bmod 8$ is $0,1,2$, or 3,7 or $4,5,6$.
- The mapping $S \times \mathbb{K} \rightarrow S$, or $(\psi, \lambda) \rightarrow \psi \lambda$ defines a right \mathbb{K}-linear structure on the spinor space $S=C \ell_{p, q} f$ (cf. [7]).

Example 1. In $C \ell_{3,1} \simeq \mathbb{R}(4)$ we have $k=2$ and $f=\frac{1}{2}\left(1+\mathbf{e}_{1}\right) \frac{1}{2}\left(1+\mathbf{e}_{34}\right), \mathbf{e}_{34}=\mathbf{e}_{3} \mathbf{e}_{4}=$ $\mathbf{e}_{3} \wedge \mathbf{e}_{4}$ is a primitive idempotent. The ring $\mathbb{K} \simeq \mathbb{R}$ is just spanned by $\{1\}_{\mathbb{R}}$ and a real basis for $S=C \ell_{3,1} f$ may be generated by $\left\{1, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{23}\right\}_{\mathbb{R}}\left(\right.$ here $\mathbf{e}_{23}=\mathbf{e}_{2} \mathbf{e}_{3}=\mathbf{e}_{2} \wedge \mathbf{e}_{3}$.)
Example 2. In $C \ell_{3,0} \simeq \mathbb{C}(2)$ we have $k=1$ and $f=\frac{1}{2}\left(1+\mathbf{e}_{1}\right)$ is a primitive idempotent. The ring $\mathbb{K} \simeq \mathbb{C}$ may be spanned by $\left\{1, \mathbf{e}_{23}\right\}_{\mathbb{R}}$ and a basis for $S=C \ell_{3,0} f$ over \mathbb{K} may be generated by $\left\{1, \mathbf{e}_{2}\right\}_{\mathbb{K}}$.
Example 3. In $C \ell_{1,3} \simeq \mathbb{H}(2)$, the Clifford polynomial $f=\frac{1}{2}\left(1+\mathbf{e}_{14}\right)$, $\mathbf{e}_{14}=\mathbf{e}_{1} \mathbf{e}_{4}=\mathbf{e}_{1} \wedge \mathbf{e}_{4}$, is a primitive idempotent. Thus, the ring $\mathbb{K} \simeq \mathbb{H}$ may be spanned by $\left\{1, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{23}\right\}_{\mathbb{R}}$ and a basis for $S=C \ell_{1,3} f$ as a right-quaternionic space over \mathbb{K} may be generated by $\left\{1, \mathbf{e}_{1}\right\}_{\mathbb{K}}$.

2 Exponential of a real matrix

We now proceed to exponentiate a real 4×4 matrix using the spinor representation γ of $C \ell_{3,1}$ from Example 1. Instead of $C \ell_{3,1}$ one could also use $C \ell_{2,2}$, the Clifford algebra of the neutral signature (2,2), since $C \ell_{2,2} \simeq \mathbb{R}(4)$. From now on $\mathbf{e}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}=\mathbf{e}_{i} \wedge \mathbf{e}_{j}, i \neq j$, $\mathbb{K}=\{I d\}_{\mathbb{R}} \simeq \mathbb{R}$, and $I d$ denotes the unit element of $C \ell_{3,1}$ in 'CLIFFORD'

Recall the following facts about the simple algebra $C \ell_{3,1} \simeq \mathbb{R}(4)$ and its spinor space S :

[^1]$-C \ell_{3,1}=\left\{1, \mathbf{e}_{i}, \mathbf{e}_{i j}, \mathbf{e}_{i j k}, \mathbf{e}_{i j k l}\right\}_{\mathbb{R}}, \quad i<j<k<l, i, j, k, l=1, \ldots, 4$.
$-S=C \ell_{3,1} f=\left\{f_{1}=f, f_{2}=\mathbf{e}_{2} f, f_{3}=\mathbf{e}_{3} f, f_{4}=\mathbf{e}_{23} f\right\}_{\mathbb{K}}$.

- Each basis monomial $\mathbf{e}_{i j k l}$ has a unique matrix $\gamma_{\mathbf{e}_{i j k l}}$ representation in the spinor basis $f_{i}, i=1, \ldots, 4$. For example, the basis 1 -vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ are represented under γ as:

$$
\begin{array}{lc}
\gamma_{\mathbf{e}_{1}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \gamma_{\mathbf{e}_{2}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \tag{3}\\
\gamma_{\mathbf{e}_{3}}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad \gamma_{\mathbf{e}_{4}}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) .
\end{array}
$$

Since $\gamma: \mathbb{R}(4) \rightarrow C \ell_{3,1}$ is a linear isomorphism of algebras, matrices representing Clifford monomials of higher ranks are matrix products of matrices shown in (3). For example, $\gamma_{\mathbf{e}_{i j k l}}=\gamma_{\mathbf{e}_{i}} \gamma_{\mathbf{e}_{j}} \gamma_{\mathbf{e}_{k}} \gamma_{\mathbf{e}_{l}}$:

$$
\gamma_{\mathbf{e}_{1234}}=\gamma_{\mathbf{e}_{1}} \gamma_{\mathbf{e}_{2}} \gamma_{\mathbf{e}_{3}} \gamma_{\mathbf{e}_{4}}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{4}\\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Then, a matrix representing any Clifford polynomial may be found by the linearity of γ.
Relevant information about $C \ell_{3,1}$ is stored in 'CLIFFORD' and can be retrieved as follows:

```
> restart:with(Cliff3):dim:=4:B:=linalg[diag] (1,1,1,-1):
> eval(makealiases(dim)):data:=clidata();
```

$$
\begin{aligned}
& d a t a:= \\
& \quad\left[\text { real, } 4, \text { simple, cmulQ }\left(\frac{1}{2} I d+\frac{1}{2} e 1, \frac{1}{2} I d+\frac{1}{2} e 34\right),\right. \\
& \quad[I d, e 2, e 3, e 23],[I d],[I d, e 2, e 3, e 23]]
\end{aligned}
$$

In the Maple list data above,

- real, 4 , and simple mean that $C \ell_{3,1}$ is a simple algebra isomorphic to $\mathbb{R}(4)$.
- The fourth element data [4] in the list 'data' is a primitive idempotent f written as a Clifford product of two Clifford polynomials (Clifford product in orthogonal Clifford algebras is realized in 'CLIFFORD' through a procedure 'cmulQ').
- The list [Id, e2, e3, e23] contains generators of the spinor space $S=C \ell_{3,1} f$ over the reals \mathbb{R} (compare with Example 1 above).
- The list [Id] contains the only basis element of the field $\mathbb{K} \subset C \ell_{3,1}$, that is, the identity element of $C \ell_{3,1}$.
- The final list [$I d, e 2, e 3, e 23$] contains generators of the spinor space $S=C \ell_{3,1} f$ over the field \mathbb{K}. In this case it coincides with data [5] since $\mathbb{K} \simeq \mathbb{R}$.

Thus, a real spinor basis in S consists of the following four polynomials:

$$
\begin{align*}
& >\mathrm{f} 1:=\mathrm{f} ; \mathrm{f} 2:=\mathrm{cmulQ}(\mathrm{e} 2, \mathrm{f}) ; \mathrm{f} 3:=\mathrm{cmulQ}(\mathrm{e} 3, \mathrm{f}) ; \mathrm{f} 4:=\mathrm{cmulQ}(\mathrm{e} 23, \mathrm{f}) ; \\
& \\
& \quad f 1:=\frac{1}{4} I d+\frac{1}{4} e 34+\frac{1}{4} e 1+\frac{1}{4} e 134, \quad f 2:=\frac{1}{4} e 2+\frac{1}{4} e 234-\frac{1}{4} e 12-\frac{1}{4} e 1234 \tag{5}\\
& \quad f 3:=\frac{1}{4} e 3+\frac{1}{4} e 4-\frac{1}{4} e 13-\frac{1}{4} e 14, \quad f 4:=\frac{1}{4} e 23+\frac{1}{4} e 24+\frac{1}{4} e 123+\frac{1}{4} e 124
\end{align*}
$$

Procedure 'matKrepr' allows us now to compute 16 matrices $m[i]$ representing each basis monomial in $\mathrm{Cl}_{3,1}$.

```
> for i from 1 to 16 do
> lprint ('The basis element',clibas[i],
    'is represented by the following matrix:);
> m[i]:=subs(Id=1,matKrepr(clibas[i])) od:
```

Let's define a 4×4 real matrix A without a complete set of eigenvectors. Therefore, A cannot be diagonalized.

```
> A:=linalg[matrix] (4,4,[0,1,0,0,-1,2,0,0,-1,1,1,0,-1,1,0,1]);
> linalg[eigenvects](A);#A has incomplete set of eigenvectors
```

$$
\begin{align*}
& A:=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right] \\
& {[1,4,\{[0,0,1,0],[1,1,0,0],[0,0,0,1]\}]} \tag{6}
\end{align*}
$$

Maple output in (6) shows that A has only one eigenvalue $\lambda=1$ with an algebraic multiplicity 4 and a geometric multiplicity 3 .

In the Appendix, one can find a procedure 'phi' which gives the isomorphism φ from $\mathbb{R}(4)$ to $C \ell_{3,1}$. It can find the image $p=\operatorname{phi}(A)$ of any real 4×4 matrix A using the previously computed matrices $m[i]$. In particular, the image p of A under φ is computed as follows:

```
> FBgens:=[Id]; #assigning a basis element of K
> p:=phi(A,m,FBgens); #finding the image of A in Cl( }3,1
\[
\begin{equation*}
p:=I d-\frac{1}{2} e 1-\frac{1}{2} e 3-\frac{1}{2} e 4+\frac{1}{2} e 12-\frac{1}{2} e 23-\frac{1}{2} e 24-\frac{1}{2} e 134+\frac{1}{2} e 1234 \tag{7}
\end{equation*}
\]
```

Let's go back to the exponentiation problem. So far we have found a Clifford polynomial p in $C \ell_{3,1}$ which is the isomorphic image of A. We will now compute a sequence of finite
power series expansions of p up to a specified order N. Procedure 'sexp' (defined in the Appendix) finds these expansions, which are just Clifford polynomials, modulo the minimal polynomial $p(x)$ of p. The minimal polynomial $p(x)$ can be computed using a procedure 'climinpoly'.

```
> p(x)=climinpoly(p);
```

$$
\begin{equation*}
p(x)=x^{2}-2 x+1 \tag{8}
\end{equation*}
$$

It can be easily verified that the polynomial (8) is satisfied by $p=\varphi(A)$ and that it is also the minimal polynomial of A.

```
> cmul(p,p)-2*p+Id; #p satisfies its own minimal polynomial
```

 0
    ```
> linalg[minpoly](A,x); #matrix A has the same minimal polynomial as p
```

$$
x^{2}-2 x+1
$$

A finite sequence of say 20 Clifford polynomials approximating $\exp (p)$ can now be computed.

```
> N:=20:for i from 1 to N do p.i:=sexp(p,i) od:# we want 20 polynomials
```

For example, Maple displays polynomial p_{20} as follows:
> p_lim:=p.20;

$$
\begin{aligned}
\text { p_lim } & :=\frac{6613313319248080001}{2432902008176640000} I d-\frac{82666416490601}{60822550204416} e 1-\frac{82666416490601}{60822550204416} e 3 \\
& -\frac{82666416490601}{60822550204416} e 4+\frac{82666416490601}{60822550204416} e 12-\frac{82666416490601}{60822550204416} e 23 \\
& -\frac{82666416490601}{60822550204416} e 24-\frac{82666416490601}{60822550204416} e 134+\frac{82666416490601}{60822550204416} e 1234
\end{aligned}
$$

Having computed the approximation polynomials $p_{1}, p_{2}, \ldots, p_{N}, N=20$, one can show that the sequence converges to some limiting polynomial $p_{\text {lim }}$ by verifying that $\left|p_{i}-p_{j}\right|<\epsilon$ for $i, j>M, M$ sufficiently large, in one of the Maple's built-in polynomial norms.

Finally, we map back $p_{\text {lim }}$ into a 4×4 matrix which approximates $\exp (A)$ up to and including the terms of order N.

```
expA:=0:for i from 1 to nops(clibas) do
    expA:=evalm(expA+coeff(p_lim, clibas[i])*m[i])od:
evalm(expA); #the matrix exponent of A
```

$\left[\begin{array}{cccc}\frac{1}{2432902008176640000} & \frac{82666416490601}{3041275102208} & 0 & 0 \\ \frac{-82666416490601}{30411275102208} & \frac{7775794614048301}{1430277488640000} & 0 & 0 \\ \frac{-82666416490601}{30411275102208} & \frac{82666416490601}{30411275102208} & \frac{6613313319248080001}{2432902008176640000} & 0 \\ \frac{-82666416490601}{30411275102208} & \frac{82666416490601}{3041275102208} & 0 & \frac{6613313319248080001}{2432902008176640000}\end{array}\right]$

Although A had an incomplete set of eigenvectors, Maple can find $\exp (A)$ in a closed form.

```
> mA:=linalg[exponential](A);
```

$$
m A:=\left[\begin{array}{cccc}
0 & e & 0 & 0 \\
-e & 2 e & 0 & 0 \\
-e & e & e & 0 \\
-e & e & 0 & e
\end{array}\right]
$$

Notice that our result is very close to the Maple closed-form result:

```
> map(evalf,evalm(expA));
    [.41103176233121648585 10-18 , 2.7182818284590452349,0, 0]
        [-2.7182818284590452349, 5.4365636569180904703, 0, 0]
        [-2.7182818284590452349, 2.7182818284590452349, 2.7182818284590452353, 0]
        [-2.7182818284590452349, 2.7182818284590452349, 0, 2.7182818284590452353]
```

The 1-norm of the difference matrix between $m A$ and $\exp A$ can be computed in Maple as follows:

```
> evalf(linalg[norm](mA-expA,1));
```

$$
.210^{-17}
$$

3 Exponential of a complex matrix

In this section we exponentiate a complex 2×2 matrix using a spinor representation of $C \ell_{3,0} \simeq \mathbb{C}(2)$ (see Example 2 above). Note that instead of using $C \ell_{3,0}$, one could also use $C \ell_{1,2}$ since $C \ell_{1,2} \simeq \mathbb{C}(2)$. As before, $\mathbf{e}_{i j k}=\mathbf{e}_{i} \mathbf{e}_{j} \mathbf{e}_{k}=\mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \mathbf{e}_{k}, i, j, k=1, \ldots, 3, \mathbb{K}=$ $\left\{I d, \mathbf{e}_{23}\right\}_{\mathbb{R}} \simeq \mathbb{C}, \mathbf{e}_{23}^{2}=-I d$, where $I d$ denotes the unit element of $C \ell_{3,0}$ in 'CLIFFORD'.

Recall these facts about the simple algebra $C \ell_{3,0}$ and its spinor space S :
$-C \ell_{3,0}=\left\{1, \mathbf{e}_{i}, \mathbf{e}_{i j}, \mathbf{e}_{i j k}\right\}_{\mathbb{R}}, i<j<k$.
$-S=C \ell_{3,0} f=\left\{f_{1}=f, f_{2}=\mathbf{e}_{2} f, f_{3}=\mathbf{e}_{3} f, f_{4}=\mathbf{e}_{23} f\right\}_{\mathbb{R}}$.

$$
-S=C \ell_{3,0} f=\left\{f_{1}=f, f_{2}=\mathbf{e}_{2} f\right\}_{\mathbb{K}} .
$$

For example, the basis 1 -vectors are represented in the spinor basis $\left\{f_{1}, f_{2}\right\}$ by these three matrices in $\mathbb{K}(2)$ well known as the Pauli matrices:

$$
\gamma_{\mathbf{e}_{1}}=\left(\begin{array}{cc}
1 & 0 \tag{9}\\
0 & -1
\end{array}\right), \quad \gamma_{\mathbf{e}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma_{\mathbf{e}_{3}}=\left(\begin{array}{cc}
0 & -\mathbf{e}_{23} \\
\mathbf{e}_{23} & 0
\end{array}\right) .
$$

The following information about $C \ell_{3,0}$ is stored in 'CLIFFORD':

```
> dim:=3:B:=linalg[diag] (1,1,1):
> data:=clidata();
\[
\text { data }:=\left[\text { complex, } 2, \text { simple, } \frac{1}{2} I d+\frac{1}{2} e 1,[I d, e 2, e 3, e 23],[I d, e 23],[I d, e 2]\right]
\]
```

Now we define a Grassmann basis in $C \ell_{3,0}$, assign a primitive idempotent to f, and generate a spinor basis for $S=C \ell_{3,0} f$.

```
> clibas:=cbasis(dim); #ordered basis in Cl(3,0)
```

 clibas \(:=[I d, e 1, e 2, e 3, e 12, e 13, e 23, e 123]\)
 > f:=data[4]; \#a primitive idempotent in Cl $(3,0)$
$f:=\frac{1}{2} I d+\frac{1}{2} e 1$
> sbasis:=minimalideal(clibas,f,'left'); \#find a real basis in $\mathrm{Cl}(\mathrm{B}) \mathrm{f}$
sbasis :=

$$
\left[\left[\frac{1}{2} I d+\frac{1}{2} e 1, \frac{1}{2} e 2-\frac{1}{2} e 12, \frac{1}{2} e 3-\frac{1}{2} e 13, \frac{1}{2} e 23+\frac{1}{2} e 123\right],[I d, e 2, e 3, e 23], \text { left }\right]
$$

> fbasis:=Kfield(sbasis,f) ; \#find a basis for the field K
fbasis $:=\left[\left[\frac{1}{2} I d+\frac{1}{2} e 1, \frac{1}{2} e 23+\frac{1}{2} e 123\right],[I d, e 23]\right]$
> SBgens:=sbasis[2];\#generators for a real basis in S
SBgens $:=[I d, e 2, e 3, e 23]$
> FBgens:=fbasis[2]; \#generators for K
FBgens : = [Id, e23]

In the above, 'sbasis' is a \mathbb{K}-basis returned for $S=C \ell_{3,0} f$. Since in the current signature (3,0) we have $\mathbb{K}=\{I d, e 23\}_{\mathbb{R}} \simeq \mathbb{C}, \operatorname{cmulQ}(e 23, e 23)=-I d$, and $C \ell_{3,0} \simeq \mathbb{C}(2)$, the output from 'spinorKbasis' shown below has two basis vectors and their generators modulo f :

```
> Kbasis:=spinorKbasis(SBgens,f,FBgens,'left');
    Kbasis := [[\frac{1}{2}Id + \frac{1}{2}e1, \frac{1}{2}e2-\frac{1}{2}e12],[Id, e2],left]
> cmulQ(f,f); #verifying that f is an idempotent
    \frac{1}{2}Id+\frac{1}{2}e1
```

Note that the second list in 'Kbasis' contains generators of the first list modulo the idempotent f. Thus, the spinor basis in S over \mathbb{K} consists of the following two polynomials:

```
> for i from 1 to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od;
\[
\begin{equation*}
f 1:=\frac{1}{2} I d+\frac{1}{2} e 1, \quad f 2:=\frac{1}{2} e 2-\frac{1}{2} e 12 \tag{10}
\end{equation*}
\]
```

We are in a position now to compute matrices $m[i]$ representing basis elements in $C \ell_{3,0}$. We will only display Clifford-algebra valued matrices representing the 1-vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and the unit pseudoscalar $\mathbf{e}_{123}=\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}$.

```
> for i from 1 to nops(clibas) do
> lprint ('The basis element',clibas[i],
    'is represented by the following matrix:');
> m[i]:=subs(Id=1,matKrepr(clibas[i])) od:
The basis element e1 is represented by the following matrix:
```

$$
m_{2}:=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

The basis element e2 is represented by the following matrix:

$$
m_{3}:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
m_{4}:=\left[\begin{array}{cc}
0 & -e 23 \\
e 23 & 0
\end{array}\right]
$$

The basis element e123 is represented by the following matrix:

$$
m_{8}:=\left[\begin{array}{cc}
e 23 & 0 \\
0 & e 23
\end{array}\right]
$$

As an example, let's define a complex 2×2 matrix A and let's find its eigenvectors:

$$
\begin{aligned}
> & \text { A: }=\operatorname{linalg}[\text { matrix }](2,2,[1+2 * I, 1-3 * I, 1-I,-2 * I]) ; \text { \#defining A } \\
> & \text { linalg[eigenvects] }(\mathrm{A}) ; \\
& A:=\left[\begin{array}{cc}
1+2 I & 1-3 I \\
1-I & -2 I
\end{array}\right] \\
& {\left[\frac{1}{2}+\frac{1}{2} \sqrt{-23-8 I}, 1,\left\{\left[-\frac{3}{4}+\frac{1}{4} \sqrt{-23-8 I}+I+\frac{1}{2} I\left(\frac{1}{2}+\frac{1}{2} \sqrt{-23-8 I}\right), 1\right]\right\}\right], } \\
& {\left[\frac{1}{2}-\frac{1}{2} \sqrt{-23-8 I}, 1,\left\{\left[-\frac{3}{4}-\frac{1}{4} \sqrt{-23-8 I}+I+\frac{1}{2} I\left(\frac{1}{2}-\frac{1}{2} \sqrt{-23-8 I}\right), 1\right]\right\}\right] }
\end{aligned}
$$

The image of A in $C \ell_{3,0}$ under the isomorphism $\varphi: \mathbb{C}(2) \rightarrow C \ell_{3,0}$ can now be computed. Recall that 'FBgens' defined above contained the basis elements of the complex field \mathbb{K} in $C \ell_{3,0}$.

```
> evalm(A);p:=phi(A,m,FBgens); #finding image of A in Cl(3,0)
```

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1+2 I & 1-3 I \\
1-I & -2 I
\end{array}\right]} \\
& p:=\frac{1}{2} I d+\frac{1}{2} e 1+e 2+e 3+2 e 13+2 e 23
\end{aligned}
$$

Thus, we have found a Clifford polynomial p in $C \ell_{3,0}$ which is the isomorphic image of A. We will now compute a sequence of finite power expansions of p up to and including power $N=30$ using the procedure 'sexp'. This sequence of Clifford polynomials should converge to a polynomial $p_{l i m}$, the image under φ of the matrix $\operatorname{exponential~} \exp (A)$. First, we find the real minimal polynomial $p(x)$ of p (called 'pol' in Maple).
> pol:=climinpoly(p); \#find the real minimal polynomial of p

$$
\text { pol }:=x^{4}-2 x^{3}+13 x^{2}-12 x+40
$$

$>\& c(p \$ 4)-2 * \& c(p \$ 3)+13 * \& c(p \$ 2)-12 * p+40 * I d ; \# c h e c k i n g$ that p satisfies pol

0

Observe that matrix A has the following complex minimal polynomial 'pol2':

$$
\begin{aligned}
& >\operatorname{pol2}:=\operatorname{linalg}[\text { minpoly }](\mathrm{A}, \mathrm{x}) ; \\
& \quad \operatorname{pol} 2:=6+2 I-x+x^{2} \\
& >\text { evalm }(\& *(\mathrm{~A} \$ 2)-\mathrm{A}+6+2 * \mathrm{I}) ; \\
& \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Furthermore, since $\{I d, e 123\}_{\mathbb{R}}$ is another copy of the complex field \mathbb{K} in $C \ell_{3,0}$, we can easily verify that the Clifford polynomial p also satisfies the complex minimal polynomial 'pol2' of A if we replace 1 with $I d$ and I with e123, namely:

```
> &c(p$2)-p+6*Id+2*e123;
```

0
On the other hand, matrix A of course satisfies the polynomial 'pol':

```
> evalm(&*(A$4)-2*&*(A$3)+13*&*(A$2)-12*A+40);
```

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

As expected, the complex minimal polynomial of A is a factor of the real minimal polynomial of p :

```
> divide(pol,pol2);
```

true

```
> pol3:=quo(pol,pol2,x);
```

$$
\text { pol3 }:=x^{2}-x+6-2 I
$$

Let's check that pol3 $*$ pol2 $=$ pol:

```
> pol;expand(pol3 * pol2);
```

$$
\begin{aligned}
& x^{4}-2 x^{3}+13 x^{2}-12 x+40 \\
& x^{4}-2 x^{3}+13 x^{2}-12 x+40
\end{aligned}
$$

The following loop computes Clifford polynomials p_{i} approximating $\exp (p)$ in $C \ell_{3,0}$. We will only display polynomial p_{30} and assign it to $p_{\text {lim }}$.

```
> Digits:=20:
> N:=30:for i from 1 to N do p.i:=sexp(p,i) od;
> p_lim:=p.N:
\[
\begin{aligned}
p 30 & :=-\frac{739418826545208898275600203389}{544108430383981658741145600000} I d+\frac{140606618686769098555631609225939}{176835239874794039090872320000000} e 1 \\
& -\frac{13294860446171527820401106221093}{88417619937397019545436160000000} e 2+\frac{5429376085448859186420447465893}{12631088562485288506490880000000} e 3 \\
& +\frac{50830755859220399836279191881837}{44208809968698509772718080000000} e 13+\frac{15796535483801410769637551225479}{22104404984349254886359040000000} e 23 \\
& -\frac{537129223345642211370021843709}{1184164552732995797483520000000} e 123-\frac{24569201649575451209456052913}{84691206836587183472640000000} e 12
\end{aligned}
\]
```

By picking up numeric coefficients of the basis monomials in the subsequent approximations to $\exp (p)$, one can get an idea about the approximation errors.

```
> sort([op(L:=cliterms(p_lim))],bygrade):
> for i from 1 to nops(L) do
    L.i:=map(evalf,[seq(coeff(p.j,L[i]),j= 1..N)]) od:
> approxerror:=
    max(seq(min(seq(abs(L.j[i]-L.j[i-1]), i=2..N)), j=1..nops(L)));
    approxerror := .110-19
```

Having computed the finite sequence of polynomials p_{i} one can again show by using Maple's built-in polynomial norm functions that this is a convergent sequence. For example, in the infinity norm one gets $\left|p_{29}-p_{30}\right|<.6 \times 10^{-20}$ and $\left|p_{i}-p_{j}\right| \rightarrow 0$ as $i, j \rightarrow \infty$.

Thus, we have found an approximation $p_{\text {lim }}$ to the power series expansion of $\exp (p)$ in $C \ell_{3,0}$ up to and including terms of degree $N=30$. Finally, we map back $p_{\text {lim }}$ into a 2×2 complex matrix which approximates $\exp (A)$. We expand $p_{\text {lim }}$ over the matrices $m[i]$:

```
> expA:=0: for i from 1 to nops(clibas) do
    expA:=evalm(expA+coeff(p_lim,clibas[i] )*m[i]) od:
evalm(expA); #the matrix exponent of A
```

$$
\begin{aligned}
& {\left[-\frac{7121749995744556670281318348249}{12631088562485288506490880000000}+\frac{596909308415457533523842428577}{2286662584587853953761280000000} e 23,\right.} \\
& \left.-\frac{7789021393665659776614645092453}{17683523987479403909087232000000}-\frac{6228189267183180110479443301}{3942814712927403324211200000} e 23\right] \\
& {\left[\frac{12355386075985243242271013020079}{88417619937397019545436160000000}-\frac{340405770696784948489921131029}{472821496991427912007680000000} e 23,\right.} \\
& \left.-\frac{31743144776163499207933472943947}{14736269989566169924239360000000}-\frac{5959141766058476626587221301857}{5101016534849828050698240000000} e 23\right]
\end{aligned}
$$

Maple can find the exponent of A in a closed form with its 'linalg [exponential]' command. We won't display the result but we will just compare it numerically with our result saved in ' expA '.

```
> mA:=linalg[exponential](A):
```

Let's replace the monomial $e 2 w e 3$ in 'expA' with the imaginary unit I used by Maple and let's apply 'evalf' to the entries of 'expA':

```
> fexpA:=subs(e2we3=I,map(evalf,evalm(expA)));
    fexpA :=
        [-.56382709696901085353 + .26103952215715461164 I,
            - .44046771442052942162 - 1.5796302186766888057 I]
        [.13973895796712599250 - .71994563035478140661 I,
            -2.1540827359052753813-1.1682263182928324795 I]
> fmA:=map(evalf,mA); #applying 'evalf' to mA
    fmA:=
        [-.56382709696901085362 + .26103952215715461158 I,
            - .44046771442052942180-1.5796302186766888058 I]
        [.13973895796712599243-. .71994563035478140663 I,
            - 2.1540827359052753816 - 1.1682263182928324795 I]
```

Let's check the 1-norm of the difference matrix between 'fmA' and 'fexpA':

```
> evalf(linalg[norm](fmA-fexpA,1));
```

$$
.505912602810^{-18}
$$

The floating-point approximation ' fexpA ' to $\exp (A)$ is within approximately $.5 \times 10^{-18}$ in the matrix $\|\cdot\|_{1}$ norm to the closed matrix exponential computed by Maple.

4 Exponential of a quaternionic matrix

In order to exponentiate a quaternionic 2×2 matrix, we will use the spinor representation of $C \ell_{1,3} \simeq \mathbb{H}(2)$ (see Example 3 above). Note that two other algebras could be used instead of $C \ell_{1,3}$, namely, $C \ell_{0,4}$ and $C \ell_{4,0}$ since both are isomorphic to $\mathbb{H}(2)$. As before $\mathbf{e}_{i j}=\mathbf{e}_{i} \mathbf{e}_{j}=\mathbf{e}_{i} \wedge \mathbf{e}_{j}, i, j=1, \ldots, 4$, but this time $\mathbb{K}=\left\{I d, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{23}\right\}_{\mathbb{R}} \simeq \mathbb{H}$.

Recall the following facts about the simple algebra $C \ell_{1,3}$ and its spinor space S :
$-C \ell_{1,3}=\left\{1, \mathbf{e}_{i}, \mathbf{e}_{i j}, \mathbf{e}_{i j k}, \mathbf{e}_{i j k l}\right\}_{\mathbb{R}}, i<j<k<l$.
$-S=C \ell_{1,3} f=\left\{f_{1}=f, f_{2}=\mathbf{e}_{2} f, f_{3}=\mathbf{e}_{3} f, f_{4}=\mathbf{e}_{23} f\right\}_{\mathbb{R}}$.
$-S=C \ell_{1,3} f=\left\{f_{1}=f, f_{2}=\mathbf{e}_{1} f\right\}_{\mathbb{K}}$.

For example, the basis 1-vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ are represented by:

$$
\gamma_{\mathbf{e}_{1}}=\left(\begin{array}{ll}
0 & 1 \tag{11}\\
1 & 0
\end{array}\right), \gamma_{\mathbf{e}_{2}}=\left(\begin{array}{cc}
\mathbf{e}_{2} & 0 \\
0 & -\mathbf{e}_{2}
\end{array}\right), \gamma_{\mathbf{e}_{3}}=\left(\begin{array}{cc}
\mathbf{e}_{3} & 0 \\
0 & -\mathbf{e}_{3}
\end{array}\right), \gamma_{\mathbf{e}_{4}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

In order to compute the spinor representation of $C \ell_{1,3}$, we proceed as follows:

```
> data:=clidata(linalg[diag](1,-1,-1,-1));
```

 data \(:=\left[\right.\) quaternionic, 2, simple, \(\frac{1}{2} I d+\frac{1}{2} e 14,[I d, e 1, e 2, e 3, e 12, e 13, e 23, e 123]\),
 [Id, e2, e3, e23], [Id, e1]]
 We define a Grassmann basis in $C \ell_{1,3}$, assign a primitive idempotent to f, and generate a spinor basis for $S=C \ell_{1,3} f$.

```
> clibas:=cbasis(dim); #ordered basis in Cl (1,3)
```

 clibas :=
 [Id,e1,e2,e3,e4,e12,e13, e14, e23, e24, e34, e123, e124, e134, e234, e1234]
 > f:=data[4]; \#a primitive idempotent in $\mathrm{Cl}(1,3)$
$f:=\frac{1}{2} I d+\frac{1}{2} e 14$

Next, we compute a real basis in the spinor space $S=C \ell_{1,3} f$ using the command 'minimalideal':

```
> sbasis:=minimalideal(clibas,f,'left');#find a real basis in Cl(B)f
```

$$
\begin{aligned}
& \text { sbasis }:=\left[\left[\frac{1}{2} I d+\frac{1}{2} e 14, \frac{1}{2} e 1+\frac{1}{2} e 4, \frac{1}{2} e 2-\frac{1}{2} e 124, \frac{1}{2} e 3-\frac{1}{2} e 134, \frac{1}{2} e 12-\frac{1}{2} e 24,\right.\right. \\
& \left.\quad \frac{1}{2} e 13-\frac{1}{2} e 34, \frac{1}{2} e 23+\frac{1}{2} e 1234, \frac{1}{2} e 123+\frac{1}{2} e 234\right], \\
& [I d, e 1, e 2, e 3, e 12, e 13, e 23, e 123], \text { left }]
\end{aligned}
$$

In the following, we compute a basis for the subalgebra \mathbb{K} :

```
> fbasis:=Kfield(sbasis,f); #a basis for the field K
    fbasis :=
        [[\frac{1}{2}Id+\frac{1}{2}e14, \frac{1}{2}e2-\frac{1}{2}e124,\frac{1}{2}e3-\frac{1}{2}e134,\frac{1}{2}e23+\frac{1}{2}e1234],[Id,e2,e3,e23]]
> SBgens:=sbasis[2];#generators for a real basis in S
    SBgens := [Id,e1,e2,e3,e12,e13,e23,e123]
```

Thus, a possible set of generators for \mathbb{K} is:

```
> FBgens:=fbasis[2]; #generators for K
```

$$
\begin{equation*}
F B g e n s:=[I d, e 2, e 3, e 23] \tag{12}
\end{equation*}
$$

In the above, 'sbasis' is a real basis for $S=C \ell_{1,3} f$. Since in the current signature $(1,3)$ we have that $\mathbb{K}=\{I d, e 2, e 3, e 23\}_{\mathbb{R}} \simeq \mathbb{H}$ and $C \ell_{1,3}=\mathbb{H}(2)$, the output from 'spinorKbasis' shown below has two basis vectors and their generators modulo f for S over \mathbb{K} :

```
> Kbasis:=spinorKbasis(SBgens,f,FBgens,'left');
```

$$
\text { Kbasis }:=\left[\left[\frac{1}{2} I d+\frac{1}{2} e 14, \frac{1}{2} e 1+\frac{1}{2} e 4\right],[I d, e 1] \text {, left }\right]
$$

```
> cmulQ(f,f); #f is an idempotent in Cl(1,3)
```

$$
\frac{1}{2} I d+\frac{1}{2} e 14
$$

Notice that the generators of the first list in 'Kbasis' are listed in Kbasis [2]. Furthermore, a spinor basis in S over \mathbb{K} consists of the following two polynomials f_{1} and f_{2} :

$$
\begin{align*}
& >\text { for i from } 1 \text { to nops(Kbasis[1]) do f.i:=Kbasis[1][i] od; } \\
& \qquad f 1:=\frac{1}{2} I d+\frac{1}{2} e 14, \quad f 2:=\frac{1}{2} e 1+\frac{1}{2} e 4 \tag{13}
\end{align*}
$$

Using the procedure 'matKrepr' we can now find matrices $m[i]$ with entries in \mathbb{K} representing basis monomials in $C \ell_{1,3}$. Below we will display only matrices representing the 1 -vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and \mathbf{e}_{4} :

```
> for i from 1 to nops(clibas) do
> lprint ('The basis element',clibas[i],
    'is represented by the following matrix:');
> m[i]:=subs(Id=1,matKrepr(clibas[i])) od;
```

The basis element e1 is represented by the following matrix:

$$
m_{2}:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

The basis element e2 is represented by the following matrix:

$$
m_{3}:=\left[\begin{array}{cc}
e 2 & 0 \\
0 & -e 2
\end{array}\right]
$$

The basis element e3 is represented by the following matrix:

$$
m_{4}:=\left[\begin{array}{cc}
e 3 & 0 \\
0 & -e 3
\end{array}\right]
$$

The basis element e4 is represented by the following matrix:

$$
m_{5}:=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Let's define a 2×2 quaternionic matrix A. In Maple, we will represent the standard quaternionic basis $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ as $\left\{1,{ }^{\prime} \mathrm{ii}^{\prime},^{\prime} \mathrm{j}^{\mathrm{j}}\right.$ ', ' kk ' $\}$. Later we will make substitutions: ${ }^{\prime}{ }^{\mathrm{ii}}{ }^{\prime} \rightarrow e 2,{ }^{\prime} \mathrm{jj}{ }^{\prime} \rightarrow e 3$, 'kk' $\rightarrow e 2 w e 3$ since, as we may recall from Example 3 above, $\mathbb{K}=\left\{1, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{23}\right\}_{\mathbb{R}}$.

```
> A:=linalg[matrix](2,2,[1+2*'ii'-3*'kk',2+'ii' -2*'jj',
> 'kk'-3*'ii',2*'kk'-2*'jj']); #defining a quaternionic matrix A
\[
A:=\left[\begin{array}{cc}
1+2 i i-3 k k & 2+i i-2 j j  \tag{14}\\
k k-3 i i & 2 k k-2 j j
\end{array}\right]
\]
```

The isomorphism $\varphi: \mathbb{H}(2) \rightarrow C \ell_{1,3}$ has been defined in Maple through the procedure 'phi' (see the Appendix). This way we can find image p in $C \ell_{1,3}$ of any matrix A. Recall that 'FBgens' in (12) contains the basis elements of the field \mathbb{K}.

$$
\begin{aligned}
&>\mathrm{p}:=\mathrm{phi}(\mathrm{~A}, \mathrm{~m}, \mathrm{FBgens}) ; \# \text { finding image of } \mathrm{A} \text { in } \mathrm{Cl}(1,3) \\
& p:= \frac{1}{2} I d+e 1+e 2+e 3-e 4-2 e 12+e 13+\frac{1}{2} e 14-\frac{1}{2} e 23+e 24+e 34+ \\
& \frac{1}{2} e 123-e 124+e 134+\frac{1}{2} e 234-\frac{5}{2} e 1234
\end{aligned}
$$

The minimal polynomial $p(x)$ of p in $C \ell_{1,3}$ is then found with the procedure 'climinpoly':

```
> climinpoly(p);
```

$$
x^{4}-2 x^{3}+16 x^{2}+10 x+330
$$

So far we have found a Clifford polynomial p in $C \ell_{1,3}$ which is the isomorphic image of the quaternionic matrix A. We will now compute a sequence of finite power expansions of p using the procedure 'sexp'. This sequence of Clifford polynomials will be shown to converge to a polynomial $p_{\text {lim }}$ that is the image of $\exp (A)$. For example, polynomial p20 $=\operatorname{sexp}(\mathrm{p}, 20)$ looks as follows:

```
> for i from 1 to 20 do p.i:=sexp(p,i) od;
```

$$
\begin{aligned}
p 20 & :=-\frac{68240889697169513}{10861169679360000} I d-\frac{50515123107772493}{9503523469440000} e 34 \\
& +\frac{976049744897473}{638892334080000} e 123-\frac{76665127748453}{66691392768000} e 234 \\
& +\frac{23336382714907219}{152056375511040000} e 124-\frac{1736342897976643}{1974758123520000} e 134 \\
& +\frac{9030311044661089}{1407929402880000} e 1234+\frac{802551523836832291}{152056375511040000} e 12 \\
& -\frac{907882088300711}{365520133440000} e 13+\frac{4304638284278411}{4472246338560000} e 23 \\
& -\frac{360072975386539}{116162242560000} e 24-\frac{19812017405738017}{76028187755520000} e 14 \\
& -\frac{1889118161676113}{703964701440000} e 1-\frac{277471312336316837}{152056375511040000} e 2 \\
& -\frac{98120514192871531}{152056375511040000} e 3-\frac{25277099300039}{44722463385600} e 4
\end{aligned}
$$

Thus, we have a finite sequence of Clifford polynomials $p_{i} \operatorname{approximating~} \exp (p)$. Next, for each of the 16 basis monomials present in all polynomials, we create a sequence s_{j} (or sj in Maple) of its coefficients.

```
> for j from 1 to nops(clibas) do
> s.j:=map(evalf,[seq(coeff(p.i,clibas[j]),i=1..N)]) od:
```

For example, the sequence s1 of the coefficients of the identity element $I d$ is:

```
> s1;
```

$$
\begin{aligned}
& {[1.500000000,-2 .,-6.916666667,-18.66666667,-20.22500000,-10.85972222,} \\
& \quad-5.099206349,-3.980456349,-5.027722663,-6.129274691,-6.428549232, \\
& \quad-6.368049418,-6.301487892,-6.280796253,-6.280315663,-6.282290205, \\
& \quad-6.282986035,-6.283054064,-6.283026981,-6.283014787]
\end{aligned}
$$

Having computed the finite sequence of polynomials $p_{1}, p_{2}, \ldots, p_{20}$, one can again verify that this is a convergent sequence by using any of the Maple's built-in polynomial norm functions to estimate norms of the differences $p_{i}-p_{j}$ for $i, j=1, \ldots, 20$. It can be again observed that $\left|p_{i}-p_{j}\right| \rightarrow 0$ as $i, j \rightarrow \infty$. Finally, we map back $p_{\text {lim }} \simeq p_{20}$ into a 2×2 matrix ' expA ' which approximates $\exp (A)$ up to and including terms of order $N=20$. After
 we obtain:

```
> p_lim:=p20:
> expA:=0:for i from 1 to nops(clibas) do
    expA:=evalm(expA+coeff(p_limit,clibas[i])*m[i]) od:
sexpA:=subs({e2we3='kk',e3='jj',e2='ii'}, evalm(expA));
```

 \(\operatorname{sexp} A:=\)
 $$
\begin{aligned}
& {\left[-\frac{58889470322671}{8999548740000}-\frac{301630543173}{152472320000} i i+\frac{1778894447566499}{7602818775552000} j j\right.} \\
& +\frac{560815647244431793}{76028187755520000} k k,-\frac{10065855790684619}{4751761734720000}-\frac{5520266650930879}{2534272925184000} i i \\
& \left.+\frac{748687448521121}{95995186560000} j j+\frac{203548165276035707}{76028187755520000} k k\right] \\
& {\left[-\frac{30874478783885813}{9503523469440000}+\frac{33523343384679259}{4001483566080000} i i+\frac{3844312687422001}{1357646209920000} j j\right.} \\
& +\frac{2613788546323897}{6911653432320000} k k,-\frac{228937105237224287}{38014093877760000}+\frac{127067464810704809}{76028187755520000} i i \\
& \left.+\frac{38636486222845507}{25342729251840000} j j-\frac{414457945578965819}{76028187755520000} k k\right]
\end{aligned}
$$

```
> fexpA:=map(evalf,evalm(sexpA)); #floating-point approximation
```

$$
\begin{aligned}
& f \exp A:= \\
& \quad[-6.543602577-1.978264272 i i+.2339782783 j j+7.376417403 k k, \\
& \quad-2.118341860-2.178244733 i i+7.799218642 j j+2.677272355 k k] \\
& \quad[-3.248740205+8.377728618 i i+2.831601237 j j+.3781712396 k k, \\
& \quad-6.022426997+1.671320448 i i+1.524559010 j j-5.451372153 k k]
\end{aligned}
$$

Thus, matrix 'sexpA' is the exponential of the quaternionic matrix A from (14) computed with the Clifford algebra $C \ell_{1,3}$.

5 Conclusions

We have translated the problem of matrix exponentiation $\mathrm{e}^{A}, A \in \mathbb{K}(n)$, into the problem of computing e^{p} in the Clifford algebra $C \ell(Q)$ isomorphic to $\mathbb{K}(n)$. This approach, alternative to the standard linear algebra methods, is based on the spinor representation of $C \ell(Q)$. It should be equally applicable to other functions representable as power series. Another use for the isomorphism between $C \ell_{p, q}$ and appropriate matrix rings could be to finding the Jordan canonical form of A in terms of idempotent and nilpotent Clifford polynomials from $C \ell(Q)$ (see also [11] and [12] for more on the Jordan form and its relation to the Clifford algebra). Generally speaking, any linear algebra property of A can be related to a corresponding property of p, its isomorphic image in $C \ell(Q)$, and it can be stated in the purely symbolic non-matrix language of the Clifford algebra. These investigations are greatly facilitated with 'CLIFFORD'. At [9] interested Reader my find complete Maple worksheets with the above and other computations.

6 Acknowledgements

The author thanks Prof. Thomas McDonald, Department of Mathematics, Gannon University, Erie, PA, for a critical reading of this paper, and for bringing to the author's attention a way of finding the exponential $\mathrm{e}^{A t}$ that involves solving a system of differential equations with the Laplace transform method.

7 Appendix

The procedures described in this Appendix will work provided the Maple package 'CLIFFORD' has been loaded first into a worksheet. ${ }^{5}$ Procedure 'phi' was used above to provide the isomorphism φ between the matrix algebras $\mathbb{R}(4), \mathbb{C}(2)$, and $\mathbb{H}(2)$ and, respectively, the Clifford algebras $C \ell_{3,1}, C \ell_{3,0}$, and $C \ell_{1,3}$.

```
> phi:=proc(A::matrix,m::table,FBgens::list(climon))
    local N,n,cb,fb,AA,M,a,j,L,sys,vars,sol,p;global B;
    if nops(FBgens)=1 then AA:=evalm(A) elif
        nops(FBgens)=2 then fb:=op(remove(has,FBgens,Id));
        AA:=subs(I=fb,evalm(A)) elif
        nops(FBgens)=4 then fb:=sort(remove(has,FBgens,Id),bygrade);
        AA:=subs('ii'=fb[1],'jj'=fb[2],'kk'=fb[3],evalm(A))
        else ERROR('wrong number of elements 'FBgens'') fi;
    N:=nops([indices(m)]);n:=linalg[coldim] (B):cb:=cbasis(n);
    M:=map(displayid,evalm(AA-add(a[j]*m[j],j=1..N)));
    L:=map(clicollect,convert(M,mlist));
    sys:=op(map(coeffs,L,FBgens));vars:=seq(a[j],j=1..N);
    sol:=solve(sys,vars); vars:=seq(a[j]*cb[j],j=1..N);
    p:=subs(sol,p);RETURN(p)
    end:
```

Procedure 'climinpoly' finds a real minimal polynomial of any Clifford polynomial p in an arbitrary Clifford algebra $C \ell_{p, q}$.

```
> climinpoly:=proc(p::clipolynom,s::string)
    local dp,L,flag,pp,expr,a,k,eq,sys,vars,sol,poly;
    option remember;
    dp:=displayid(p):L:=[Id,dp];flag:=false:
    while not flag do
        pp:=cmul(L[nops(L)],dp):
        expr:=expand(add(a[k]*L[k],k=1..nops(L)));
        eq:=clicollect(pp-expr); sys:=coeffs(eq,cliterms(eq));
        vars:=seq(a[k],k=1..nops(L)); sol:=solve(sys,vars):
        if sol<> then flag:=true else L:=[op(L),pp] fi;
        od;
    poly:='x'^nops(L)-add(a[k]*'x'^(k-1),k=1..nops(L));
    if nargs=1 then RETURN(sort(subs(op(sol),poly)))
        else RETURN([sort(subs(op(sol),poly)),L]) fi;
    end:
```

Procedure 'sexp' finds a finite formal power series expansion $\sum_{k=0}^{n}\left(p^{k} / k!\right)$ of any Clifford polynomial p up to and including the degree specified as its second argument. Computation of the powers of p in $C \ell_{p, q}$ is performed modulo the real minimal polynomial of p.

```
> sexp:=proc(p::clipolynom,n::posint) local i,d,L,Lp,pol,poly,k;
    pol:=climinpoly(p,'s');readlib(powmod);
    poly:=add(powmod('x',k,pol[1],'x')/k!,k=0..n);
    L:=[op(poly)];Lp:=[]:
    for i from 1 to nops(L) do
```

[^2]```
 d:=degree(L[i]);
 if d=O then Lp:=[op(Lp),L[i]*Id] else
 Lp:=[op(Lp),coeffs(L[i])*pol[2][d+1]] fi od;
RETURN(add(Lp[i],i=1..nops(Lp)))
end:
```


## References

[1] McDonald Th., Private communication, 1998.
[2] Scheick J.T., Linear Algebra with Applications, McGraw-Hill Companies, Inc., New York, 1997, 398-401.
[3] Kwak J.H. and Hong S., Linear Algebra, Birkhäuser, Boston, 1997.
[4] Crumeyrolle A., Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht, 1990.
[5] Abłamowicz R., Lounesto P. (eds.), Clifford Algebras and Spinor Structures, A Special Volume Dedicated to the Memory of Albert Crumeyrolle (1919-1992), Kluwer, Dordrecht, 1995.
[6] Abłamowicz R., Lounesto P. and Parra J.M. (eds.), Clifford Algebras with Numeric and Symbolic Computations, Birkhäuser, Boston, 1996.
[7] Lounesto P., Scalar products of spinors and an extension of Brauer-Wall groups, Found. Physics, 1981, V.11, N 9/10, 721-740.
[8] Abłamowicz R., Clifford algebra computations with Maple, in: Geometric (Clifford) Algebras in Physics, ed. W. Baylis, Birkhäuser, Boston, 1996.
[9] Abłamowicz R., 'CLIFFORD' - Maple V Package for Clifford Algebra Computations, ver. 3, 1997, available at: http://math.gannon.edu/rafal/cliff3.
[10] Maple V Release 4 for Windows: Waterloo Maple Software, Waterloo, Ontario, 1996.
[11] Sobczyk G., The generalized spectral decomposition of a linear operator, The College Mathematics Journal, 1997, V.28, N 1, 27-38.
[12] Sobczyk G., Spectral integral domains in the classroom, Aportaciones Matemáticas, Serie Comunicaciones, 1997, V.20, 169-188.


[^0]:    ${ }^{1}$ It is possible to compute the exponential $\mathrm{e}^{A t}$ with a help of the Laplace transform method applied to an appropriate system of differential equations [1].
    ${ }^{2}$ The brackets [.] denote the floor function
    ${ }^{3}$ It is also possible to use the $\mathbb{R}^{n^{\prime}}$ topology where $n^{\prime}=2^{n}, n=p+q$.

[^1]:    ${ }^{4}$ For the purpose of this paper, it is enough to consider simple Clifford algebras only.

[^2]:    ${ }^{5}$ To download 'CLIFFORD', see the Web site in [9].

