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Abstract

In this paper we give a method to obtain Darboux transformations (DTs) of integrable
equations. As an example we give a DT of the dispersive water wave equation. Using
the Miura map, we also obtain the DT of the Jaulent-Miodek equation.

1 Introduction

For integrable equations which can be solved by the Inverse Scattering Transform, there
exist Bäcklund transformations (BTs) [1]. These transformations were first discovered
for the Sine-Gordon equation at the end of the 19th century. Usually they are treated
as nonlinear superpositions, which allow one to create new solutions of a nonlinear evo-
lution equation from a finite number of known solutions. In practice, BTs are not very
straightforward to apply in the construction of multisolutions. On the other hand, the
Darboux transformation (DT) is a very convenient way of constructing new solutions of
nonlinear integrable equations [2]; the algorithm is purely algebraic and can be continued
successively. Therefore, it is interesting to transform BTs into DTs.

Many integrable equations of the form

ut = K(u) (1.1)

possess the recursion operator Φ with the property called hereditary symmetry [3, 4, 5,
6], and they possess a Lax pair

Φσ = λσ,
σt = Kuσ.

(1.2)
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Here Ku is the Fréchet derivative of K with respect to u. Two interesting questions
are raised: “How is the DT related to the Lax pair (1.2)?” and “What happens to the
symmetry σ under a BT?”

In this paper, we will study the above problems. Section 2 gives the general method
to obtain DTs of integrable equations by using symmetry. As an example, Section 3 gives
the DT of the dispersive water equation. In Section 4, we obtain the DT of the Jaulent-
Miodek equation by using the Miura map. These DTs are not easily obtained by other
well-known methods.

2 The Method

Suppose that the equation (1.1) has a BT of the form

B(u, u[1]) = 0. (2.1)

Now, we suppose that

uu[1][σ1] = 0, (2.2)

which means that the symmetry σ1 is transformed into 0 under the BT, where σ1 is the
eigenfunction of (1.2) with λ = λ1.

Then taking Fréchet derivative of B = 0, we have

Bu[σ1] = Bu[σ1] + Bu[1][uu[1]σ1] = 0. (2.3)

Fuchssteiner and Aiyer have showed that the KdV equation, the Burgers equation, and
the CDGSK equation admit this relation [7, 8, 9].

This formula gives the transformation relation between u, σ1 and u[1]:

u[1] = F (u, σ1). (2.4)

At this point we can directly check whether (2.4) is a BT. If so, we can conclude that (2.3)
is true, and we also have the transformation for eigenfunctions

σ[1] = uu[1][σ] = Fu[σ] + Fσ1 [σ1uσ]. (2.5)

Relations (2.4) and (2.5) is called the DT of (1.1).

Remark 2.1. Here we give a method to calculate σ1u[·]. Because Φσ1 = λσ1, we have

σ1u[·] = −(Φ− λ1)−1Φu[·]σ1.

We can apply the factorization method to calculate (Φ− λ1)−1.

Remark 2.2. When (2.4) and (2.5) is the DT

Φ(u[1])σ[1] = λσ[1],

and (2.5) is the symmetry of ut[1] = K(u[1]), the result [10] shows that (2.4) and (2.5) is
a DT for the hierarchy ut = ΦnK(u).

Remark 2.3. Relation (2.4) reveals the connection among the BT, symmetry, and strong
symmetry operator. We conjecture that (2.4) may be right for all equations which possess



142 B. Lu, Y. He and G. Ni

strong symmetry operators. For some (1 + 1)-dimension equations (ut = K(u)), their
usual Lax pair

Lφ = λφ, φt = Aφ

can be transformated into

Ψσ = µσ, σt = Kuσ

by a transformation σ = f(φ). We can then obtain the DT with respect to the usual Lax
pair.

3 The DT of the Dispersive Water Wave Equation

In this section we study the dispersive water wave equation (DWW) [11, 12]

vt = K(v), (3.1)

where

v = (q, r)T ,

K(v) =
(
1
2
(2qr − qx)x,

1
2
(rx + r2 + 2q)x

)T

and T denotes the transpose of vectors. The DWW equation was studied systematically
by Kupershmidt [11].

System (3.1) has the following Lax representation [11].

Lφ = λφ, (3.2)

φt =
1
2
(L2)+φ, (3.3)

in which

L = D + (D − r)−1 ◦ q, D =
∂

∂x
, D−1 ◦ D = D ◦ D−1 = 1

and (·)+ is the projection to the purely differential part of the operator, (L2)+ = D2+2q.
Here we denote the operator A acting on the operator B by A ◦ B, and the operator A
action on a function f by Af .

The system (3.1) possesses a strong symmetry operator

Φ(v) =

(
−D + r 2q + qx ◦ D−1

2 D + D ◦ r ◦ D−1

)
. (3.4)

So (3.1) is the following integrable condition

Φσ = λσ, (3.5)

σt = Kvσ, (3.6)
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where σ = (σ1, σ2)T .
It is difficult to get a DT of (3.1) with respect to (3.2), (3.3). In fact, we did not find

any DT for (3.2), (3.3) until now.
Let us turn to (3.5), (3.6).

Theorem 3.1. Let σ,1 = (σ1,1, σ2,1)T denote the solution of (3.5), (3.6) with λ = λ1. We
then have the DT

q[1] = q −
(

D−1σ1,1

D−1σ2,1

)
x

, (3.7)

r[1] = r +
(
ln

D−1σ1,1 + σ2,1

D−1σ2,1

)
x

, (3.8)

σ1[1] = σ1 −
(

B

D−1σ2,1

)
x

, (3.9)

σ2[1] = σ2 −
(

B + σ2D
−1σ2,1

D−1σ1,1 + σ2.1

)
x

, (3.10)

where

B = D−1(σ1D
−1σ2,1 + σ2D

−1σ1,1),

that is, (3.7) and (3.8) is a new solution of (3.1). Moreover, (3.7), (3.8) and (3.9), (3.10)
satisfy (3.5), (3.6). Furthermore, this is the DT of the hierarchy vt = Φ(v)nK(v).

Proof. (i) From practice, we first suppose q[1] = q + (lnφ1)xx is a part of the BT.
Substituting φ1 = eD−2(q[1]−q) into (3.2) with λ = λ1, we find

(D−1(q[1]− q))2 + q[1] + λ1r − (r + λ1)D−1(q[1]− q) = 0. (3.11)

From (2.3) we find

−(2D−1σ1,1 + σ2,1)D−1(q[1]− q) + (r + λ1)D−1σ1,1 + λ1σ2,1 = 0.

On the other hand, (3.5) gives

2D−1σ1,1 + σ2,1 = (λ1 − r)D−1σ2,1.

These two identities imply (3.7).
Suppose (q[1], r[1]) satisfy (3.1), then

2(q[1]− q)t = (2q[1]r[1]− 2qr − (q[1]− q)x)x, (3.12)

−2
(

D−1σ1,1

D−1σ2,1

)
t

= 2q[1]r[1]− 2qr +
(

D−1σ1,1

D−1σ2,1

)
xx

. (3.13)

Using (3.6), we have

2q[1]r[1]− 2qr +
(

D−1σ1,1

D−1σ2,1

)
xx

= − 1
D−1σ2,1

(2σ1,1r + 2qσ2,1 − σ1,1x)

+
D−1σ1,1

(D−1σ2,1)2
(σ2,1x + 2rσ2,1 + 2σ1,1).

(3.14)
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We note that (3.5) yields

r = λ1 − σ2,1 + 2D−1σ1,1

D−1σ2,1
, (3.15)

q =
1

(D−1σ2,1)2
(σ1,1D

−1σ2,1 + (D−1σ1,1)2). (3.16)

Substituting the above two identities and (3.7) into (3.14), we obtain, after some calcula-
tions, (3.8).

We can easily prove that (3.7) and (3.8) satisfy (3.5) and (3.6), so (3.7), (3.8) is a BT
of (3.1).

(ii) From (3.15) and (3.16)

vσ1D =
1

D−1σ2,1




D +
2D−1σ1,1

D−1σ2,1
− σ1,1

D−1σ1,1
− 2

(
D−1σ1,1

D−1σ2,1

)2

−2 −D +
σ2,1 + 2D−1σ1,1

D−1σ2,1


 .

Now, we solve the equation

vσD

(
a1

a2

)
=

(
σ1

σ2

)

that is,

a1x + 2
D−1σ1,1

D−1σ2,1
a1 −

(
σ1,1

D−1σ2,1
+ 2

(
D−1σ1,1

D−1σ2,1

)2
)

a2 = σ1D
−1σ2,1, (3.17)

−2a1 − a2x +
(

σ2,1 + 2D−1σ1,1

D−1σ2,1

)
a2 = σ2D

−1σ2,1. (3.18)

(3.17) + (3.18)
D−1σ1,1

D−1σ2,1
, we find

a1 − a2
D−1σ1,1

D−1σ2,1
= B

with

B = D−1((D−1σ2,1)σ1 + σ2D
−1σ1,1).

Hence

a1 = B − (D−1σ1,1)
(
2D−1 B

D−1σ2,1
+ D−1σ2

)
,

a2 = −2D−1σ2,1D
−1 B

D−1σ2,1
− D−1σ2D

−1σ2,1.
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Now we can calculate σ[1] from (3.7), (3.8):

σ[1] = vv[1]σ

= σ + D




−1
D−1σ2,1

D−1σ1,1

(D−1σ2,1)2
1

D−1σ1,1 + σ2,1

D

D−1σ1,1 + σ2,1
− 1

D−1σ2,1


 D−1(vσ1)

−1σ

= σ + D




− 1
D−1σ2,1

D−1σ1,1

(D−1σ2,1)2
1

D−1σ1,1 + σ2,1

D

D−1σ1,1 + σ2,1
− 1

D−1σ2,1




(
a1

a2

)

= σ − D




B

D−1σ2,1

B + σ2D
−1σ2,1

σ2,1 + D−1σ1,1


 .

This completes the proof.

Remark 3.1. Let w = σx, then (3.5), (3.6) can be written in a more simple form:

−wxx + rw1x + 2qw2x + qxw2 = λw1x,

2w1x + (w2x + rw2)x = λw2x,

2w1t = 2rw1x + 2w2xq − w1xx,

2w2t = 2w2xx + 2rw2x + 2w1x.

The DT given in Theorem 3.1 becomes

q[1] = q −
(

w1,1

w2,1

)
x

,

r[1] = r +
(
ln

w1,1 + w2,1x

w2,1

)
x

,

w[1] = w −




B

w2,1

B + w2,1x(1)w2,1

w1,1 + w2,1x


 ,

with

B = D−1(w2,1w1x + w2xw1,1).

4 The DT of the Jaulent-Miodek equation

The Jaulent-Miodek equation takes the form [13, 14]

ut = H(u) = Ψ(u)ux, (4.1)



146 B. Lu, Y. He and G. Ni

where

u =
(

u0

u1

)
, Ψ(u) =



0

(
1
4
D3 +

1
2
u0 ◦ D +

1
2
D ◦ u0

)
◦ D−1

1
(
1
2
u1 ◦ D +

1
2
D ◦ u1

)
◦ D−1




and Ψ is a strong symmetry operator. So (4.1) possesses the Lax pair

Ψ(u)ψ = λψ, (4.2)

ψt = Huψ. (4.3)

Usually (4.1) is derived from the following spectral problem [12, 13, 14]:

Lφ = φxx + (u0 + λu1)φ = λ2φ, (4.4)

where the time evolution of the wave function φ has the form

φt = Pφ =
(
1
2
p ◦ D − 1

4
px

)
φ, (4.5)

with p = 2 + λu1. Then

Lt − [P, L] = pxL

gives rise to (4.1). The BT of (4.1) was given by Tu [13]. It is not easy to apply this BT
to construct new solutions.

An invertible Miura map [12]

q = u0 +
1
4
(u1)2 − 1

2
u1x, (4.6)

r = u1 (4.7)

brings (4.1) into the DWW (3.1).
The Miura map (4.6), (4.7) gives the relation of the eigenfunctions between (4.2), (4.3)

and (3.5), (3.6):

ψ = uvσ =


1

D

2
− r

2
0 1


 σ (4.8)

=

(
σ1 +

σ2x

2
− r

2
σ2

σ2

)
. (4.9)

Therefore,

D−1σ1 = D−1ψ1 − ψ2

2
+

D−1(u1ψ2)
2

=
(
λ − u1

2

)
D−1ψ2 − ψ2

2
,

u1[1] = u1 +
(
ln

D−1σ1,1 + σ2,1

D−1σ2,1

)
x

= u1 + E, (4.10)
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where

E =
(
ln

(
λ1 − u1

2
− ψ2,1

2D−1ψ2,1

))
x

.

u0[1]− u0 = (q[1]− q) +
1
2
(r[1]− r)x − 1

4
(r[1]− r)(r[1] + r)

=
(
1
2
u1 +

ψ2,1

2D−1ψ2,1

)
x

+
1
2
Ex − 1

4
E(E + 2u1),

(4.11)

B = D−1(σ1D
−1σ2,1 + σ2D

−1σ1,1)

= (D−1ψ2,1)
((

λ1 − u1

2

)
D−1ψ2 − ψ2

2

)
− D−1

(
ψ2,1

(
λ1 − u1

2

)
D−1ψ2 − ψ2

(
λ1 − u1

2

)
D−1ψ2,1

)
,

ψ2[1] = ψ2 − F, (4.12)

ψ1[1] = ψ1 −
(

B

D−1ψ2,1

)
x

− Fx

2
− 1

2
(Eψ2,1 − F (u1 + E)), (4.13)

with

F = D

(
B + ψ2D

−1ψ2,1(
λ1 − 1

2u1

)
D−1ψ2,1 + 1

2ψ2,1

)
.

Theorem 4.1. Suppose (u, ψ,1) satisfies (4.2), (4.3) with λ = λ1, then the transformation
defined by (4.10), (4.11), (4.12), (4.13) is a DT of (4.2), (4.3).

5 Conclusion

In this paper, we have presented a method to obtain DTs of integrable equations. This
method can be apply to the DWW equation, the KdV equation, a shallow water equation
[15] and other integrable equations. We think the relation (2.3) is very important because
it reveals the relation between BT, symmetry, and strong symmetry of the corresponding
equation. We hope that there will be further study in this direction.
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