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Abstract

In this paper, we bring out the Lie symmetries and associated similarity reductions
of the recently proposed (2+1) dimensional long dispersive wave equation. We point
out that the integrable system admits an infinite-dimensional symmetry algebra along
with Kac-Moody-Virasoro-type subalgebras. We also bring out certain physically
interesting solutions.

1 Introduction

Professor Wilhelm Fushchych has been stressing for several decades the importance of
symmetry analysis of nonlinear evolution equations to understand the basic properties of
the underlying physical systems. It is a great pleasure to contribute the present article on
his sixtieth birthday.

Soliton equations in (1+1) dimensions exhibit very interesting symmetry properties,
both Lie and Lie-Bäcklund type [1-3]. These symmetries help one to understand the
integrability properties of underlying nonlinear dynamical systems clearly. In (2+1) di-
mensions, solutions have much richer structures [4, 5]. As a consequence, the identification
and study of symmetries will play a crucial role here also. Concentrating on Lie symmetries
for the present, it has been realized that important classes of (2+1) dimensional exten-
sions of soliton equations admit typically Lie symmetries involving infinite-dimensional
symmetry algebras, often of the Kac-Moody-Virasoro type. Typical systems are the fol-
lowing: (i) Kadomtsev-Petviashvili equation [6], (ii) Davey-Stewartson equation [7], (iii)
Nizhnik-Novikov-Veselov equation [8], (iv) nonlinear Schrödinger equation introduced by
Fokas and the sine-Gordon equation [8]. However, there are certain integrable evolution
equations which, though admit infinite-dimensional Lie algebras, do not seem to possess a
Virasoro- type subalgebra [9]. The typical examples being (i) the breaking soliton equation
and (ii) nonlinear Schrödinger type equation were studied by Strachan recently. So, the
connection between integrability and Virasoro-type algebras deserves much study further.

In this contribution, we analyze the invariance properties of an important new evolu-
tion equation in (2+1) dimensions, namely, the (2+1) dimensional long dispersive wave
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equation and bring out the existence of an infinite-dimensional Lie algebra of symmetries
along with Kac-Moody-Virasoro-type subalgebras. We also deduce the possible similarity
reductions and some particular solutions.

The plan of the paper is as follows. In Sec.2 we discuss the Lie symmetries and Virasoro
type subalgebras for the (2+1) dimensional long dispersive wave equation. In Sec.3 we
construct the similarity variables and obtain the similarity reductions. In Sec.4 the non-
trivial subcases are presented. In Sec.5 we present the invariance analysis of the reduced
pde. In Sec.6 we present our conclusions.

2 Lie symmetries and Kac-Moody-Virasoro algebras of the
(2+1) dimensional long dispersive wave (2LDW) equation

Recently Chakravarty, Kent and Newman[10] have introduced a new (2+1) dimensional
long dispersive wave equation by symmetrically reducing the self-dual Yang-Mills equation.
The resultant equation can be written in the form

λqt + qxx − 2q

∫
(qr)xdη = 0,

λrt − rxx + 2r

∫
(qr)xdη = 0,

(1)

where ∂η = ∂x− λ∂y and λ is a constant parameter. Eq.(1) is the (2+1) dimensional gen-
eralization of the one-dimensional long dispersive wave equation [11, 12]. It is interesting
to note that eq.(1) reduces to the single nonlocal equation introduced recently by Fokas
[13],

iλqt + qxx − 2q

∫
|q|2xdη = 0, (2)

when r = q∗ and t → it. Eq.(2) arises in plasma physics under appropriate circumstances
[14] and it admits exponentially localized solutions and satisfies the Painlevé property
[15]. Recently the integrability aspects of eq.(1) have been studied by Radha and Laksh-
manan [16]. Using the bilinear approach, they have brought out the peculiar localization
properties of solutions of eq.(1) by generating dromions for the physical quantity rq (com-
posite field).

2.1 Lie symmetries

By introducing the transformation (qr)x = vη, where v is some arbitrary potential, we can
rewrite eq.(1) as

λqt + qxx − 2qv = 0,

λrt − rxx + 2rv = 0,

(qr)x − vη = 0.

(3)
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Now one can apply the Lie algorithm to eq.(3) and study the invariance properties. How-
ever, for our present study, we have considered the above equation in the form

qt + qxx − 2qv = 0,

rt − rxx + 2rv = 0,

vy − rqx − qrx = 0,

(4)

wherein we have introduced the notational change η → y for convenience. The invariance
of eq.(4) under the infinitesimal point transformations

x −→ X = x + εξ1(t, x, y, q, r, v), q −→ Q = q + εφ1(t, x, y, q, r, v),

y −→ Y = y + εξ2(t, x, y, q, r, v), r −→ R = r + εφ2(t, x, y, q, r, v),

t −→ T = t + εξ3(t, x, y, q, r, v), v −→ V = v + εφ3(t, x, y, q, r, v), ε � 1

leads to the following expressions for infinitesimals

ξ1 =
x

2
ḟ(t) + g(t), ξ2 = m(y), ξ3 = f(t),

φ1 =
[
1
2
xġ(t) +

1
8
f̈(t)x2 −m′(y)− 1

2
ḟ(t)−N(y, t)

]
q,

φ2 =
[
−1

2
xġ(t)− 1

8
f̈(t)x2 + N(y, t)

]
r,

φ3 = −vḟ(t) +
1
4
xg̈(t) +

1
16

d3f

dt3
x2 + h(t),

(5)

where f(t), g(t), h(t) are arbitrary functions of t and N(y, t) is an arbitrary function of
(y, t) and dot and prime denote differentiations with respect ot t and y, respectively. In
the above, the arbitrary functions f(t), h(t) and N(y, t) are constrained by the following
equation

f̈(t) + 4Ṅ(y, t) + 8h(t) = 0. (6)

The infinitesimals given in eqs.(5-6) are actually obtained using the symbolic program
LIE [17].

2.2 Lie algebras

The presence of arbitrary functions f(t), g(t), m(y) and N(y, t) necessarily leads to an
infinite-dimensional Lie algebra of symmetries. We can write a general element of this Lie
algebra as

V = V1(f) + V2(g) + V3(m) + V (N),

where

V1(f) =
x

2
ḟ(t)

∂

∂x
+ f(t)

∂

∂t
+
(

1
8
f̈(t)qx2 − 1

2
qḟ(t)

)
∂

∂q

−1
8
f̈(t)x2r

∂

∂r
+

(
1
16

d3f

dt3
x2 − vḟ(t)

)
∂

∂v
,

V2(g) = g(t)
∂

∂x
+

1
2
ġ(t)xq

∂

∂q
− 1

2
ġ(t)xr

∂

∂r
+

1
4
g̈(t)x

∂

∂v
,

V3(m) = m(y)
∂

∂y
−m′(y)q

∂

∂q
, V4(N) = −qN(y, t)

∂

∂q
+ rN(y, t)

∂

∂r
.
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The associated Lie algebra between these vector fields becomes

[V1(f1), V1(f2)] = V1(f1ḟ2 − f2ḟ1),

[V2(g1), V2(g2)] =
g1ġ2 − g2ġ1

2

(
q

∂

∂q
− r

∂

∂r

)
+

g1g̈2 − g2g̈1

4
∂

∂v
,

[V3(m1), V3(m2)] = V3(m1m
′
2 −m2m

′
1),

[V1(f), V2(g)] = V2

(
fġ − 1

2
gḟ

)
,

[V1(f), V4(N)] = V4(fṄ),

[V3(m), V4(N)] = V4(mN ′),

which is obviously an infinite-dimensional Lie algebra of symmetries. A Virasoro-Kac-
Moody-type subalgebra is immediately obtained by restricting the arbitrary functions f
and m to Laurent polynomials so that we have the commutators

[V1(tn), V1(tm)] = (m− n)V1(tn+m−1), [V3(yn), V3(ym)] = (m− n)V3(yn+m−1).

It is interesting to note that a similar type of algebras also exist in other integrable systems
mentioned in Introduction, namely, the Nizhnik-Novikov-Veselov equation, (2+1) dimen-
sional nonlinear Schrödinger equation, and sine-Gordon equation [8].

3 Similarity variables and similarity reductions

The similarity variables associated with the infinitesimal symmetries (5) can be found by
solving the characteristic equation

dx
x
2 ḟ(t) + g(t)

=
dy

m(y)
=

dt

f(t)
=

dq

(1
2xġ(t) + 1

8 f̈(t)x2 −m′(y)− 1
2 ḟ(t)−N(y, t))q

=
dr

−(1
2xġ(t) + 1

8 f̈(t)x2 −N(y, t))r
=

dv

−vḟ(t) + 1
4xg̈(t) + 1

16
d3f
dt3

x2 + h(t)
.

(7)

Integrating eq.(7) with the condition that f(t) 6= 0, we get the following similarity
variables:

τ1 =
x

f
1
2 (t)

−
∫ t g(t′)

f
3
2 (t′)

dt′, τ2 =
∫ y dy′

m(y′)
−
∫ t dt′

f(t′)
,

F = qew1 , G = rew2 , H = vf(t)− w3,

where F,G and H are functions of τ1 and τ2 and

w1 =
g(t)

2f1/2(t)

∫ t g(t′)
f3/2(t′)

dt′ −
∫ t g2(t′)

2f2(t′)
dt′ +

g(t)τ1

2f1/2(t)
+

ḟ(t)
8

[∫ t g(t′)dt′

f3/2(t′)

]2
+

τ2
1 ḟ(t)

8
+ τ1ḟ(t)

∫ t g(t′)
4f3/2(t′)

dt′ −m′(y)
∫ t 1

f(t′)
dt′ − 1

2
log f(t)−

∫ t N(y, t′)
f(t′)

dt′,

w2 = − g(t)
2f1/2(t)

∫ t g(t′)
f3/2(t′)

dt′ +
∫ t g2(t′)

2f2(t′)
dt′ − g(t)τ1

2f1/2(t)
− ḟ(t)

8

[∫ t g(t′)dt′

f3/2(t′)

]2
−τ2

1 ḟ(t)
8

− τ1ḟ(t)
∫ t g(t′)

4f3/2(t′)
dt′ +

∫ t N(y, t′)
f(t′)

dt′,
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w3 = ġf1/2
∫ t g(t′)

4f3/2(t′)
dt′ − ḟg

2f1/2

∫ t g(t′)
4f3/2(t′)

dt′ +
τ1ġ

4
f1/2 − τ1ḟg(t)

8f1/2(t)
− g2

8f
+

τ2
1 ff̈

16

+
τ1ff̈

2

∫ t g(t′)
4f3/2

+ ff̈

[∫ t g(t′)
4f3/2(t′)

dt′
]2
− ḟ2

2

[∫ t g(t′)
4f3/2(t′)

dt′
]2

−τ2
1 ḟ2

32
− τ1ḟ

2(t)
∫ t g(t′)

16f3/2(t′)
dt′ +

∫
h(t′)dt′.

Under the above similarity transformations, eq.(4) gets reduced to a system of pde in two
independent variables τ1 and τ2:

Fτ2 − Fτ1τ1 + 2FH + kF = 0,

Gτ2 + Gτ1τ1 − 2GH − kG = 0,

Hτ2 − FGτ1 −GFτ1 = 0,

(8)

where k is an arbitrary constant obtained by integrating eq.(6)

∂

∂t

(
ḟ + 4N(y, t) + 8

∫ t

h(t′)dt′
)

= 0.

Since the original (2+1) dimensional pde (4) satisfies the Painlevé property [17] for a
general manifold, the (1+1) dimensional similarity reduced pde (8) is also expected to
satisfy the P-property.

4 Subcases

In addition to the above general similarity reduction, one can also investigate particular
cases by assuming one or more of vector fields to be zero. We list below some of important
nontrivial cases.
Case:1 f(t)=0: The similarity variables are

τ1 = t, τ2 = x− g(t)
∫ y dy′

m(y′)
, F = qe−w1 , G = re−w2 ,

H = v − gg̈

4

∫ y 1
m(y′)

[∫ y′
dy′′

m(y′′)

]
dy′ − τ2g̈

4

∫ y dy′

m(y′)
− h(t)

∫ y dy′

m(y′)
,

where

w1 =
gġ

2

∫ y 1
m(y′)

[∫ y′
dy′′

m(y′′)

]
dy′ +

τ2ġ

2

∫ y dy′

m(y′)
− log m(y)−

∫ y N(y′, t)dy′

m(y′)
,

w2 =
−gġ

2

∫ y 1
m(y′)

[∫ y′
dy′′

m(y′′)

]
dy′ − τ2ġ

2

∫ y dy′

m(y′)
+
∫ y N(y′, t)dy′

m(y′)
.

The reduced pde takes the form

Fτ1 + Fτ2τ2 − 2FH = 0,

Gτ1 −Gτ2τ2 + 2GH = 0,

FGτ2 + GFτ2 − g(τ1)Hτ2 − h(τ1)− (τ2/4)g′′(τ1) = 0.
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In the above, prime denotes differentiation with respect to the variable τ1.
Case:2 f(t)=g(t)=0: The similarity variables are

τ1 = x, τ2 = t, F = qe−w1 , G = re
∫ y

(−N/m)dy′
, H = v − h(t)

∫ y dy′

m(y′)
,

where

w1 = − log m(y)−
∫ y N(y′, t)dy′

m(y′)
.

The reduced pde takes the form

Fτ2 + Fτ1τ1 − 2FH = 0,

Gτ2 −Gτ1τ1 + 2GH = 0,

(FG)τ1 = h(τ2).

Case:3 f(t)=m(y)=0: The similarity variables are

τ1 = t, τ2 = y, F = qe−w1 , G = rew1 , H = v − g̈

8g
x2 − h

g
x,

where

w1 =
ġ

4g
x2 − N

g
x.

The reduced pde takes the form

Fτ1 +
g′(τ1)
2g(τ1)

F +
N2(τ1, τ2)

g2(τ1)
F − 2FH = 0, (9a)

Gτ1 −
g′(τ1)
2g(τ1)

G− N2(τ1, τ2)
g2(τ1)

G + 2GH = 0, (9b)

Hτ2 = 0. (9c)

Eq.(9) can be integrated as follows. Eq.(9a) and (9b) admit an integral

G =
P (τ2)

F
, (10)

where P (τ2) is an arbitrary function of τ2. Integrating eq.(9c), we get

H = H(τ1), (11)

where H(τ1) is an arbitrary function of τ1. Substituting eq.(11) in eq.(9a) and integrating
it, we get

F = f1(τ2) exp

[∫ (
2H(τ1)−

g′(τ1)
2g(τ1)

− N2(τ1, τ2)
g2(τ1)

)
dτ1

]
, (12)

where f1(τ2) is arbitrary function of τ2. Substituting the expression of F in eq.(10), we
get

G =
P (τ2)
f1(τ2)

exp

[
−
∫ (

2H(τ1)−
g′(τ1)
2g(τ1)

− N2(τ1, τ2)
g2(τ1)

)
dτ1

]
. (13)
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Eqs.(11)–(13) form the solution to pde (9). From this, one can also write down the solution
to pde (4) as

q = f1(y) exp

[
ġ(t)
4g(t)

x2 − N(y, t)
g(t)

x +
∫ (

2H(t)− ġ(t)
2g(t)

− N2(t, y)
g2(t)

)
dt

]
,

r =
P (y)
f1(y)

exp

[
− ġ(t)

4g(t)
x2 +

N(y, t)
g(t)

x−
∫ (

2H(t)− ġ(t)
2g(t)

− N2(t, y)
g2(t)

)
dt

]
,

v = H(t) +
g̈

8g
x2 +

h

g
x.

5 Lie symmetries and similarity reduction of eqs.(8)

Now the reduced pde (8) in two independent variables can itself be further analyzed for
its symmetry properties by looking at its own invariance property under the classical Lie
algorithm again. In this case, we obtain the following five-parameter Lie symmetries,

ξ1 =
c1

3
τ1 − c2, ξ2 =

2c1

3
τ2 − c3, φ1 = −

(
2c1

3
kτ2 + 2c4τ2 +

5
6
c1 + c5

)
F,

φ2 =
(

2c1

3
kτ2 + 2c4τ2 −

c1

6
+ c5

)
G, φ3 = −

(
2c1

3
H − c4

)
,

where c1, c2, c3, c4 and c5 are arbitrary constants. The associated vector fields are

V1 =
τ1

3
∂

∂τ1
+

2τ2

3
∂

∂τ2
−
(

2k

3
τ2F +

5
6
F

)
∂

∂F
+
(

2k

3
τ2 −

1
6
G

)
∂

∂G
− 2H

3
∂

∂H
,

V2 = −2τ2F
∂

∂F
+ 2τ2G

∂

∂G
+

∂

∂H
, V3 = −F

∂

∂F
+ G

∂

∂G
, V4 =

∂

∂τ1
, V5 =

∂

∂τ2
.

The nonzero commutation relations between the vector fields are

[V1, V2] =
2
3
V2, [V1, V4] =

−1
3

V4, [V1, V5] =
2
3
(V3 − V5), [V2, V5] = 2V3.

Solving the characteristic equation associated with the similarity variables, we obtain

z =
(

τ1 −
3c2

c1

)2 (
τ2 −

3c3

2c1

)
, w1(z) = F

(
τ2 −

3c3

2c1

)p

exp
[(

k +
3c4

c1

)
τ2

]
,

w2(z) = G

(
τ2 −

3c3

2c1

)−p−(3/2)

exp
[(

k +
3c4

c1

)
τ2

]
, w3(z) =

(
H − 3c4

2c1

)(
τ2 −

3c3

2c1

)
,

where

p =
3c3

2c1

(
k +

3c4

c1

)
+

3c5

2c1
+

5
4
.

The associated similarity reduced ode turns out to be

zw′′
1 +

z + 2
4

w′
1 +

p

4
w1 +

w1w3

2
= 0,

zw′′
2 −

z − 2
4

w′
2 +

p− 6
4

w2 −
w2w3

2
= 0,

zw′
3 + w3 + 2z1/2(w1w

′
2 + w2w

′
1) = 0.
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Even though it is very difficult to find a solution for the above equation, one can obtain
interesting solutions by assuming one or more of the constants ci, i = 1, . . . , 5 be zero.
The following are some of nontrivial cases.
Case:1 c1 = 0: The similarity variables are

z = τ1 −
c2

c3
τ2, w1 = F exp

[
−
(

c4

c3
τ2
2 +

c5

c3
τ2

)]
,

w2 = G exp
[
c4

c3
τ2
2 +

c5

c3
τ2

]
, w3 = H +

c4

c3
τ2.

The reduced ode takes the form

w′′
1 +

c2

c3
w′

1 − 2w1w3 −
(

k +
c5

c3

)
w1 = 0,

w′′
2 −

c2

c3
w′

2 − 2w2w3 −
(

k +
c5

c3

)
w2 = 0,

w′
3 +

c3

c2
(w1w2)′ +

c4

c2
= 0.

This equation has not yet been fully analyzed.
Case:2 c1 = c2 = 0: The similarity variables are

z = τ1, w1 = F exp
[
−
(

c4

c3
τ2
2 +

c5

c3
τ2

)]
,

w2 = G exp
[
c4

c3
τ2
2 +

c5

c3
τ2

]
, w3 = H +

c4

c3
τ2.

The reduced ode takes the form

w′′
1 − 2w1w3 −

(
k +

c5

c3

)
w1 = 0,

w′′
2 − 2w2w3 −

(
k +

c5

c3

)
w2 = 0,

(w1w2)′ +
c4

c3
= 0.

(14)

Integrating eq.(14), we get the solution

w1 = I3

(
z − I1c3

c4

)( 1
2
− I2c3

2c4

)
,

w2 =
−c4

c3I3

(
z − I1c3

c4

)−( 1
2
+

I2c3
2c4

)
,

w3 =
1
2

(
k +

c5

c3

)(
1
8
− I2

2c2
3

8c2
4

)(
z − I1c3

c4

)−2

,

where I1, I2 and I3 are integration constants.
Case:3 c1 = c3 = 0: The similarity variables are

z = τ2, w1 = F exp
[
−
(

2c4

c2
τ1τ2 +

c5

c2
τ1

)]
,

w2 = G exp
[
2c4

c2
τ1τ2 +

c5

c2
τ1

]
, w3 = H +

c4

c2
τ1.
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The reduced ode takes the form

w′
1 + 2w1w3 + kw1 = 0, w′

2 − 2w2w3 − kw2 = 0, w′
3 = 0. (15)

Eq.(15) admits the following solution

w1 = I2 exp[−(2I1 + k)z], w2 = I3 exp[(2I1 + k)z], w3 = I1,

where I1, I2 and I3 are integration constants.

6 Conclusions

In this paper, we have carried out an invariance analysis and similarity reductions of
the (2+1) dimensional long dispersive wave (2LDW) equation and obtained particular
solutions. We have pointed out the fact that the 2LDW equation admits an infinite-
dimensional symmetry algebra and Kac-Moody-Virasoro type subalgebras, which typically
exist in many other integrable (2+1) dimensional systems. It is yet to be clearly understood
as to what is the significance of the existence or nonexistence of Kac-Moody-Virasoro-type
subalgebras to nonlinear evolution equations as far as integrability is concerned. Such an
understanding can throw some light on the classification of integrable systems. Currently
we are investigating the possible similarity reductions of the above said equation through
the nonclassical method and direct method of Clarkson and Kruskal.

Acknowledgements: The work forms a part of the research project of the Department
of Science and Technology, Government of India.

References

[1] Olver P.J., Applications of Lie Groups to Differential Equations, Springer, New York, 1986.

[2] Bluman G.W and Kumei S., Symmetries and Differential Equations, Springer, New York, 1989.

[3] Lakshmanan M and Kaliappan P., Lie transforms, nonlinear evolution equations and Painlevé forms,
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