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Abstract

A weakly nonlinear quasiconservative Duffing oscillator under quasiperiodic forcing is
studied with the help of an analytic expression for the complex Poincare mapping.
This mapping is then used to analyze the quasiperiodic response of the oscillator and
the different zones of various periodicity. This map plays the same significant role as
the averages equations in the theory of a periodically forced Duffing oscillator.

A nonautonomous Duffing oscillator is described by

d2x

dt2
+ δẋ + αx3 + x = f(t). (1)

Study of a dynamical system under influence of periodic and quasiperiodic forcings is
one of the most important problems of nonlinear science [5]. Two of the most important
model systems that have been studied widely are Van–der–Pol [1] and Duffing oscilla-
tors [7]. Of late various methods have been proposed to analyze the various intricacies
associated with such systems. Of course the numerical approach aided with a computer
remains to be the ultimate arsenal to be used. Here we have studied a new form of the
quasiperiodically forced Duffing oscillator with the help of the analytical approach which
enables one to extract a behaviour of the response function of the system through an
analytical expression of the Poincare map [6]. Of course, detailed theoretical characteris-
tic properties of quasiperiodic forcing were analyzed by Scheurle [9] in an abstract way,
whereas our approach is totally computational. The analytical map so constructed yields
also detailed information regarding the different bifurcation zones and regions of periodic
doubling. The essence of this method lies in the simplicity of the computational techniques
involved. At this point, it will be quite justified to draw attention to the fact that there
have been many attempts for setting up a discrete mapping corresponding to a continuous
dynamical system. Among many such formulations, those of Ding [3], Grassman et al. [4],
and Jensen et al. [8] are worth mentioning. We may point out in short the salient features
of these to indicate that there are some differences from those of ours. In [3], the procedure
is rather ad hoc and valid only for s → α, where s is the inverse of the relaxation time.
On the other hand, we have used no such approximation in our computation reported
below. In the reference [4], the situation was only periodic (not a quasiperiodic one as in
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our case) and the procedure adopted was that of singular perturbation. Such an approach
requires the scaling of space–time coordinates. No such scalling was used in our case. In
the reference [8], the technique adopted was that of purely numerical simulation.

In this paper, we propose an analytical approach for nonlinear oscillations in oscilla-
tor (1) driven with the two–periodic force f(t) and we study some bifurcations of two–
dimensional tori in the oscillator phase space.

The Duffing oscillator under the quasiperiodic forcing is written as:

d2x

dt2
+ ω2x = −4εω

{
δ0ẋ +

2
3
αω0x

3 + ωQ

}
, (2)

Q =
∑

fn sin(ωnt). (3)

Here ω is the natural frequency of the oscillator, α0 is the nonlinearity parameter, δ0 is
the dissipation constant, fn and ωn are the amplitudes and frequencies of the (N +m+1)
sinusoidal components of the external force f(t), ε is a small dimensionless parameter
denoting the difference between oscillator (2) and the usual harmonic oscillator. The
double periodicity of f(t) means that all ωn can be presented as ωn = ω0 + nω̄, n =
−M,−M + 1, . . . , N − 1, N , where ω0 and ω̄ are independent basic frequencies.

Our considerations are based on the following main assumptions:
(i) oscillator (2) is weakly nonlinear and quasiconservative, ε � 1.
(ii) the number of sinusoidal components of f(t) is large, N,M � 1.
We also suppose that the amplitudes fn are all equal and f = f0 for all n = −M, . . . , N

and the frequency detuning ω̄ between neighbouring spectrum lines of the external per-
turbation is small, ω̄ = εΩ. Furthemore, we set (ω0 − ω)/ω = ε40. This means that a
number of sinusoidal external oscillations drive simultaneously the oscillator in a resonant
way.

If the right–hand side of (2) is totally absent, then we have the standard solution

x = u cos ω0t− v sinω0t, (4)

where u and v are constant. To include the effect of nonlinearity and perturbation we
vary, u and v and obtain the following usual averaging proceedure [2].

du

dτ
= −δ0u−∆0v − α0(u2 + v2)v +

∑
fn cos(nΩt),

dv

dτ
= ∆0u− δ0v + α0(u2 + v2)u,

(5)

where τ = εω0t. Let us now revert to the polar coordinates: u = r cos φ, v = r sinφ.
Furthermore, we use the approximation

lim
N,M→α

N∑
N=−M

fn cos(nΩt) = f0

α∑
−α

cos(nΩt) = f0T
α∑
−α

δ(τ − kT ) (6)

with T = 2π/Ω.
Now observe that when f0 = 0, the variables (r, φ) obey

ṙ = −δ0r, φ̇ = ∆0 + α0r
2. (7)
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Fig.1. Frequency response curve. Variation of the detuning parameter ∆ with respect to the intensity
E1/2 for α = 1, δ = 0.5. It clearly exhibits the discontinuous jump phenomena for several f values.

Whence the solution of (7) can be written as

r = r0 exp(−δ0τ), φ = φ0 + ∆0τ − 2α0δ0r
2
0 exp(−2δ0τ). (8)

On the other hand, Eq.(5) leads us to a nonlinear system with a delta function forcing
in a sequence. This enables us to pass over to a discrete mapping from the continuous
system. The forcing term vanishes in the time interval (τk, τk+1), where τ = kT . So we
can not use solutions of the free system given in (8) to connect the values r(τk), φ(τk)
with r(τk+1), φ(τk+1). So from the above we deduce (z = u + iv)

z(τk+1 + 0) = z(τk+1 − 0) + f0T, and (9)

z(τk+1 − 0) = z(τk + 0) exp(−δ0T ){exp iΨ}, (10)

where

Ψ = ∆0T − 2δ0α0|z|2[exp(−2δ0T )− 1]. (11)

So combining (9) and (10), we derive the mapping

z(τk+1 + 0) = z(τk + 0) exp(−δ){exp iΨk}+ f, (12)

where Ψk = ∆− 2α|z(τk + 0)|2[exp(−2δ)− 1], ∆ = ∆0T , δ = δ0T , α = α0δ0, f = f0T .
We derive an analytic expression for the double Poincare map [10] of the weakly nonlin-

ear Duffing equations under a quasiperiodic effect. This map is a one–dimensional complex
map (or two–dimensional real map). Any period p periodic point of the map corresponds
to a period pT periodic orbit of the averaged system (5). The latter corresponds again to
a two–dimensional torus in the phase space of the initial model (2), with strongly incom-
mensurate basic frequencies ω0 and ε Ω ω0/p. Therefore, one can study a double periodic
motion of oscillator (2) by studying the fixed and periodic points of map (12). To show the
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Fig.2. Variation of the detuning parameter ∆ with respect to the intensity E1/2 for α = 1, δ = 0.5. Line
(1) shows saddle node bifurcation and line (2) shows period doubling bifurcation.

correspondence between the discrete (12) and continuous ((2), (5)) models, we consider
firstly the autonomous oscillation, i.e., suppose f = 0. It is easy to show that there is only
one steady state of the map motion. The point z = 0 is fixed and stable because map (12)
takes the form z̄ = z exp[i∆ − δ], ∆ = (∆0T/2π), δ = (α0δ0)/2π near the origin of the
complex plane.

Let us consider the case where f 6= 0. Map (12) contains two simple consequent actions
over an arbitrary point z in the complex plane on each iteration. They are a nonlinear
compression (or expansion) of the modulus of z and a shift along the real axis by the
magnitude of f . The Jacobian of the map is a constant and J = e(−2δ). Since J 6= 0
almost everywhere, the map is not area preserving.

The fixed point of the map satisfies the equation z̄ = z. This leads to the following
equality for the magnitude E = |z|2:

[1− 2 exp(−δ) cos {∆− 2αE(exp(−δ)− 1)}+ exp(−2δ)]E = f2, (13)

where E = |z∗|2, z∗ being the fixed point. In the limit T → 0, the above equation reduces
to [6],[

f2
0 + (∆0 + 4δ2

0α0I)2
]
I = f2

0 , (14)

where I represents the intensity of the forced oscillator. It is now interesting to note
that Eq.(14) is nothing but the same one governing the jump phenomenon of a Duffing
oscillator derived earlier by some other approaches. We now go back to (13) and obtain

∆ = 2αE(exp(−δ)− 1) + cos−1
[
cosh δ − (f2eδ)/(2E)

]
. (15)

This equation is depicted graphically in Fig.1, where we have plotted E1/2 vs detuning
parameter ∆. It clearly exhibits the discontinuous jump phenomenon for several f values.
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Fig.3. Variation of the detuning parameter ∆ with respect to the intensity E1/2 for α = 1, δ = 0.5.
Different zones in the parametric plane pertaining to several types of periodicity are displayed. The
numbers in the zones are the order of periodicity, and ”QP” stands for the quasiperiodic state.

So in the first phase of our analysis, we have been able to deduce the behaviour of the
response function in a completely different way.

Now so far the stability of the fixed point is concerned, we observe that the characteristic
multipliers λ1, λ2 for fluctuations around z∗, given by (13), satisfy

λ2 − Sλ + j = 0, (16)

where S is the trace of the linearized map. In our case,

S =
[
2 cos

{
∆− 2αE(e−2δ − 1)

}
+ 4αE sin

{
∆− 2αE(e−2δ − 1)

}
(e−2δ − 1)

]
e−δ.

A fixed point loses stability when one or both of the λ1,2 exit the unit circle in the
complex plane. When the condition |S/2| > J for some fixed point holds, then its char-
acteristic multiplies are real. There are two different ways for losing stability in this case.
The first of them occurs when max(λ1, λ2) = 1, that is S = 1 + J , and it associates with
the saddle node bifurcation. As for map (12), it occurs when

∆ = 2αE(e−2δ−1)+tan−1
[
2αE(e−2δ − 1)

]
+cos−1

{
(cosh δ)/[1 + 4α2(e−2δ − 1)E2]1/2

}
.

This curve is shown in Fig.2 (curve (1)). The second way occurs when min(λ1, λ2) = −1
or equivalently S = −(1 + J). It corresponds to the period doubling bifurcation of the
fixed point and it is realized under the condition

∆ = 2αE(e−2δ−1)+tan−1
[
2αE(e−2δ − 1)

]
− cos−1

{
(cosh δ)/[1 + 4α2(e−2δ − 1)E2]1/2

}
.
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This curve is shown in Fig.2 (curve (2)).
Finally, a bifurcation of the third type is possible when J = 1, i.e., when δ = 0, the

characteristic multipliers satisfy the equality λ1λ
∗
2 = 1 and the invariant curve arises in

the neighbourhood of the fixed point in the z–plane.
The considered bifurcations of the fixed points of map (12) have a direct correspondence

to the torus bifurcations in Eq.(2). The equation S = +(1 + j) is the condition for
the appearance of a stable three–dimensional torus whereas the equation S = −(1 + j)
corresponds to two–dimensional torus doubling bifurcations. Of course, to utilize these
analytic results for detecting such bifurcations directly in the original system (2), one
should assume that assumptions (i) and (ii) are fulfilled.

Lastly, the overall output of the map is shown in Fig.3, where different zones in the
parametric plane pertaining to several types of periodicity are displayed. The number in
the zones is the order of periodicity, and ”QP” stands for the quasiperiodic state.

In the above analysis, we have shown that it is possible to derive a map in the case
of a quasiperiodically forced Duffing oscillator, which can be used to study the nonlinear
dynamics in a fruitful way.
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