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Abstract

The Moser type reductions of modified Boussinessq and super-Korteweg-de Vries equa-
tions upon the finite-dimensional invariant subspaces of solutions are considered. For
the Hamiltonian and Liouville integrable finite-dimensional dynamical systems con-
cerned with the invariant subspaces, the Lax representations via the dual moment
maps into some deformed loop algebras and the finite hierarchies of conservation laws
are obtained. A supergeneralization of the Neumann dynamical system is presented.

1 Introduction

This paper is concerned with finite-dimensional invariant subspaces of solutions to 2π-
periodic nonlinear dynamical systems on infinite-dimensional functional manifolds being
Lax integrable on them. The above-mentioned finite-dimensional reduction is realized ef-
fectively via the well-known Moser’s procedure [1] using the gradient-holonomic algorithm
[2] and the moment map technique, developed recently in [3, 4] .

A modified Boussinesq hydrodynamic equation on M [11] on a functional space M ⊂
C∞(R/2πZ;R2):

du/dt = 1/3vx,
dv/dt = u3x + 6uux

}
= K[u, v]. (1)

generates a smooth vector field K : M → T (M) on M considered as an infinite-dimensional
manifold, being a completely integrable Hamiltonian system having a Lax-type represen-
tation

dl/dt = [l, (l3/2)+], (2)
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where

l := ∂3 +
3
4
(u∂ + ∂u)− i

4
v, i :=

√
−1, (3)

is a skew-symmetric differential operator in some Sobolev space W(3)
∞ (R/2πZ;C), the sign

”+” denotes taking the positive part of an expression in the bracket.
The next dynamical system being interested for us is the Korteweg-de Vries super-

Hamiltonian system [8, 12] on an infinite-dimensional 2π-periodic supermanifold M1|1 ⊂
C∞(R/2πZ;R1|1):

du/dt = −u3x + 6uux − 12ξξx,
dξ/dt = −4ξ3x + 6uξx + 3uxξ

}
= K[u, ξ]. (4)

The vector field K : M1|1 → T (M1|1) generates on M1|1 a completely integrable dynamical
system with the following Lax type representation:

(−D3
θ + w)f(x, θ) = 0, (5)

where w = (u−λ)θ+ξ ∈ M1|1, (x, θ) ∈ R1|1 are supervariables,Dθ := ∂/∂θ+θ∂/∂x is the
covariant superderivative, λ ∈ C is a spectral parameter and f ∈ W(3)

∞ (R1|1/2πZ;C1|1) is
the corresponding eigenfunction. Dynamical system (4), as will be shown below, reduces
upon some invariant finite-dimensional submanifold to a new generalized Neumann type
oscillatory super-Hamiltonian system on the sphere SN for any N ∈ Z+, being integrable
via Liouville in quadratures.

2 The Moser type finite-dimensional reduction of a Boussi-
nesq hydrodynamic system and its Lie-algebraic integra-
bility

2.1 The Boussinesq hydrodynamic system (1) has an infinite hierarchy of conservation
laws being written in the compact form as follows:

γj :=
∫ 2π

0
dx res lj/3, j ∈ Z+, (6)

where the operation ”res” means the usual residue one on the space of pseudo-differential
operators. From (5), one can find right away the simplest nontrivial conservation laws:

γ1 =
∫ 2π

0
dx u, γ2 =

∫ 2π

0
dx v, γ3 =

∫ 2π

0
dx uv. (7)

To proceed further with an effective method devised in [4, 5] for the Moser-type nonlocal
finite-dimensional reduction of the dynamical system (1) upon an invariant submanifold
being alternative to previously developed in [6] , we need to consider a space of eigenfunc-
tions {fj ∈ W(3)

∞ (R/2πZ : C) : j = 0, Nλ} of the skew-symmetric Lax operator (3):

lfj = λjfj ⇒ fj,3x +
3
2
ufj,x +

3
4
uxfj −

i

4
vfj = λjfj , (8)
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where λj ∈ iR, j = 0, Nλ, are some wholly imaging Blokh eigenvalues. The corresponding
conjugated periodic eigenfunctions {f∗j ∈ W

(3)
∞ (R/2πZ;C) : j = 0, Nλ} satisfy the adjoint

to (8) equation as follows:

l∗f∗j = −(lfj)∗ = λjf
∗
j (9)

owing to the skew-symmetry of operator (8).
It is well known that eigenvalues λj ∈ D(M), j = 0, Nλ, are smooth nonlocal invariant

functionals on M . Hence, we can build, due to a Lax procedure, the following finite-
dimensional invariant submanifold MN ⊂ M :

MN :=
{
(u, v)τ ∈ M : gradLN [u, v] = 0

}
, (10)

for any integer N ∈ Z+, where, by definition, the real-valued Lagrangian LN ∈ D(M) is
taken in such a form:

LN := −γNγ+1 +
Nγ∑
j=0

ajγj +
Nλ∑
j=0

bjλj , (11)

the integers Nγ , Nλ ∈ Z+ being fixed but arbitrary, aj ∈ R, j = 0, Nγ , bk ∈ iR, k =
0, Nλ, being some parameters. As was proven in [5], the manifold MN ⊂ M is in general
a symplectic one, on which the vector fields d/dx and d/dt are Hamiltonian completely
Liouville integrable dynamical systems.

2.2 Below we will be interested in the special case where Nγ = 2, Nλ ∈ Z+ are arbitrary.
This gives, for some convenient choice of constants in (11), the following finite-dimensional
submanifold

MN =

(u, v)τ ∈ M : v = 3i
Nλ∑
j=0

(f∗j fj,x − f∗j,xfj), u =
Nλ∑
j=0

f∗j fj

 , (12)

where, obviously, the integer N = 2Nλ + 2, as easily follows from (11). Let us consider
now the natural jet-coordinates upon the submanifold MN locally imbedded in C2Nλ+2 as
follows:

MN
∼=
{

(fj , f
∗
j ; gj = fj,x, g∗j = f∗j,x; pj = fj,xx, p∗j = f∗j,xx)τ ∈ C2Nλ+2 :

lfj = λjfj , l∗f∗j = −λjf
∗
j ; j = 0, Nλ

}
.

(13)

The manifold MN (12) carries a symplectic structure ω(2) which can be retrieved from the
following expression: ω(2) := dα(1), where

dLN [u, v] = 〈 grad LN [u, v], (du, dv)τ 〉+ dα(1)[u, v]/dx. (14)

To find exactly the symplectic structure ω(2) on the manifold MN in coordinates (13)
exactly, we need to determine the expression for LN [u, v] as a local functional upon the
extended infinite-dimensional manifold M := M ⊗ (W(3)

∞ )Nλ+2 as follows:

LN −→ LN =
∫ 2π

0
dx LN [u, v; fj , f

∗
j ]. (15)
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The condition grad LN [u, v; fj , f
∗
j ] = 0 defines in the manifold M the next invariant

finite-dimensional submanifold MN ⊂ M :

MN :=
{
(u, v; fj , f

∗
j : j = 0, Nλ)τ ∈ M : v = 3i

Nλ∑
j=0

fj,xf∗j − f∗j,xfj ,

u =
Nλ∑
j=0

fjf
∗
j , fj,3x −

i

4
vfj +

3
4
ufj,x +

3
4
(ufj)x − λjfj = 0,

f∗j,3x +
i

4
vf∗j +

3
4
(uf∗j )x +

3
4
uf∗j,x + λjf

∗
j = 0

}
.

(16)

Lemma 1 The extended finite-dimensional jet-submanifold MN (16) is an invariant sym-
plectic one with the following noncanonical symplectic structure:

ω(2) =
Nλ∑
j=0

[
df∗j ∧ dpj − dg∗j ∧ dgj + dp∗j ∧ dfj+

3
4
(2udf∗j ∧ dfj + f∗j du ∧ dfj − fjdu ∧ df∗j )

]
.

(17)

/ The proof is stemming from the following simple calculations due to the general theory
of [5]:

dLN [u, v; fj , f
∗
j ] =

〈 gradLN [u, v; fj , f
∗
j ], (du, dv; dfj , df

∗
j : j=0, Nλ)τ 〉+ dα(1)[u, v; fj , f

∗
j ]/dx,

where

α(1) =
Nλ∑
j=0

[f∗j dfj,2x − f∗j,xdfj,x + f∗j,2xdfj +
3
4
(uf∗j dfj − ufjdf

∗
j )]. (18)

Since the symplectic structure ω(2) := dα(1), we can easily find from (18) that the expres-
sion (17) takes place exactly upon the submanifold MN ⊂ M. .

The corresponding Hamiltonian functions for vector fields d/dx and d/dt on both the
extended submanifold MN and submanifold MN can be easily found by use of the following
defining expressions:

〈 gradLN [u, v; fj , f
∗
j ], (ux, vx; fj,x, f∗j,x : j = 0, Nλ)τ 〉 := −dh

(x)
/dx,

〈 gradLN [u, v; fj , f
∗
j ], (ut, vt; f∗j,t, fj,t : j = 0, Nλ)τ 〉 := −dh

(t)
/dx.

(19)

upon the submanifold MN ⊂ M , and

〈 gradLN [u, v], (ux, vx)τ 〉 = −dh(x)/dx,

〈 gradLN [u, v], (ut, vt)τ 〉 = −dh(t)/dx
(20)

upon the submanifold MN ⊂ M . From (19), one can find, for example, that

h
(x) =

Nλ∑
j=0

(p∗jgj − pjg
∗
j + λjfjf

∗
j ) +

i

4
v

Nλ∑
j=0

f∗j fj − u

 . (21)
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If we reduce the symplectic structure (17) upon the submanifold MN ⊂ MN putting

u =
Nλ∑
j=0

f∗j fj , v = 3i
Nλ∑
j=0

(f∗j gj − fjg
∗
j ), we will get the symplectic structure ω(2) on the

submanifold MN in jet-coordinates as follows:

ω(2) =
Nλ∑
j=0

df∗j ∧ dpj − dg∗j ∧ dgj + dp∗j ∧ dfj +
3
4
d

Nλ∑
k=0

f∗kfk

 (f∗j dfj − fjdf
∗
j )

 .(22)

Thus, we can formulate the following theorem:

Theorem 1 The vector field d/dx on the submanifold MN ⊂ M is a Hamiltonian one
with respect to the noncanonical symplectic structure (22) and the Hamiltonian function

h(x) =
Nλ∑
j=0

(p∗jgj − pjg
∗
j + λjf

∗
j fj), (23)

that is i
d

dx
ω(2) = −dh(x) on the submanifold MN . The same is also true for the vector

field d/dt with a Hamiltonian function h(t) ∈ D(MN ) easily being found from the following
determining evolution equations for the eigenfunctions fj , f

∗
j ∈ W(3)

∞ (R/2πZ;C), j =
0, Nλ:

dfj/dt = i(l3/2)+fj = i(fj,xx+ufj), df∗j /dt = −i((l3/2)+fj)∗ = −i(f∗j,xx+uf∗j ).(24)

As a natural consequence of the above proven results, we can state the following assertion
about exact solutions to the hydrodynamic Boussinesq system (1).

Theorem 2 All 2π-periodic orbits of the completely integrable Hamiltonian vector field
d/dx upon the submanifold MN ⊂ M with respect to the symplectic structure ω(2) (22)
and the Hamiltonian function h(x) (23) consist of 2π-periodic solutions (8) and (9), giving
rise to a set of exact 2π-periodic solutions to the hydrodynamic Boussinesq system (1) via
the following formulas:

u =
Nλ∑
j=0

fjf
∗
j , v = 3i

Nλ∑
j=0

(f∗j gj − fjg
∗
j )

for each Nλ ∈ Z+, being fixed arbitrarily.

2.3 We proceed now to the description of the vector field d/dx on the submanifold MN ⊂
M by means of the Lie-algebraic approach developed recently in [3, 4] and the gradient-
holonomic algorithm described in [2]. Let us consider the monodromy matrix S(x;λ) as a
special periodic solution to the following commutator Novikov-Lax equation:

dS(x;λ)/dx = [L[u, v;λ], S(x;λ)] (25)

for all λ ∈ C, where the matrix L[u, v;λ] has the form:

L[u, v;λ] =

 0 1 0
0 0 1

iv/4− 3ux/4 + λ −3u/2 0

 . (26)
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The matrices L and S, as is seen, belong to some Lie subalgebra G̃ of the affine Lie algebra
sl(3;C)⊗C(λ, λ−1). The corresponding analytical loop subgroup G̃+ acts on the complex
matrix eigenfunction’s manifold (F,Q,R) ∈ M3

N,3 as follows:

F → Fg := resλ=∞

(
1

λ + A
Fg−1(λ)

)
,

Qτ → Qτ
g := resλ=∞

(
g(λ)Qτ 1

λ + A

)
,

Rτ → Rτ
g := resλ=∞

(
g(λ)Rτ 1

λ + A

)
,

(27)

where g(λ) ∈ G̃+ is arbitrary, the ”pole”-matrix A := diag{λj ∈ iR : j = 0, Nλ}. The
matrix manifold M3

N,3 carries the symplectic structure Ω(2), modelling structure (17) on
MN , being invariant under the action (27):

Ω(2) := −Sp (dF ∧ dQτ ) +
3
4
d
{
Sp(FRτ )Sp[(dF )Rτ − F (dRτ )]

}
(28)

together with the following matrix reductions: R := F ∗P1 and Q := F ∗σ, where

P1 :=

 1 0 0
0 0 0
0 0 0

 , σ :=

 0 0 1
0 −1 0
1 0 0

 (29)

are the projection and intertwining matrices, correspondingly, giving rise to the symplectic
structure (17).

Denote by G̃+ the Lie algebra of the loop group G̃+. The group action (27) engenders
a moment map JN : M3

N,3 → G̃∗+, which is defined as follows:

JN (F,Q,R;λ)(X(λ)) := HX(F,Q,R). (30)

Here, by definition,

−dHX(F,Q,R) := iK(F,Q,R)Ω
(2), (dF/dt, dQ/dt, dR/dt)τ := K(F,Q,R)

is a vector field on the matrix manifold M3
N,3 defined as follows:

dF/dt := −resλ=∞

(
1

λ + A
FX(λ)

)
,

dQτ/dt := resλ=∞

(
X(λ)Qτ 1

λ + A

)
,

dRτ/dt := resλ=∞

(
X(λ)Rτ 1

λ + A

)
.

(31)

From (30) and (31), we can state that the following lemma is true:

Lemma 2 The G̃+-action (27) is Hamiltonian, with an equivariant moment map JN :
M3

N,3 → G̃∗+ defined by

JN (F,Q,R;λ) = Qτ 1
λ + A

F +
3
2
Rτ Sp(RτF )

λ + A
F. (32)
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/ Since from (28) and (31) one obtains

HX(F,Q,R) = resλ=∞Sp

((
Qτ 1

λ + A
F +

3
2
Rτ Sp(RτF )

λ + A
F

)
·X(λ)

)
, (33)

the result (32) immediately holds for the G̃+-action (27) on the manifold M3
N,3, having

taken into account that G̃∗+ ∼= G̃− with respect to the following symmetric and invariant
scalar product on the Lie subalgebra G̃ := G̃+ ⊕ G̃−:

(a, b) := resλ=∞Sp(a · b)

for all a, b ∈ G̃. .

Reducing the moment map (32) upon the invariant submanifold MN ⊂ M3
N,3 by means

of substitutions R = F ∗P1, Q = F ∗σ, we obtain that Ω(2) |MN
= ω(2) and

JN (fj , gj , pj ;λ) =
Nλ∑
j=0

1
λ + λj


f∗j pj +

3
2
uf∗j fj −f∗j gj f∗j fj

g∗j pj +
3
2
ug∗j fj −g∗j gj g∗j fj

p∗jpj +
3
2
up∗jfj −p∗jgj p∗jfj



+

. (34)

Here the sign ”+” above denotes the standard Hermitian conjugation in the adjoint space
G∗.

In other way, the monodromy matrix S(x;λ) reduced via Moser [1] upon the invariant
submanifold MN ⊂ M takes the following form:

S(x;λ) |MN
:= SN (fj , gj , pj ;λ) =

Nλ∑
j=0

1
λ− λj


pjf
∗
j +

3
2
ufjf

∗
j −gjf

∗
j fjf

∗
j

pjg
∗
j +

3
2
ufjg

∗
j −gjg

∗
j −

1
2
uf∗j fj fjg

∗
j

pjp
∗
j +

3
2
ufjp

∗
j −gjp

∗
j fj −

1
2
ufjf

∗
j

+

Nλ∑
j=0

u

λ− λj


0 0 0

0 0 0

3
4
(fjg

∗
j + f∗j gj) 0 0

+
3
4

Nλ∑
j=0

ux

λ− λj


0 0 0

0 0 0

fjg
∗
j + f∗j gj 0 0

+ (35)

Nλ∑
j=0

v

λ− λj


0 0 0

0 0 0

3i

4
fjg
∗
j +

i

2
f∗j gj fjf

∗
j 0

+
Nλ∑
j=0

vx

λ− λj


0 0 0

0 0 0

i

2
fjf
∗
j 0 0

+
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Nλ∑
j=0

1
λ− λj


0 0 0

2λjfjf
∗
j 0 0

3λjfjg
∗
j + λjf

∗
j gj 2λjfjf

∗
j 0

+


0 0 0

u 0 0

1
2
u− i

6
v 0 0

 .

It is easy to see that the monodromy matrix (35) can not be obtained right away from
the moment map (34) because of the inequality J+

N (fj , gj , pj ;λ∗) 6= SN (fj , gj , pj ;λ) for all
λ ∈ C. This means that the preceding group action (27) must be realized by means of a
group action of some affine Lie group δG̃+ isomorphic to the previous affine Lie group G̃+.

Therefore, we need to change definition (30) as follows:

δJN (F,Q,R;λ))(δX(λ)) := HδX(F,Q,R) = HX(F,Q,R), (36)

where δ : G̃ ←→ δG̃ is some still unknown deformative isomorphism of affine Lie algebras G̃
and δG̃, to be determined from the latter equality in (36). If the invariant scalar product
(., .)δ on δG̃ gives rise to a subalgebra splitting

δG̃ = δG̃+ ⊕ δG̃−

with the analytical subalgebra δG̃+ isomorphic to the subalgebra G̃+, we can rewrite defi-
nition (36) as follows:

(δJN (F,Q,R;λ) , δX(λ))δ = HδX(F,Q,R) = HX(F,Q, F ), (37)

Corresponding calculations of the moment map δJN : M3
N,3 → δG̃∗+ should give rise to the

following important identity:

δJ+
N (F,Q,R;λ∗) |MN

= SN (fj , gj , pj ;λ) (38)

for all λ ∈ C. As a result of tedious but simple enough calculations the isomorphism
δ : G̃ ←→ δG̃ is built in the exact form which was not written here down because of its
routine complexity. Now we have come in a position to formulate the following important
theorem.

Theorem 3 Let I(δG̃∗+) be the set of Casimir functionals on the adjoint space δG∗+. Then
for each ν ∈ I(δG̃∗+) the Hamiltonian flow with respect to the standard Lie-Poisson struc-
ture generates through the element δJN ∈ δG̃∗+ on the matrix manifold M3

N,3 a completely
integrable via Liouville dynamical system equivalent to the following Lax type representa-
tion:

d

dt
(δJN ) = [ grad ν(δJN )+, δJN ] . (39)

/The proof of the above theorem is a simple consequence of the well-known Adler-
Kostant-Symes theorem [7] on the complete integrability of flows on a direct sum splitted
Lie coalgebra δG̃∗, generated by usual coadjoint actions of the corresponding Lie group δG̃
on it. .

To use the Theorem 3 in the case under consideration, we only need to describe the set
of Casimir invariants I(δG̃∗+). The following lemma is true.
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Lemma 3 The set

I(δG̃∗+) =
{
νk := λkNλdet(λ−A)kSp(δJN )k : k ∈ Z+

}
. (40)

automatically satisfies the Casimir determining equation

[ grad νk(δJN ), (δJN ) ] = 0 (41)

for all k ∈ Z+, λ ∈ C, on the manifold M3
N,3.

For the case k = 1, we easily obtain that the following identification holds for all λ ∈ C
upon the submanifold MN ⊂ M3

M,3:

L+(u, v;λ∗)
∣∣∣
MN

= L+
N (fj , gj , pj ;λ∗) = (λ−Nλdet(λ−A) · δJN )+ |MN

. (42)

Hence from (38), (39), and (42), we can obtain the integrable flow generated by the
Casimir functional ν1 ∈ I(δG̃∗+) for all λ ∈ C:

dLN/dx = [LN , SN ] . (43)

Expression (43) gives a usual Lax type representation for the Hamiltonian vector field
d/dx on the invariant finite-dimensional submanifold MN ⊂ M . This representation (43)
completely coincides with that of (25) after its invariant reducing upon the submanifold
MN ⊂ M .

In addition, we can find also invariant functionally independent functions for the Hamil-
tonian flow d/dx on MN , developing the independent Casimir functionals νk ∈ I(δ∗+), k =
1, 3, in Laurent series as follows:

νkλ
kNλdet(λ−A)−k :=

Nλ∑
j=0

γ
(k)
j /(λ− λj). (44)

The set{
γ

(k)
j ∈ D(MN ) : j = 0, Nλ, k = 1, 3

}
consists of 3(Nλ + 1) functionally independent conservation laws, involutive with respect
to the symplectic structure (22), for the Hamiltonian vector field d/dx on MN . Thereby
the following concluding theorem is true.

Theorem 4 The Lax type dynamical system (43) on the coadjoint space δG∗+ is equivalent
to the set of eigenfunction equations (8), (9) and generates on the manifold MN ⊂ M
the completely integrable Hamiltonian vector field d/dx with respect to the noncanonical
symplectic structure (22) and the Hamiltonian function (23).

Using further the algebro-geometric considerations of the 2π-periodic spectral prob-
lem (8) on the real axis R, one can successfully find the corresponding eigenfunctions in
exact form, thereby one can find an exact set of solutions to the initially given hydrody-
namic Boussinesq equation (1) on the nonlocal finite-dimensional invariant submanifold
MN ⊂ M . The procedure described above gives rise also to the second, both efficient and
nontrivial way for obtaining finite-dimensional reductions of Lax type integrable nonlinear
dynamical systems in question.
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3 Neumann-type oscillatory super-Hamiltonian systems on
the sphere SN and their Lie algebraic superintegrability

3.1 The super-Hamiltonian Korteweg-de Vries dynamical system (4) appears most nat-
urally as an orbit on the coadjoint space Ĝ∗ to the affine super-conformal Lie algebra Ĝ
of central extended super-conformal vector fields on the super-circle S1|1, as was firstly
shown in [8]. Let us consider the affine spanning G̃ of super-conformal vector fields on the
super-circle S1|1:

G̃ := G ⊗C(λ, λ−1),

where λ ∈ C and the super-conformal Lie algebra G consists of the following vector fields
on S1|1:

G :=
{
F ∂

∂x
+

1
2
(DθF)Dθ : F = f0 + θf1 ∈ Λ := Λ0 ⊕ Λ1

}
, (45)

where Λ = Λ0⊕Λ1 is a usual scalar Grassmann algebra, Dθ = ∂/∂θ+θ∂/∂x. The central
extension Ĝ of the Lie algebra G̃ is given by means of the real meaningful two-cocycle
c(F ,Q) on G̃,

c(F ,Q) := resλ=∞

∫ 2π

0
dx

∫
dθ (FD5

θQ) = resλ=∞

∫ 2π

0
dx (fg3x + αβ2x), (46)

where by definition, F := f + θα, Q := g + θβ ∈ Λ1|1. The corresponding commutator
of elements (F , c1) and Q, c2 ∈ Ĝ has the form :

[(F , c1), (Q, c2)] = ([F ,Q], c(F ,Q) + c0(F ,Q)) , (47)

where c1, c2 ∈ R, c0(F ,Q) := resλ=∞
∫ 2π
0 dx(fgx + 1

4αβ) is a trivial 2-cocycle on G̃ added
for convenience. The Lie super-algebra Ĝ as a set of Laurent series allows in λ ∈ C the
standard direct sum splitting into two subalgebras:

Ĝ = Ĝ+ ⊕ Ĝ−.

The dual space G̃∗ consists of formal series of the following kind:

w(x, θ;λ) =
∑
j∈Z

wj(x, θ) λj

where wj(x, θ) ∈ C∞(S1|1;R1|1), j ∈ Z.
Linear functionals on Ĝ are defined as follows:

((w, c1), (F , c2)) := c1c2 + resλ=∞

∫ 2π

0
dx (wF), (48)

where c1, c2 ∈ R are arbitrary real values.
It is easy to see that the group G̃− of super-conformal transformations of the super-

circle S1|1 acts on the dual space Ĝ∗− ∼= Ĝ+ as follows:

Ad∗ϕ(w, c) =
(
(D

θ̃
θ)3w ◦ ϕ−1 − (D

θ̃
θ)−2[(D

θ̃
θ)(D4

θ̃
θ)− 2(D3

θ̃
θ)(D2

θ̃
θ)], c

)
, (49)

where S1|1 3 (x, θ) :
ϕ−→ (x̃, θ̃) ∈ S1|1 is an arbitrary transformation, D

θ̃
:= ∂/∂θ̃ + θ̃∂/∂x̃

by definition.
The next lemma explains the nature of the Lax representation (5) from the above

considerations.
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Lemma 4 The infinitesimal version of (49) gives rise to a full description of the whole
infinite hierarchy of Lax type superintegrable higher Korteweg-de Vries equations with the
Lax operator given in the form (5).

/ Let ϕt ∈ Diff S1|1, t ∈ R, is any one- parametric super-conformal affine transfor-
mation of the super-circle S1|1. Its action on an element (w, c) ∈ Ĝ∗−, given by (49),
generates a vector field on Ĝ∗− as follows:

dw/dt =
d

dt
Ad∗ϕt

(w, c) =
[
−D3

θ + w,P (w)
]

(50)

where, by definition, dϕt/dt = F ∈ G̃− is a super-conformal vector field on S1|1 generated
by some Casimir functional γ ∈ I(Ĝ∗) reduced properly upon the subspace Ĝ∗−, P (w) is
the correspondingly calculated super-differential operator acting in the functional space
W(3)
∞ (S1|1;C1|1). Putting in (50) the element w := (u− λ)θ + ξ ∈ G̃∗− ∼= G̃+, we can easily

find the spectral problem (5) associated with the Lax type representation (50). The latter
proves the lemma. .

3.2 Using the spectral problem (5), we can easily find the following local conservation laws
of the super-Korteweg-de Vries dynamical system (4):

γ0 =
∫ 2π

0
u dx, γ1 =

∫ 2π

0
dx (u2 − 4ξξx),

γ2 =
∫ 2π

0
dx (u2

x + 2u3 − 16ξxξ2x − 24uξξx), ...
(51)

and so on. The invariant functionals are in involution with respect to the following Lie-
Poisson structure on the space Ĝ∗−:

{γ, µ}0(w) := (w, [grad γ−(w), grad µ−(w)]) (52)

for any w ∈ Ĝ∗− ∼= Ĝ+. At the element w = (u− λ)θ + ξ ∈ Ĝ∗−, the bracket (52) gives rise
to the following Poisson brackets on the super-manifold M1|1 3 (u, ξ)τ , found before in
[8, 9]:

{u(x), u(y)} = −1
2
δ3x(x− y) + 2u(x)δx(x− y) + uxδ(x− y),

{u(x), ξ(y)} =
3
2
ξ(x)δx(x− y) +

1
2
ξx(x)δ(x− y),

{ξ(x), ξ(y)} =
1
2

(
u(x)− d2

dx2

)
δ(x− y),

(53)

for all x, y ∈ S1. Thus, the dynamical system (4) on the supermanifold M1|1 is a super-
Hamiltonian one having the following representation:

du/dt = {γ1, u}, dξ/dt = {γ1, ξ}. (54)

The super-Hamiltonian system (54) has also a countable hierarchy of invariant finite-
dimensional submanifolds M

1|1
N ⊂ M1|1 for all N ∈ Z+, upon which the vector fields d/dt

and d/dx are canonically super-Hamiltonian Liouville integrable Neumann type oscillatory
systems.
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To proceed to this topic in detail, let us build the following invariant finite-dimensional
super-submanifold:

M
1|1
N :=

{
(u, ξ)τ ∈ M1|1 : gradLN [u, ξ] = 0

}
, (55)

where, by definition,

LN := −γNγ+1 +
Nγ∑
j=0

ajγj +
Nλ∑
j=0

bjλj , (56)

γj ∈ D(M1|1), j = 0, Nγ are local conservation laws for (4), λj ∈ D(M1|1), j = 0, Nλ

,are the corresponding nonlocal real conservation laws for (4) being equal to conserved
eigenvalues of the periodic spectral problem (5), aj ∈ R, j = 0, Nγ , bk ∈ R, k = 0, Nλ

, are fixed but arbitrary real numbers, Nλ, Nγ ∈ Z+. In the case where Nγ + 1 = 0, bj =
2π∫
0

f2
j dx, j = 0, Nλ, the super-manifold (55) takes the form:

M
1|1
N =

(u, ξ)τ ∈ M1|1 :
Nλ∑
j=0

q2
j = 1,

Nλ∑
j=0

qjpj = 0,
Nλ∑
j=0

qjαj = 0

 , (57)

where we have put, by definition, fj := qj + θαj ∈ W(3)
∞ (S1|1;R1|1), pj := dqj/dx, j =

0, Nλ. For the reduction theory [5, 6] to be used effectively one needs to build a extended
super-submanifold M

1|1
N as follows:

M
1|1
N

∼=
{

(u, ξ; qj , pj , αj)τ ∈ M1|1 ⊗W(3)
∞ ⊗W(2)

∞ ⊗W(1)
∞ :

−D3
θfj + [uθ + ξ]fj = λjξfj , fj = qj + θαj , j = 0, Nλ

}
.

(58)

It is easy to see that the super-submanifold M
(1/1)
N ⊂ M1|1 in jet-coordinates {(qj , pj , αj)τ

∈ R2|1, j = 0, Nλ} is isomorphic to some product of the coadjoint space T ∗(SNλ) to the
sphere SNλ and projective (Nλ − 1)-dimensional hypersurface HNλ ⊂ PNλ

(R0|1).
To formulate further the theorem on integrability of the resulting Neumann type oscil-

latory super-dynamical system on the super-manifold M
1|1
N , we need the following

Lemma 5 The super-manifold M
1|1
N

∼= T ∗(SNλ)⊗HNλ−1 carries the following canon-
ically built super-symplectic structure

ω(2) =
Nλ∑
j=0

(dpj ∧ dqj + dαj ∧ dαj) |T ∗(SNλ )⊗HNλ−1 , (59)

with respect to which the vector field d/dx on M
1|1
N is a super-Hamiltonian one with a

Hamiltonian function h(x) ∈ D(M1|1
N ), where

h(x) =
1
2

Nλ∑
j=0

(ωjq
2
j + p2

j ), (60)

λj := ωj 6= ωk ∈ R at all j 6= k = 0, Nλ.



THE FINITE-DIMENSIONAL MOSER TYPE REDUCTION 467

/ The proof of the lemma is stemming from the following main determining relationship
for the differential dLN [u, ξ]:

dLN [u, ξ] = 〈 gradLN [u, ξ], (du, dξ)τ 〉+ dβ(1)[u, ξ]/dx, (61)

where β(1) =
Nλ∑
j=0

(pjdqj − qjdpj + 2αjdαj) |M1|1
N

. Using the definition ω(2) := 1/2dβ(1), we

immediately obtain (59). Analogously from the defining expression

〈 gradLN [u, ξ], (ux, ξx)τ 〉 = −dh(x)/dx, (62)

one properly finds that a function h(x) ∈ D(M1|1
N ) coincides exactly with that of (60). The

lemma is proved. .

Lemma 6 The vector field d/dx on the extended super-submanifold M
1|1
N is a super-

Hamiltonian one with respect to the canonical symplectic structure

ω(2) =
Nλ∑
j=0

(dpj ∧ dqj + dαj ∧ dαj) (63)

and the Hamiltonian function

h
(x) =

1
2

Nλ∑
j=0

(ωjq
2
j + p2

j ) + u

Nλ∑
j=0

q2
j − 1

+ 2ξ
Nλ∑
j=0

qjαj , (64)

where

u =
Nλ∑
j=0

(ωjq
2
j − p2

j ), ξ = −
Nλ∑
j=0

pjαj . (65)

The expressions
Nλ∑
j=0

q2
j − 1 = 0,

Nλ∑
j=0

qjpj = 0, and
Nλ∑
j=0

qjαj = 0 are conserved quantities of

the vector field d/dx on M
1|1
N :

dqj/dx = pj , dpj/dx = ωjqj + uqj − ξαj , dαj/dx = ξqj (66)

for all j = 0, Nλ.

Using conditions (65), constraints
Nλ∑
j=0

q2
j − 1 = 0,

Nλ∑
j=0

qjpj = 0 and
Nλ∑
j=0

qjαj = 0, the

proper Dirac reduction [2, 10] of the dynamical system (66) upon the invariant super-
submanifold M

1|1
N ⊂ M

1|1
N yields the above stated results of Lemma 4 on the invariant

super-submanifold M
1|1
N

∼= T ∗(SN )⊗HNλ−1.
Now we are in a position to formulate the following theorem.

Theorem 5 The vector field d/dx on the invariant super-submanifold M
1|1
N is a Liou-

ville integrable super-Hamiltonian system equivalent to the flow (66), having a Lax type
representation

dJN/dx = [LN , JN ] , (67)
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where, by definition, LN := L |
M

1|1
N

via the Moser mapping,

L =

 0 1 0
u− λ 0 −ξ

ξ 0 0

 ,

JN =
Nλ∑
j=0

1
λ− ωj

 −qjpj −p2
j pjαj

q2
j qjpj −qjαj

−qjαj −pjαj 0

+

Nλ∑
j=0

ξ

λ− ωj

 0 qjαj 0
0 0 2q2

j

0 −2q2
j 0

+

 0 −1 0
0 0 0
0 0 0

 .

(68)

The matrix mapping JN : M
1|1
N → s̃u∗(2|1) is a corresponding moment map generated by

the following natural group action of the affine Lie super-group S̃U(2|1) on the manifold
M

1|1
N , imbedded in the symplectic matrix super-space MN,2|1 × MN,2|1 via the reduction

Q = F ∗σ,

σ :=

 0 1 0
−1 0 0
0 0 1

 ,

with the canonical symplectic structure

Ω(2) := −Sp(dF ∧ dQτ ) (69)

similarly to that constructed in (27):

F → Fg := resλ=∞

(
1

λ−A
Fg(λ)

)
,

Qτ → Qτ
g := resλ=∞

(
g(λ)Qτ 1

λ−A

)
,

(70)

where g(λ) ∈ S̃U(2|1), λ ∈ C is the affine parameter and the matrix

A := diag
{
ωj 6= ωk ∈ R+ at j 6= k = 0, Nλ

}
.

/ The proof of the theorem above is completely similar to that of chapter 2 in this
paper, on what we will not stay here in detail. Note only that a complete system of
involutive conservation laws is given by the following simple expressions on the matrix
super-space MN,2|1:

νk = sdet (λ−A)kλ−kNλsSp Jk
N , (71)

k = 1, 3. Using an expansion similar to (44), we can find three finite hierarchies of
conserved functions in involution on the supermanifold M

1|1
N

∼= T ∗(SN )⊗HNλ−1 supplying
the wanted conditions for the Liouville integrability theorem to be used successfully. The
latter proves the theorem. .

The results obtained above in chapter 3 for the oscillatory Neumann type super-
Hamiltonian system (66) on T ∗(SNλ)⊗HNλ−1 can be easily generalized to the integrability
theorem for the oscillatory Neumann-Rosokhatius super-Hamiltonian system on the super-
manifold T ∗(SNλ)⊗HNλ−1 via the well-known Marsden-Weinstein reduction procedure for
some special Lie super-group action on it. These and some other results will be presented
in detail in a sequel paper under preparation.
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