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Abstract

The variational bicomplex of forms invariant under the symmetry algebra of the po-
tential Kadomtsev-Petviashvili equation is described and the cohomology of the as-
sociated Euler-Lagrange complex is computed. The results are applied to a charac-
terization problem of the Kadomtsev-Petviashvili equation by its symmetry algebra
originally posed by David, Levi, and Winternitz.

§1. Introduction. Let E = (t, x, y, u) → (t, x, y) be the bundle of the independent and
dependent variables for the potential Kadomtsev-Petviashvili (PKP) equation

utx +
3
2
uxuxx + uxxxx +

3
4
s2uyy = 0,

where s2 = ±1. In this paper, we compute the cohomology of the variational bicomplex
and the associated Euler-Lagrange complex on E invariant under the Lie algebra ΓPKP

of point symmetries of the PKP equation. The algebra ΓPKP is an infinite-dimensional
infinitesimal Lie pseudo-group spanned by the vector fields

Xf = f
∂

∂t
+

2
3
yf ′

∂

∂y
+

(
1
3
xf ′ − 2

9
s2y2f ′′

)
∂

∂x
+(

−1
3
uf ′ +

1
9
x2f ′′ − 4

27
s2xy2f ′′′ +

4
243

y4f ′′′′
)

∂

∂u
,

Yg = g
∂

∂y
− 2

3
s2yg′

∂

∂x
+

(
−4

9
s2xyg′′ +

8
81

y3g′′′
)

∂

∂u
,

Zh = h
∂

∂x
+

(
2
3
xh′ − 4

9
s2y2h′′

)
∂

∂u
,

Wk = yk
∂

∂u
, and Ul = l

∂

∂u
,

(1.1)

where f = f(t), g = g(t), h = h(t), k = k(t) and l = l(t) are arbitrary smooth functions
of t. See [5].
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Our work is motivated by the following two considerations.
Firstly, the cohomology of variational bicomplexes and the associated Euler-Lagrange

complexes invariant under some transformation group naturally arise in a host of problems
in differential geometry and mathematical physics; see, for example, [1], [12]. It is therefore
important to develop effective methods for computing the cohomology spaces of these
complexes and to find new and useful applications for the cohomology classes.

In [2], Anderson and Pohjanpelto find that, under some mild regularity conditions
the local cohomology of the Euler-Lagrange complex invariant under a finite-dimensional
transformation group Γ can be computed from the Lie algebra cohomology of Γ. In [11],
it is discovered that this relationship continues to hold in a variety of examples involving
infinite-dimensional transformation groups Γ provided that the Lie algebra cohomology is
replaced by the Gelfand-Fuks cohomology of Γ relative to some subalgebra of Γ. Accord-
ingly, the local cohomology of the ΓPKP invariant Euler-Lagrange complex is isomorphic
with the Gelfand-Fuks cohomology of ΓPKP ; see [3]. In contrast, as the results of this
paper show, the Euler-Lagrange complex of ΓPKP invariant everywhere smooth forms pro-
vides an example where this simple correspondence fails to hold. In addition, it is presently
not clear what the precise relationship, if any, between the two cohomology spaces is in
this case.

Secondly, the symmetry algebras of several other integrable equations in 2 + 1 dimen-
sions possess a Kac-Moody-Virasoro structure similar to that of ΓPKP ; see, for example,
[4], [7], [8], [9]. With these examples at hand, it is reasonable to speculate that the symme-
try algebras of integrable equations in 2+1 dimensions characterize the equations in some
fashion. In fact, the formulation of virtually all physical models is based on symmetry
considerations. In [6], David, Levi, and Winternitz study the characterization problem for
the KP equation

utx +
3
2
uuxx +

3
2
u2

x +
1
4
uxxxx +

3
4
s2uyy = 0

in terms of the differential invariants of its symmetry algebra ΓKP – specifically, they
classify all fourth-order equations involving only a first or second-order time derivative that
are invariant under ΓKP . However, David, Levi, and Winternitz find that the algebra ΓKP

admits 10 functionally independent differential invariants of the specified type rendering
the sought after characterization unfeasible.

One possible way to shorten the list of equations is to repeat the analysis in [6] for the
potential Kadomtsev-Petviashvili equation and only consider those differential invariants
of the symmetry algebra ΓPKP that are the Euler-Lagrange expressions of some Lagrangian
on E. Surprisingly, the source form

∆PKP =
(

utx +
3
2
uxuxx + uxxxx +

3
4
s2uyy

)
dt ∧ dx ∧ dy ∧ du

associated with the PKP equation is invariant under ΓPKP , that is, the algebra ΓPKP

consists solely of distinguished symmetries of the PKP equation. However, even though
the source form ∆PKP is the Euler-Lagrange expression of the Lagrangian

λ =
(
−1

2
utux −

1
4
u3

x +
1
8
u2

xx −
3
8
s2u2

y

)
dt ∧ dx ∧ dy,
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one can prove without too much trouble that it is not the Euler-Lagrange expression
of any ΓPKP invariant Lagrangian. Thus, the source form ∆PKP generates nontrivial
cohomology in the ΓPKP invariant Euler-Lagrange complex. The results of this paper
show that the PKP equation is essentially uniquely characterized by this property, that
is, as an obstruction to constructing ΓPKP invariant Lagrangians for ΓPKP invariant
differential equations satisfying the Helmholtz conditions.

Our main result is the following.

Theorem 1.1

i) The interior rows (Ω∗,s
PKP (J∞(E)), dH), s ≥ 1, of the augmented ΓPKP invariant

variational bicomplex are exact.

ii) The dimensions of the vertical cohomology spaces Hr,s(ΩPKP (J∞(E)), dV ) of the
ΓPKP invariant variational bicomplex are

s ≥ 4 0 0 0 0

s = 3 0 0 0 2
s = 2 0 1 4 1
s = 1 0 2 1 0
s = 0 1 0 0 0

r = 0 r = 1 r = 2 r = 3

iii) The dimensions of the cohomology spaces Hr(EPKP(J∞(E))) of the ΓPKP invariant
Euler-Lagrange complex are

r = 1 2 3 4 5 6 r ≥ 7

dimHr(EPKP) 0 1 0 2 0 2 0

We will obtain explicit generators for all the cohomology classes in the course of the
proof of Theorem 1.1.

Let ∆uxxxx be the source form

∆uxxxx = uxxxxdt ∧ dx ∧ dy ∧ du.

As a Corollary, Theorem 1.1 yields the following characterization of the PKP equation.

Corollary 1.2. Let ∆ be a ΓPKP invariant source form on E satisfying the Helmholtz
conditions. Then there are constants c1, c2 and a ΓPKP invariant Lagrangian form λ such
that

∆ = c1∆PKP + c2∆uxxxx + E(λ).

The rest of the paper is dedicated to the proof of Theorem 1.1. In section 2, we
review some basic definitions and results from the theory of variational bicomplexes and
transformation groups needed in the proof. In section 3, we first describe a basis for the



THE COHOMOLOGY OF A VARIATIONAL BICOMPLEX 367

ΓPKP invariant variational bicomplex. Then with this description at hand, it is an easy
task to complete the proof of Theorem 1.1.

§2. Preliminaries. In this section, we collect together some definitions and results from
calculus of variations needed in the sequel. For more details and proofs, we refer to [1],
[10], [12], [13].

Let π E = (t, x, y, u) → (t, x, y) be the bundle of the independent and dependent
variables for the PKP equation. Often we will also write x1 = t, x2 = x, x3 = y. Let J∞(E)
be the infinite jet bundle of local sections of E with coordinates (t, x, y, u, ut, ux, . . .). Let
Ω∗(J∞(E)) be the de Rham complex on J∞(E), and let

Ωp(J∞(E)) =
⊕

p=r+s

Ωr,s(J∞(E))

be the decomposition of the de Rham complex into forms of horizontal degree r and vertical
degree s. A type (r, s) form ω ∈ Ωr,s(J∞(E)) is a sum of terms

f(xi, u[k])dxi1 ∧ · · · ∧ dxir ∧ θ
xj11 ···xj1t1

∧ · · · ∧ θxjs1 ···xjsts ,

where f(xi, u[k]) is a smooth function on J∞(E) and the forms

θxk1 ···xkv = duxk1 ···xkv − uxk1 ···xkv xldxl

are the contact one forms on J∞(E).
We write

d = dH + dV

for the induced decomposition of the exterior derivative into the horizontal and vertical
derivatives.

Let

I : Ω3,s(J∞(E)) → Ω3,s(J∞(E)), s ≥ 1,

be the interior Euler operator given by

I(ω) =
1
s

θ ∧
[(

∂

∂u
ω

)
− LDi

(
∂

∂uxi

ω

)
+ LDiLDj

(
∂

∂uxixj

ω

)
− · · ·

]
. (2.1)

Here LDi stands for the Lie derivative with respect to the total vector field

Di =
∂

∂xi
+ uxi

∂

∂u
+ uxixj

∂

∂uxj

+ · · · .

Recall that

I ◦ dH = 0. (2.2)

The spaces Fs(J∞(E)), s ≥ 1, of functional s forms are, by definition, the images of the
spaces Ω3,s(J∞(E)) under the mapping I. The vertical derivative dV induces differentials

E Ω3,0(J∞(E)) → F1(J∞(E)) and δV Fs(J∞(E)) → Fs+1(J∞(E)), s ≥ 1,

by E = I ◦ dV and δV = I ◦ dV .
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The elements of Ω3,0(J∞(E)) can be regarded as Lagrangians for variational problems
on E and source forms, the elements of F1(J∞(E)), as partial differential equations on
E. The mapping E Ω3,0(J∞(E)) → F1(J∞(E)) is just a usual Euler-Lagrange operator
while the differential δV F1(J∞(E)) → F2(J∞(E)) agrees with the Helmholtz operator of
the inverse problem of calculus of variations.

The infinitesimal transformation group ΓPKP acts projectably on E; consequently, its
prolongation prΓPKP preserves the spaces Ωr,s(J∞(E)) and commutes with the operators
dH , dV , and I. Recall that the prolongation of a vector field

X = ξi(xj)
∂

∂xi
+ φ(xj , u)

∂

∂u

on E is given by

prX = totX + prXev, (2.3)

where

totX = ξiDi and prXev =
∑
p≥0

Di1 · · ·Dip(φev)
∂

∂uxi1 ···xip

,

and where

φev = φ− ξiui.

Also recall the commutation formula

[Di, prY ] = 0, i = 1, 2, 3, (2.4)

where Y = φ(xj , u) ∂/∂u is any evolutionary vector field.
Let Ωr,s

PKP (J∞(E)) consist of all ΓPKP invariant type (r, s) forms on J∞(E), that is,

Ωr,s
PKP (J∞(E)) = {ω ∈ Ωr,s(J∞(E)) | L prXω = 0 for all X ∈ ΓPKP }.

We define the spaces Fs
PKP (J∞(E)) of ΓPKP invariant functional s forms in a similar fash-

ion. We thus obtain the augmented ΓPKP invariant variational bicomplex (Ωr,s
PKP (J∞(E)),

dH , dV )

...
...

...
...

...
↑ dV ↑ dV ↑ dV ↑ dV ↑ δV

0 −→ Ω0,2
PKP

dH−→ Ω1,2
PKP

dH−→ Ω2,2
PKP

dH−→ Ω3,2
PKP

I−→ F2
PKP −→ 0

↑ dV ↑ dV ↑ dV ↑ dV ↑ δV

0 −→ Ω0,1
PKP

dH−→ Ω1,1
PKP

dH−→ Ω2,1
PKP

dH−→ Ω3,1
PKP

I−→ F1
PKP −→ 0

↑ dV ↑ dV ↑ dV ↑ dV

0 −→ R −→ Ω0,0
PKP

dH−→ Ω1,0
PKP

dH−→ Ω2,0
PKP

dH−→ Ω3,0
PKP
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and the ΓPKP invariant Euler-Lagrange complex E∗PKP (J∞(E))

0 −→ R −→ Ω0,0
PKP

dH−→ Ω1,0
PKP

dH−→

dH−→ Ω2,0
PKP

dH−→ Ω3,0
PKP

E−→ F1
PKP

δV−→ F2
PKP

δV−→ F3
PKP

δV−→ · · · .

The vertical cohomology spaces Hr,s(ΩPKP (J∞(E)), dV ), r, s ≥ 0, of the ΓPKP invari-
ant variational bicomplex are, by definition, the quotient spaces

Hr,s(ΩPKP (J∞(E)), dV ) =
Ker {dV Ωr,s

PKP (J∞(E)) → Ωr,s+1
PKP (J∞(E))}

Im {dV Ωr,s−1
PKP (J∞(E)) → Ωr,s

PKP (J∞(E))}
.

Here Ω0,−1
PKP = {0}. The horizontal cohomology spaces Hr,s(ΩPKP (J∞(E)), dH) of the

ΓPKP invariant variational bicomplex and the cohomology spaces Hr(EPKP (J∞(E))) of
the ΓPKP invariant Euler-Lagrange complex are defined similarly. Note, in particular,
that the elements of H4(EPKP (J∞(E))) characterize those ΓPKP invariant source forms
on E which satisfy the Helmholtz conditions and consequently are the Euler-Lagrange
expression of some Lagrangian form on E but which are not the Euler-Lagrange expression
of any ΓPKP invariant Lagrangian form on E.

§3. Proof of Theorem 1.1 As is easily checked by a direct computation, generators
(1.1) of the Lie algebra ΓPKP satisfy the bracket relations

Xf̂ Yĝ Zĥ Wk̂ Ul̂

Xf X(ff̂ ′−f ′f̂) Y(fĝ′− 2
3
f ′ĝ) Z(fĥ′− 1

3
f ′ĥ) W(fk̂′+f ′k̂) U(f l̂′+ 1

3
f ′ l̂)

Yg −2
3s2Z(gĝ′−g′ĝ) −4

9s2W(2gĥ′′+g′ĥ′−g′′ĥ) Ugk̂ 0

Zh
2
3U(hĥ′−h′ĥ) 0 0

Wk 0 0

Ul 0 (3.1)

Let H ⊂ ΓPKP be the subalgebra generated by the vector fields

H = {Xf | f = f(t) is a smooth function}.

Note that, by virtue of the bracket relations (3.1), a form ω ∈ Ωr,s(J∞(E)) that is invariant
under the algebra H and under the single vector field Y1 = ∂/∂y is necessarily invariant
under the full algebra ΓPKP .

Next let Rt, Rx, and Ry be the total differential operators

Rt = Dt +
3
2
uxDx, Rx = Dx, Ry = Dy, (3.2)

and let S stand for the operator

S = RtRx +
3
4
s2RyRy. (3.3)
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Proposition 3.1. The total differential operators Rt, Rx, and Ry and the operator S
satisfy

[ prXf ,Rt] = −f ′(t)Rt −
2
3
yf ′′(t)Ry, [ prXf ,Rx] = −1

3
f ′(t)Rx,

[ prXf ,Ry] = −2
3
f ′(t)Ry +

4
9
s2yf ′′(t)Rx, [ prXf ,S] = −4

3
f ′(t)S

(3.4)

for all smooth f = f(t).

Proof. By (3.2), we have that

[ prXf ,Rt] =
3
2

prXf (ux)Dx + [ prXf , Dt] +
3
2
ux[ prXf , Dx]. (3.5)

We compute

[ prXf , Dt] = [ totXf , Dt] = −f ′(t)Dt−
2
3
yf ′′(t)Dy−

(
1
3
xf ′′(t)− 2

9
s2y2f ′′′(t)

)
Dx,(3.6)

where we used the prolongation formula (2.3) and the commutation formula (2.4). Also
by (1.1) and (2.3),

prXf (ux) = −2
3
f ′(t)ux +

2
9
xf ′′(t)− 4

27
s2y2f ′′′(t).

Hence,

3
2

prXf (ux)Dx + [ prXf , Dt] = −f ′(t)(Dt + uxDx)− 2
3
yf ′′(t)Dy. (3.7)

We also have that

[ prXf , Dx] = −1
3
f ′(t)Dx. (3.8)

Now substitute (3.7), (3.8) into (3.5) and simplify to arrive at the first equation in (3.4).
The proof of the remaining identities in (3.4) is based on a similar computation and will
be omitted.

We let

vtx = Su, vtxx = Rxvtx,

vty = RtRyu, vxkyl = uxkyl , k, l ≥ 0.
(3.9)

Let {σt, σx, σy} be the horizontal frame dual to the total differential operators {Rt,Rx,Ry},

σt = dt, σx = dx− 3
2
vx dt, σy = dy, (3.10)

and define new contact 1 forms by

Θt = LRtθ +
3
2
vxxθ, Θtxl = dV vtxl , l = 1, 2,

Θty = dV vty +
9
2
vxxθy, Θxlyy = θxlyy − 2s2vxxθxl+1 , l ≥ 0,

(3.11)
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and

Θxlym = θxlym , l, m ≥ 0; m 6= 2.

By (1.1) and (2.3), we have that

prXf (vxx) = −f ′(t)vxx +
2
9
f ′′(t). (3.12)

Now a straightforward but tedious computation employing the commutation relations (3.4)
establishes the following Lie derivative formulas:

prXfvtxl = − l + 4
3

f ′(t)vtxl , l = 1, 2,

prXfvxlym = − l + 2m + 1
3

f ′(t)vxlym +
4m

9
s2yf ′′(t)vxl+1ym−1 ,

m = 0, 1; l + m ≥ 3.

(3.13)

Furthermore,

LXf
σt = f ′(t)σt, LXf

σx =
1
3
f ′(t)σx − 4

9
s2yf ′′(t)σy,

LXf
σy =

2
3
f ′(t)σy +

2
3
yf ′′(t)σt,

(3.14)

and, on account of (3.12),

LXf
Θt = −4

3
f ′(t)Θt −

2
3
yf ′′(t)Θy, LXf

Θtxl = − l + 4
3

f ′(t)Θtxl , l = 1, 2,

LXf
Θty = −2f ′(t)Θty + yf ′′(t)

(
4
9
s2Θtx −Θyy

)
,

LXf
Θxlym = − l + 2m + 1

3
f ′(t)Θxlym +

4m

9
s2yf ′′(t)Θxl+1ym−1 ,

l ≥ 0, m = 0, 1, 2.

(3.15)

Note that all the Lie derivative formulas above only involve the terms f ′(t) and yf ′′(t)
and no other terms in f(t) or its derivatives.

We say that a form ω ∈ Ωr,s(J∞(E)) has a weight w if

LX3tω = w · ω.

In this case, write

W (ω) = w.

For example, the scalar form ω1 = utx has the weight W (ω1) = −5 while the type (1, 1)
form ω2 = dx ∧Θt has the weight W (ω2) = −3.

Lemma 3.2. Let ω ∈ Ωr,s
PKP (J∞(E)) be ΓPKP invariant. Then ω can be expressed in

terms of exterior products of the forms σt, σx, σy and Θtkxlym (3k + l + 2m ≤ 5) with
coefficients which are polynomial in the variables vtxl (l = 1, 2), vxl (l = 3, 4, 5), and vxly

(l = 2, 3).
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Proof. Let ω ∈ Ωr,s
PKP (J∞(E)) be ΓPKP invariant. Our first goal is to show that the

components ωI1···Is
i1···ir of ω in the basis {dt, dx, dy, θ, θt, . . .} are polynomials in the variables

utkxlym . For this, let Φε J∞(E) → J∞(E),

Φε(t, x, y, utkxlym) =
(
e3εt, eεx, e2εy, e−(3k+l+2m+1)εutkxlym

)
, (3.16)

be the one-parameter group of transformations generated by the vector field prX3t. Since
the action of Φε leaves ω invariant, it follows from (3.16) that the components ωI1···Is

i1···ir
satisfy

ωI1···Is
i1···ir = epεωI1···Is

i1···ir ◦ Φε, (3.17)

for some p ∈ R.
Let k, l,m be some nonnegative integers, and apply a q-fold derivative with respect to

the variable utkxlym to equation (3.17) to obtain

∂qωI1···Is
i1···ir

∂utkxlym
q

= e[p−q(3k+l+2m+1)]ε
∂qωI1···Is

i1···ir
∂utkxlym

q
◦ Φε. (3.18)

Suppose that q > p, and let ε → ∞ in (3.18). Recall that by the ΓPKP invariance of
ω the component functions ωI1···Is

i1···ir do not involve the independent variables t, x, y. Thus,
we see that

∂qωI1···Is
i1···ir

∂utkxlym
q

= 0.

Hence, any q-fold, q > p, derivative with respect to the variable utkxlym vanishes identi-
cally. Since k, l,m are arbitrary nonnegative integers, it follows that the ωI1···Is

i1···ir must be
polynomial in the derivative variables utkxlym .

Next write

ω = ωi1···irdxi1 ∧ · · · ∧ dxir ,

where ωi1···ir ∈ Ω0,s(J∞(E)). Each monomial dxi1 ∧ · · · ∧ dxir has a weight

0 ≤ W (dxi1 ∧ · · · ∧ dxir) ≤ 6.

Hence, we have that

−6 ≤ W (ωi1···ir) ≤ 0 for all i1, . . . , ir.

By (3.16), the weight of the derivative variable utkxlym is

W (utkxlym) = −3k − l − 2m− 1.

Note, moreover, that the invariance of the form ω under the vector fields prWk and prUl

simply means that the components of ω do not depend on the variables utk or utky, where
k ≥ 0. Therefore, by (3.9)–(3.11), we are able to express ω as a combination of the exterior
products of the adapted horizontal forms σt, σx, σy, the adapted contact forms Θtkxlym

(3k + l + 2m ≤ 5), the variables vtxl (l = 1, 2), the variables vxl+1ym (l + 2m ≤ 4), and the
variable vyy.
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We still need to show that the coefficients ω̂I1···Is
i1···ir of ω in the adapted frame σt, σx, σy

and Θtkxlym do not involve the variables vx, vxx, vxy, vyy, and vxyy. Write

Xf =
4∑

i=0

f (i)(t)Xi,

where Xi, i = 0, . . . , 4, do not involve the function f(t) or its derivatives. By the prolon-
gation formula (2.3),

prXf (vxlym) =
4∑

i=0

f (i) prXi(vxlym), l,m ≥ 0.

Now

prX3 = − 4
27

s2

(
xy2 ∂

∂v
+ y2 ∂

∂vx
+ 2xy

∂

∂vy
+ 2y

∂

∂vxy
+ 2x

∂

∂vyy
+ 2

∂

∂vxyy

)
. (3.19)

By (3.13)–(3.15), the Lie derivatives of the forms σt, σx, σy, Θtkxlym (3k + l+2m ≤ 5),
and the variables vtxl (l = 1, 2) only involve the term f ′(t) or the term yf ′′(t) and no
other terms in f(t) or its derivatives. Since f(t) is an arbitrary function, the coefficient of
f ′′′(t) in the expression for L prXf

ω must vanish. It therefore follows that the components
ω̂I1···Is

i1···ir are invariant under prX3. Recall that the ω̂I1···Is
i1···ir do not involve the variables x, y.

Hence, on account of the formula (3.19) for prX3, we see that the ω̂I1···Is
i1···ir can not depend

on the variables vx, vxy, vyy, and vxyy. We can similarly use (3.12) to show that the ω̂I1···Is
i1···ir

can not depend on vxx. This concludes the proof of the Lemma.
We let

α1,1
1 = σt ∧Θxx, α1,1

2 = σt ∧Θy −
2
3
s2σy ∧Θx,

α1,2
1 = σt ∧Θ ∧Θx, α2,0

1 = vtxσt ∧ σy, α2,0
2 = vxxxxσt ∧ σy,

α2,0
3 = vxxxσt ∧ σx + vxxyσ

t ∧ σy, α2,1
1 = vxxxσt ∧ σy ∧Θ,

α3,1
1 = vtxσt ∧ σx ∧ σy ∧Θ, α3,1

2 = vxxxxσt ∧ σx ∧ σy ∧Θ,

α2,2
1 =

(
σt ∧ σy ∧Θt −

3
2
s2σt ∧ σx ∧Θy − σx ∧ σy ∧Θx

)
∧Θ.

(3.20)

One can verify without difficulty that, on account of the Lie derivative formulas (3.13)–
(3.15) and the remark following the bracket relations (3.1), the forms αi,j

k above are all
ΓPKP invariant.

Proposition 3.3. The spaces Ωr,s
PKP (J∞(E)) of ΓPKP invariant type (r, s) forms are

spanned by the following forms.
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s ≥ 4 0 0 0 0

s = 3 0 0 0
α1,1

1 ∧ α2,2
1

α1,1
2 ∧ α2,2

1

s = 2 0 α1,2
1

α2,2
1 , dHα1,2

1 , a1,1
1 ∧ α1,1

2

dV α2,1
1 , α1,1

2 ∧ α1,1
2

dHα2,2
1 , dH(a1,1

1 ∧ α1,1
2 )

dHdV α2,1
1 , dH(α1,1

2 ∧ α1,1
2 )

s = 1 0
α1,1

1

α1,1
2

α2,1
1 , dHα1,1

1 , dV α2,0
1

dHα1,1
2 , dV α2,0

2

α3,1
1 , α3,1

2 , dHdV α2,0
1

dHα2,1
1 , dHdV α2,0

2

s = 0 1 0 α2,0
1 , α2,0

2 , α2,0
3 dHα2,0

1 , dHα2,0
2

r = 0 r = 1 r = 2 r = 3

Proof. Due to Lemma 3.2 and the Lie derivative formulas (3.13)–(3.15), the proof reduces
to routine computations. We illustrate the details by finding a basis for Ω2,1

PKP (J∞(E))
assuming that bases for Ω1,1

PKP (J∞(E)) and Ω2,0
PKP (J∞(E)) have already been found.

Let ω ∈ Ω2,1
PKP (J∞(E)), and write

ω = ω1σ
t ∧ σx + ω2σ

t ∧ σy + ω3σ
x ∧ σy, (3.21)

where ωi ∈ Ω0,1(J∞(E)), i = 1, 2, 3. By the ΓPKP invariance of ω,

W (ω1) = −4, W (ω2) = −5, W (ω3) = −3.

It now follows from Lemma 3.2 that ω1 must be a linear combination of the forms

Θt, Θxy, Θxxx,

that ω2 must be a linear combination of the forms

vxxxΘ, Θtx, Θyy, Θxxy, Θxxxx,

and that ω3 must be a linear combination of the forms

Θy, Θxx.

Next note that

dHα1,1
1 = −σt ∧ (σx ∧Θxxx + σy ∧Θxxy),

dHα1,1
2 = −σt ∧ σx ∧Θxy −

2
3
s2σt ∧ σy ∧

(
Θtx +

3
4
s2Θyy

)
− 2

3
s2σx ∧ σyΘxx,

dV α2,0
1 = σt ∧ σy ∧Θtx, dV α2,0

2 = σt ∧ σy ∧Θxxxx.

(3.22)

are all ΓPKP invariant type (2, 1) forms. Thus, by subtracting a suitable linear combination
of the form α2,1

1 and the forms in (3.22) from ω, we can assume that there are constants
bi
j so that

ω1 = b1
1Θt + b2

1Θxy, ω2 = b1
2Θyy + b2

2Θxxy, ω3 = b1
3Θy.
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It remains to show that the invariance of ω in (3.21) with ω1, ω2, ω3 as above forces
bj
i = 0 for all i, j. But this is an immediate consequence of the Lie derivative formulas

(3.13)–(3.15).

Proof of Theorem 1.1. One can verify without difficulty that, on account of (2.1), each
of the forms α3,1

1 , α3,1
2 , α1,1

1 ∧ α2,2
1 and α1,1

2 ∧ α2,2
2 is fixed by the interior Euler operator I.

Thus,

F2
PKP (J∞(E)) = R < α3,1

1 , α3,1
2 >,

F4
PKP (J∞(E)) = R < α1,1

1 ∧ α2,2
1 , α1,1

2 ∧ α2,2
1 >,

Fs
PKP (J∞(E)) =< 0 >, s 6= 2, 4.

(3.23)

Now the exactness of the augmented interior rows (Ω∗,s
PKP (J∞(E)), dH), s ≥ 1, of the

ΓPKP invariant variational bicomplex immediately follows from Proposition 3.3. This
proves (i).

To prove (ii), we only need to verify that

dV α1,1
i = 0, i = 1, 2, dV α1,2

1 = 0, dV α2,0
3 = −dHα1,1

1 ,

dV α3,1
1 =

1
2
dHα2,2

1 , dV α3,1
2 = dHdV α2,1

1 − 3
2
s2dH(α1,1

1 ∧ α1,1
2 ).

Then we can conclude with the help of Proposition 3.3 that the vertical cohomology spaces
Hr,s(ΩPKP (J∞(E)), dV ) are generated by the following forms.

s ≥ 4 0 0 0 0

s = 3 0 0 0
α1,1

1 ∧ α2,2
1

α1,1
2 ∧ α2,2

1

s = 2 0 α1,2
1

α2,2
1 , α1,1

1 ∧ α1,1
2

dHα1,2
1 , α1,1

2 ∧ α1,1
2

dH(α1,1
2 ∧ α1,1

2 )

s = 1 0 α1,1
1 , α1,1

2 dHα1,1
2 0

s = 0 1 0 0 0
r = 0 r = 1 r = 2 r = 3

Now (ii) follows.
Finally, by (3.23), the differential δ reduces to the zero map when restricted to the

spaces Fs
PKP (J∞(E)), s ≥ 1. Thus, by Proposition 3.3 and by (3.23),

H2(EPKP (J∞(E))) = R < [α2,0
3 ] >,

H4(EPKP (J∞(E))) = R < [α3,1
1 ], [α3,1

2 ] >,

H6(EPKP (J∞(E))) = R < [α1,1
1 ∧ α2,2

1 ], [α1,1
2 ∧ α2,2

1 ] >,

Hs(EPKP (J∞(E))) = < 0 >, s 6= 2, 4, 6.

(3.24)

Now (iii) follows.
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Proof of Corollary 1.2. We only need to remark that by (3.24) the cohomology space
H4(EPKP (J∞(E))) is generated by the source forms

∆PKP = α3,1
1 + α3,2

2 and ∆uxxxx = α3,2
2 .
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