Conformally Invariant Ansätze for the Maxwell Field

Victor LAHNO
Institute of Mathematics of the National Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka Street, 252004 Kyiv, Ukraine

Abstract

A general procedure for construction of conformally invariant Ansätze for the Maxwell field is suggested. Ansätze invariant with respect to inequivalent three-parameter subgroups of the conformal group are constructed.

1 Introduction

Since early seventies when W.I. Fushchych suggested a principally new (non-Lie) approach to study symmetry properties of the Maxwell equations [1]-[4], these equations are in the focus of his research activity. A number of fundamental results were obtained, such as the determination of Lie and non-Lie symmetries of the Maxwell equations [1]-[4], classification of equations of nonlinear electrodynamics and nonlinear representations of the Poincaré and Galilei algebras for the Maxwell field [5, 6], construction of invariant solutions of the Maxwell equations [7, 8] to mention only some of them. A complete review on this subject can be found in the monographs $[9,10,11]$ which are recognized as the standard source of references in the field of symmetry analysis of equations of quantum mechanics.

The present paper is a continuation of our papers [7, 8]. Here we consider the problem of construction of conformally-invariant Ansätze for the vacuum Maxwell equations

$$
\begin{array}{ll}
\operatorname{rot} \vec{E}=-\frac{\partial \vec{H}}{\partial x_{0}}, & \operatorname{rot} \vec{H}=\frac{\partial \vec{E}}{\partial x_{0}}, \tag{1}\\
\operatorname{div} \vec{E}=0, & \operatorname{div} \vec{H}=0,
\end{array}
$$

which reduce system (1) to ordinary differential equations (ODE). It is well known that the above equations admit the conformal group $C(1,3)$ with the following basis generators [9]:

$$
\begin{align*}
& P_{\mu}=\partial_{x_{\mu}}, \quad J_{0 a}=x_{0} \partial_{a}+x_{a} \partial_{x_{0}}+\varepsilon_{a b c}\left(E_{b} \partial_{H_{c}}-H_{b} \partial_{E_{c}}\right), \\
& J_{a b}=x_{b} \partial_{a}-x_{a} \partial_{x_{b}}+E_{b} \partial_{E_{a}}-E_{a} \partial_{E_{b}}+H_{b} \partial_{H_{a}}-H_{a} \partial_{H_{b}}, \\
& D=x_{\mu} \partial_{\mu}-2\left(E_{a} \partial_{E_{a}}+H_{a} \partial_{H_{a}}\right), \tag{2}\\
& K_{0}=2 x_{0} D-x_{\mu} x^{\mu} \partial_{x_{0}}+2 x_{a} \varepsilon_{a b c}\left(E_{b} \partial_{H_{c}}-H_{b} \partial_{E_{c}}\right), \\
& K_{a}=-2 x_{a} D-x_{\mu} x^{\mu} \partial_{x_{0}}-2 x_{0} \varepsilon_{a b c}\left(E_{b} \partial_{H_{c}}-H_{b} \partial_{E_{c}}\right)- \\
& \quad \quad-2 H_{a}\left(x_{b} \partial_{H_{b}}\right)-2 E_{a}\left(x_{b} \partial_{E_{b}}\right)+2\left(x_{b} H_{b}\right) \partial_{H_{a}}+2\left(x_{b} E_{b}\right) \partial_{E_{a}} .
\end{align*}
$$

Here $\mu, \nu=0,1,2,3 ; a, b, c=1,2,3$. Henceforth we use the summation convention over repeated indices, those denoted by Greek letters are ranging from 0 to 3 and by Latin letters from 1 to 3 . Lowering or rising indices is carried out by the metric tensor of the Minkowski space $g_{\mu \nu}: g_{00}=-g_{11}=-g_{22}=-g_{33}=1, g_{\mu \nu}=0, \mu \neq \nu ; \varepsilon_{a b c}$ is the antisymmetric tensor of the third order; $\partial_{x_{\mu}}=\frac{\partial}{\partial x_{\mu}}, \partial_{E_{a}}=\frac{\partial}{\partial E_{a}}, \partial_{H_{a}}=\frac{\partial}{\partial H_{a}}$.

Using the fact that operators (2) realize a linear representation of the conformal algebra, we suggest a direct method for construction of the invariant Ansätze making it possible to avoid the awkward procedure of finding a basis of functional invariants of subalgebras of the algebra $A C(1,3)$.

2 Linear representation of the conformally invariant Ansätze

Let L be a nonzero subalgebra of the algebra $A C(1,3)$ with basis elements (2). An invariant linear in $E_{1}, E_{2}, E_{3}, H_{1}, H_{2}, H_{3}$ is called as a linear invariant of a subalgebra L. Suppose that L has six linear invariants

$$
f_{m a}(x) E_{a}+f_{m 3+a}(x) H_{a}, \quad a=1,2,3 ; m=1,2, \ldots, 6
$$

which are functionally independent. They can be considered as components of the vector $F \vec{A}$, where $F=\left(f_{m n}(x)\right), m, n=1,2, \ldots, 6$ and \vec{A} is a vector-column with components A_{m}, where $A_{k}=E_{k}(k=1,2,3)$ and $A_{k}=H_{k-3}(k=4,5,6)$ Furthermore, we suppose that the matrix F is nonsingular in some domain of $R_{1,3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right): x_{\mu} \in R\right\}$. Providing the rank r of the subalgebra L is less or equal 3, there are additional $s=4-r$ invariants independent of components of \vec{A}. We denote these as $\omega_{1}, \ldots, \omega_{s}$.

According to the results of [12], the Ansatz $F \vec{A}=\vec{B}\left(\omega_{1}, \ldots, \omega_{s}\right)$ reduces the system of equations (1) to a system of differential equations which contains the independent variables
$\omega_{1}, \ldots, \omega_{s}$, dependent variables $B_{1}, B_{2}, \ldots, B_{6}$, and their first derivatives. This Ansatz can be written in the form

$$
\begin{equation*}
\vec{A}=Q(x) \vec{B}\left(\omega_{1}, \ldots, \omega_{s}\right), \quad Q(x)=F^{-1}(x) \tag{3}
\end{equation*}
$$

where $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. If $s=1$, then the reduced system is equivalent to a system of ODEs. Let us note that it was W.I. Fushchych who have noticed for the first time a possibility to look for solutions of differential equations of the form $(3)[14,15]$.

Let $L=\left\langle X_{1}, \ldots, X_{c}\right\rangle$, where

$$
X_{a}=\xi_{a \mu}(x) \frac{\partial}{\partial x_{\mu}}+\rho_{a m n}(x) A_{n} \frac{\partial}{\partial A_{m}} \quad(a=1,2, \ldots, c)
$$

Hereafter $m, n, k, l=1,2, \ldots, 6$. The function $f_{m n}(x) A_{n}$ is an invariant of the operator X_{a} if and only if

$$
\xi_{a \mu}(x) \frac{\partial f_{m n}(x)}{\partial x_{\mu}} A_{m}+\rho_{a k l}(x) A_{l} f_{m k}(x)=0
$$

or

$$
\begin{equation*}
\xi_{a \mu}(x) \frac{\partial f_{m n}(x)}{\partial x_{\mu}}+f_{m k}(x) \rho_{a k m}(x)=0 \tag{4}
\end{equation*}
$$

for all n [13].
Let $F(x)=\left(f_{m n}(x)\right), \quad \Gamma_{a}(x)=\left(\rho_{a k l}(x)\right)$ be 6×6 matrices. Then the second term on the left-hand side of (4) is the entry (m, n) of the matrix $F(x) \Gamma_{a}(x)$. Whence, we get the following assertion.

Theorem 1. The system of functions $f_{m n}(x) A_{n}$ is a system of functionally independent invariants if and only if the matrix $F=\left(f_{m n}(x)\right)$ is nonsingular in some domain of the space $R_{1,3}$ and satisfies the system of partial differential equations

$$
\xi_{a \mu}(x) \frac{\partial F(x)}{\partial x_{\mu}}+F(x) \Gamma_{a}(x)=0, \quad a=1, \ldots, c
$$

In what follows we call an Ansatz of the form (3) linear.

3 Conformally invariant Ansätze for the Maxwell field

To construct conformally invariant Ansätze reducing (1) to systems of ODEs, one has to use three-dimensional subalgebras of the algebra $A C(1,3)$ having the basis elements (2). The complete list of nonequivalent subalgebras of the conformal algebra is known (see, e.g., [16]). Note that a similar problem for the spinor field is completely solved in [17].

As Ansätze for the Maxwell field corresponding to three-dimensional subalgebras of the extended Poincaré algebra $A \tilde{P}(1,3)=\left\langle P_{\mu}, J_{\mu \nu}, D \mid \mu, \nu=0,1,2,3 ; \mu \neq \nu\right\rangle$ were found in $[7,8,18]$, it is sufficient to consider only subalgebras nonconjugated to subalgebras of the algebra $A \tilde{P}(1,3)$.

We restrict our considerations to three-dimensional subalgebras of the algebra $A C(1,3)$ which belong to the third class according to notations of [16]

$$
\begin{aligned}
& L_{1}=\left\langle S+T+J_{12}, G_{1}+P_{2}, M\right\rangle \\
& L_{2}=\left\langle S+T+J_{12}+G_{1}+P_{2}, G_{2}-P_{1}, M\right\rangle \\
& L_{3}=\left\langle J_{12}, S+T, M\right\rangle, \quad L_{4}=\langle S+T, Z, M\rangle \\
& L_{5}=\left\langle S+T+\alpha J_{12}, Z, M\right\rangle(\alpha>0) \\
& L_{6}=\left\langle S+T+J_{12}+\alpha Z, G_{1}+P_{2}, M\right\rangle(\alpha \neq 0), \\
& L_{7}=\left\langle S+T+J_{12}, Z, G_{1}+P_{2}\right\rangle \\
& L_{8}=\left\langle S+T+\beta Z, J_{12}+\alpha Z, M\right\rangle\left(\alpha \leq 0, \beta \in R, \alpha+\beta^{2} \neq 0\right), \\
& L_{9}=\left\langle J_{12}, S+T, Z\right\rangle, \quad L_{10}=\langle R, S, T\rangle
\end{aligned}
$$

where $M=P_{0}+P_{3}, G_{a}=J_{0 a}-J_{a 3}, \quad R=D-J_{03}, \quad Z=J_{03}+D, \quad S=\frac{1}{2}\left(K_{0}+K_{3}\right)$, $T=\frac{1}{2}\left(P_{0}-P_{3}\right)$.

To construct invariant Ansätze, we make use of Theorem 1 and relate to each generator of the algebra $L_{j}(j=1, \ldots, 10)$ some matrix Γ (see below).

As the operator P_{μ} is independent of $\frac{\partial}{\partial A_{n}}(n=1,2, \ldots, 6)$, the corresponding matrix Γ is equal to zero.

Let $\left(-S_{\mu \nu}\right)$ be the matrix Γ corresponding to $J_{\mu \nu}$. It is not diffucult to verify that

$$
\begin{align*}
& S_{01}=\left(\begin{array}{cc}
0 & -\tilde{S}_{23} \\
\tilde{S}_{23} & 0
\end{array}\right), \quad S_{02}=\left(\begin{array}{cc}
0 & \tilde{S}_{13} \\
-\tilde{S}_{13} & 0
\end{array}\right), \quad S_{03}=\left(\begin{array}{cc}
0 & -\tilde{S}_{12} \\
\tilde{S}_{12} & 0
\end{array}\right) \tag{5}\\
& S_{12}=\left(\begin{array}{cc}
\tilde{S}_{12} & 0 \\
0 & \tilde{S}_{12}
\end{array}\right), \quad S_{13}=\left(\begin{array}{cc}
\tilde{S}_{13} & 0 \\
0 & \tilde{S}_{13}
\end{array}\right), \quad S_{23}=\left(\begin{array}{cc}
\tilde{S}_{23} & 0 \\
0 & \tilde{S}_{23}
\end{array}\right)
\end{align*}
$$

where 0 is the 3×3 zero matrix and

$$
S_{12}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{13}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad S_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

The matrix $(-2 E)$, where E is the unit 6×6 matrix, corresponds to the operator D. Then, the matrices $\left(-4 x_{0} E-2 x_{a} S_{0 a}\right)$ and $\left(4 x_{a} E+2 x_{0} S_{0 a}-2 x_{b} S_{a b}\right)$ correspond to the operators K_{0} and K_{a}, reprectively.

The matrices $S_{\mu \nu}, E$ realize a representation of the algebra $A \tilde{O}(1,3)=A O(1,3) \oplus$ $\bigoplus\langle D\rangle$ inasmuch as

$$
\left[S_{\mu \nu}, S_{\gamma \beta}\right]=g_{\mu \beta} D_{\nu \gamma}+g_{\nu \gamma} S_{\mu \beta}-g_{\mu \gamma} S_{\nu \beta}-g_{\nu \beta} S_{\mu \gamma}, \quad\left[E, S_{\mu \nu}\right]=0
$$

where $\mu, \nu, \gamma, \beta=0,1,2,3 ; g_{\mu \nu}$ is the metric tensor of the Minkowski space $R_{1,3}$.
The algebra $A O(1,3)$ having the generators $S_{\mu \nu}(\mu, \nu=0,1,2,3)$ contains as a subalgebra the algebra $A \tilde{E}(2)$ generated by $H_{a}=S_{0 a}-S_{a 3}(a=1,2), S_{12}$, and S_{03}. Basis elements of $A \tilde{E}(2)$ fulfill the following commutation relations:

$$
\begin{array}{lll}
{\left[H_{1}, S_{12}\right]=-H_{2},} & {\left[H_{2}, S_{12}\right]=H_{1},} & {\left[H_{1}, H_{2}\right]=0} \\
{\left[H_{a}, S_{03}\right]=H_{a}} & (a=1,2), & {\left[S_{03}, S_{12}\right]=0}
\end{array}
$$

Lemma 1. Let

$$
\begin{equation*}
\Lambda=\exp (\ln \theta E) \exp \left(\theta_{0} S_{03}\right) \exp \left(-\theta_{3} S_{12}\right) \exp \left(-2 \theta_{1} H_{1}\right) \exp \left(-2 \theta_{2} H_{2}\right) \tag{6}
\end{equation*}
$$

where $\theta, \theta_{\mu}(\mu=0,1,2,3)$ are functions of $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Then

$$
\begin{aligned}
\xi_{\mu} \frac{\partial \Lambda}{\partial x_{\mu}}= & \Lambda \xi_{\mu}\left\{\frac{\partial(\ln \theta)}{\partial x_{\mu}} E+\frac{\partial \theta_{0}}{\partial x_{\mu}}\left(S_{03}+2 \theta_{1} H_{1}+2 \theta_{2} H_{2}\right)\right. \\
& \left.-\frac{\partial \theta_{3}}{\partial x_{\mu}}\left(S_{12}-2 \theta_{1} H_{2}+2 \theta_{2} H_{1}\right)-2 \frac{\partial \theta_{1}}{\partial x_{\mu}} H_{1}-2 \frac{\partial \theta_{2}}{\partial x_{\mu}} H_{2}\right\}
\end{aligned}
$$

The proof of the lemma is carried out by the Campbell-Hausdorff formula.
Theorem 2. For each subagebra $L_{j}=\left\langle X_{a} \mid a=1,2,3\right\rangle(j=(1, \ldots, 10)$, there exists a linear Ansatz (3) with ω being a solution of the system

$$
\begin{equation*}
\xi_{a \mu}(x) \frac{\partial \omega}{\partial x_{\mu}}=0, \quad a=1,2,3 \tag{7}
\end{equation*}
$$

$Q(x)=\Lambda^{-1}$, where Λ has the form (6). Furthermore, the functions $\theta, \theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}, \omega$ can be represented in the form

$$
\begin{aligned}
L_{1}: \quad \theta & =\left(1+\left(x_{0}-x_{3}\right)^{2}\right), \theta_{0}=-\frac{1}{2} \ln \left(1+\left(x_{0}-x_{3}\right)^{2}\right) \\
\theta_{1} & =-\frac{1}{2}\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1} \\
\theta_{2} & =\frac{1}{2}\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1} \\
\theta_{3} & =-\arctan \left(x_{0}-x_{3}\right), \omega=\left(x_{1}-x_{2}\left(x_{0}-x_{3}\right)\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1} \\
L_{2}: \quad \theta & =\left[1+\left(x_{0}-x_{3}\right)^{2}\right], \quad \theta_{0}=-\frac{1}{2} \ln \left(1+\left(x_{0}-x_{3}\right)^{2}\right) \\
\theta_{1} & =-\frac{1}{2}\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2}=\frac{1}{2}\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \theta_{3}=-\arctan \left(x_{0}-x_{3}\right), \\
& \omega=\left[\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right]\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}\right]-\arctan \left(x_{0}-x_{3}\right) ; \\
& L_{3}: \quad \theta=1+\left(x_{0}-x_{3}\right)^{2}, \theta_{0}=-\frac{1}{2} \ln \left[1+\left(x_{0}-x_{3}\right)^{2}\right], \\
& \theta_{1}=-\frac{1}{2} x_{1}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
& \theta_{2}=-\frac{1}{2} x_{2}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
& \theta_{3}=\arctan \frac{x_{1}}{x_{2}}, \omega=\left[1+\left(x_{0}-x_{3}\right)^{2}\right]\left(x_{1}^{2}+x_{2}^{2}\right)^{-1} ; \\
& L_{4}: \quad \theta_{1}=x_{1}^{2}, \quad \theta_{0}=\ln \left|x_{1}\right|-\ln \left[1+\left(x_{0}-x_{3}\right)^{2}\right] \text {, } \\
& \theta_{1}=-\frac{1}{2} x_{1}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1} \text {, } \\
& \theta_{2}=-\frac{1}{2} x_{2}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \theta_{3}=0, \omega=\frac{x_{1}}{x_{2}} ; \\
& L_{5}: \quad \theta=\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right), \quad \theta_{0}=\frac{1}{2} \ln \left[\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}\right] ; \\
& \theta_{1}=-\frac{1}{2} x_{1}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
& \theta_{2}=-\frac{1}{2} x_{2}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
& \theta_{3}=\arctan \frac{x_{2}}{x_{1}}, \omega=\arctan \frac{x_{2}}{x_{1}}+\alpha \arctan \left(x_{0}-x_{3}\right) ; \\
& L_{6}: \quad \theta=\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)^{2}\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \\
& \theta_{0}=\frac{1}{2} \ln \left[\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)^{2}\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-3}\right], \\
& \theta_{1}=-\frac{1}{2}\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \\
& \theta_{2}=\frac{1}{2}\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \theta_{3}=-\arctan \left(x_{0}-x_{3}\right) \text {, } \\
& \omega=\alpha \arctan \left(x_{0}-x_{3}\right)-\ln \left[\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}\right] ; \\
& L_{7}: \quad \theta=\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)^{2}\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1} \text {, } \\
& \theta_{0}=\frac{1}{2} \ln \left[\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)^{2}\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-3}\right], \\
& \theta_{1}=-\frac{1}{2}\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \\
& \theta_{2}=\frac{1}{2}\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}, \theta_{3}=-\arctan \left(x_{0}-x_{3}\right) \text {, } \\
& \omega=\left[\left(x_{0}+x_{3}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{2}-2 x_{1}\left(x_{2}+\left(x_{0}-x_{3}\right) x_{1}\right)+\right. \\
& \left.+\left(x_{0}-x_{3}\right)\left(x_{1}^{2}\left(x_{0}-x_{3}\right)^{2}-x_{2}^{2}\right)\right]\left(x_{1}-\left(x_{0}-x_{3}\right) x_{2}\right)^{-2}-x_{0}+x_{3} ; \\
& L_{8}: \quad \theta=x_{1}^{2}+x_{2}^{2}, \quad \theta_{0}=\frac{1}{2} \ln \left[\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-2}\right] \text {, } \\
& \theta_{1}=-\frac{1}{2} x_{1}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1},
\end{aligned}
$$

$$
\begin{aligned}
\theta_{2} & =-\frac{1}{2} x_{2}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \theta_{3}=\arctan \frac{x_{2}}{x_{1}}, \\
\omega & =\ln \left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\left(x_{0}-x_{3}\right)^{2}\right)^{-1}+2 \alpha \arctan \frac{x_{2}}{x_{1}}-2 \beta \arctan \left(x_{0}-x_{3}\right) ; \\
L_{9}: \quad \theta & =x_{1}^{2}+x_{2}^{2}, \quad \theta_{0}=\frac{1}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right)-\ln \left[1+\left(x_{0}-x_{3}\right)^{2}\right], \\
\theta_{1} & =-\frac{1}{2} x_{1}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
\theta_{2} & =-\frac{1}{2} x_{2}\left(x_{0}-x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]^{-1}, \\
\theta_{3} & =\arctan \frac{x_{2}}{x_{1}}, \quad \omega=\left(x_{0}+x_{3}\right)\left[1+\left(x_{0}-x_{3}\right)^{2}\right]\left(x_{1}^{2}+x_{2}^{2}\right)^{-1}-x_{0}+x_{3} ; \\
L_{10}: \quad \theta & =x_{1}^{2}+x_{2}^{2}, \quad \theta_{0}=-\frac{1}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right), \\
\theta_{1} & =-\frac{1}{2} x_{1}\left(x_{0}+x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{-1}, \quad \theta_{2}=-\frac{1}{2} x_{2}\left(x_{0}+x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{-1}, \\
\theta_{3} & =0, \quad \omega=\frac{x_{2}}{x_{1}} ;
\end{aligned}
$$

To prove the assertion, we have to check that the functions $\theta, \theta_{\mu}(\mu=0,1,2,3), \omega$ satisfy the system of equations (4), (7) for each subalgebra L_{j}. Consider in detail the case of the subalgebra L_{4}. System (7) has the form

$$
\begin{aligned}
& \left(\partial_{x_{0}}-\partial_{x_{3}}\right) \omega=0, \quad\left(x_{0} \partial x_{3}+x_{3} \partial x_{0}+x_{\mu} \partial x_{\mu}\right) \omega=0 \\
& {\left[\left(x_{0}-x_{3}\right) x_{\mu} \partial_{x_{\mu}}-\frac{1}{2} x_{\mu} x^{\mu}\left(\partial x_{0}+\partial x_{3}\right)+\frac{1}{2}\left(\partial x_{0}-\partial x_{3}\right)\right] \omega=0}
\end{aligned}
$$

It is not difficult to verify that the rank of this system is equal 3 and its solution is the function $\omega=\frac{x_{2}}{x_{1}}$.

To obtain the matrix $\Lambda=F(x)$, we have to construct solutions of system (4). As the algebra L_{4} contains the operator $M=P_{0}+P_{3}$, it follows from the equation

$$
\left(\partial_{x_{0}}+\partial_{x_{3}}\right) \Lambda=0
$$

that $\Lambda=\Lambda\left(\xi, x_{1}, x_{2}\right)$ where $\xi=x_{0}-x_{3}$. Taking into account the structure of the algebra L_{4}, we choose Λ in the form (6), where $\theta_{3}=0$. According to Lemma 1, we get the following system for the functions $\theta=\theta\left(x_{1}, x_{2}\right), \theta_{\nu}=\theta_{\nu}\left(\xi, x_{1}, x_{2}\right), \nu=0,1,2$:

$$
\begin{aligned}
& x_{a} Q_{a}-S_{03}-2 E=0, \\
& 2 \xi x_{a} Q_{a}+2\left(1+\xi^{2}\right) Q_{\xi}+2 \xi\left(S_{03}-2 E\right)-2 x_{1} H_{1}-2 x_{2} H_{2}=0,
\end{aligned}
$$

where $Q_{a}=\frac{\partial \ln \theta}{\partial x_{a}} E+\frac{\partial \theta}{\partial x_{0}}\left(S_{03}+2 \theta_{1} H_{1}+2 \theta_{2} H_{2}\right)-2 \frac{\partial \theta_{1}}{\partial x_{a}} H_{1}-2 \frac{\partial \theta_{2}}{\partial x_{a}} H_{2}, a=1,2$.
Having split the system by the matrices E, S_{03}, H_{1}, H_{2}, we come to a system of partial differential equations whose solutions can be represented in the form given above.

Thus, conformally invariant Ansätze corresponding to the algebras $L_{j}(j=1, \ldots, 10)$ can be written in the linear form (3), where $Q(x)=\Lambda^{-1}(x), \Lambda(x)$ is matrix (6) and the functions $\theta, \theta_{\mu}(\mu=0,1,2,3), \omega$ are given in Theorem 2.

As we have a specific representation of the matrices $S_{\mu \nu}, E$, we can calculate the matrix exponentials and represent the matrix $\Lambda^{-1}(x)$ as follows

$$
\Lambda^{-1}=\theta\left\|\begin{array}{cc}
\Lambda_{1} & \Lambda_{2} \\
-\Lambda_{2} & \Lambda_{1}
\end{array}\right\|
$$

where

$$
\begin{aligned}
\Lambda_{1}=\left\|\begin{array}{ccc}
\cos \theta_{3} \cosh \theta_{0}-\sigma_{1} & -\sin \theta_{3} \cosh \theta_{0}+\sigma_{2} & 2 \theta_{1} \\
\sin \theta_{3} \cosh \theta_{0}+\sigma_{2} & \cos \theta_{3} \cosh \theta_{0}+\sigma_{1} & 2 \theta_{2} \\
\sigma_{3} & \sigma_{4} & 1
\end{array}\right\|, \\
\Lambda_{2}=\left\|\begin{array}{cc}
-\sin \theta_{3} \sinh \theta_{0}-\sigma_{2} & -\cos \theta_{3} \sinh \theta_{0}-\sigma_{1} \\
\cos \theta_{3} \sinh \theta_{0}-\sigma_{1} & -\sin \theta_{3} \sinh \theta_{0}+\sigma_{2} \\
-\sigma_{4} & \sigma_{3}
\end{array}\right\|, \\
\sigma_{1}=2\left[\left(\theta_{1}^{2}-\theta_{2}^{2}\right) \cos \theta_{3}+2 \theta_{1} \theta_{2} \sin \theta_{3}\right] e^{-\theta_{0}}, \\
\sigma_{1}=2\left[\left(\theta_{1}^{2}-\theta_{2}^{2}\right) \sin \theta_{3}-2 \theta_{1} \theta_{2} \cos \theta_{3}\right] e^{-\theta_{0}}, \\
\sigma_{3}=-2\left[\theta_{1} \cos \theta_{3}+\theta_{2} \sin \theta_{3}\right] e^{-\theta_{0}}, \\
\sigma_{4}=2\left[\theta_{1} \sin \theta_{3}-\theta_{2} \cos \theta_{3}\right] e^{-\theta_{0}} .
\end{aligned}
$$

References

[1] Fushchych W.I. and Nikitin A.G., Group-theoretical properties of the Maxwell equations, In: GroupTheoretical Methods in Theoretical methods in Mathematical Physics, Kiev: Institute of Mathematics, 1978, 45-80.
[2] Fushchych W.I., On the additional invariance of the Dirac and Maxwell equations, Lett. Nuovo Cim., 1974, V.11, N 10, 508-512.
[3] Fushchych W.I. and Nikitin A.G., On the new invariance group of Maxwell's equation, Lett. Nuovo Cim., 1979, V.24, N 2, 220-224.
[4] Fushchych W.I. and Nikitin A.G., New symmetries of Maxwell equations, Gzech. J. Phys. B., 1982, V.32, N 4, 476-480.
[5] Fushchych W.I. and Tsyfra I.M., On symmetry of the nonlinear electrodynamics equations, Theor. and Math. Phys., 1985, V.64, N 1, 41-50.
[6] Fushchych W., Tsyfra I. and Boyko V., Nonlinear Representations for Poincaré and Galilei algebras and nonlinear equations for electromagnetic fields, J. Nonlin. Math. Phys. V.1, N 2, 210-221.
[7] Zhdanov R.Z., Smalij V.F. and Lahno V.I., Poincaré-invariant Ansätze for the Maxwell field, Proc. Ukr. Acad. Sci., Ser. A, 1990, N 4, 5-7.
[8] Zhdanov R.Z., Revenko I.V. and Smalij V.F., Reduction and exact solutions of the vacuum Maxwell equations, Preprint. Institute of Mathematics, 90.19, Kiev, 1990, 32p.
[9] Fushchych W.I. and Nikitin A.G., Symmetry of the Maxwell Equations, Naukova dumka, Kiev, 1983.
[10] Fushchych W.I. and Nikitin A.G., Symmetries of Maxwell's Equations, D. Reidel, Dordrecht, 1987.
[11] Fushchych W.I. and Nikitin A.G., Symmetries of Equations of Quantum Mechanics, Nauka, Moscow, 1990.
[12] Fushchych W.I. and Zhdanov R.Z., Symmetry and exact solutions of nonlinear spinor equations, Phys. Reports, 1989, V.172, N 4, 123-174.
[13] Ovsjannikov L.V., Group Analysis of Differential Equations, Nauka, Mockow, 1978.
[14] Fushchych W.I., Symmetry in the Mathematical Physics Equations, In: Algebraic-Theoretical Studies in Mathematical Physics, Kiev: Institute of Mathematical, 1981, 6-28.
[15] Fushchych W.I., On symmetry and exact solutions of multidimensional nonlinear wave equations, Ukrain. Math. Journ., 1987, V.39, N 1, 116-123.
[16] Fushchych W.I., Barannik L.F. and Barannik A.F., Subgroup Analysis of the Galilei and Poincaré Groups and Reduction of Nonlinear Equations, Naukova Dumka, Kiev, 1991.
[17] Fushchych W.I. and Zhdanov R.Z., Nonlinear Spinor Equations: Symmetry and Exact Solutions, Naukova Dumka, Kiev, 1992.
[18] Lahno V.I. and Smalij V.F., $\tilde{P}(1,3)$-invariant Ansätze for the Maxwell field, Proc. NAS of Ukraine, 1996, N 12, 49-54.

