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Abstract

By starting from known graded Lie algebras, including Virasoro algebras, new kinds
of time-dependent evolution equations are found possessing graded symmetry alge-
bras. The modified KP equations are taken as an illustrative example: new modified
KP equations with m arbitrary time-dependent coefficients are obtained possessing
symmetries involving m arbitrary functions of time. A particular graded symmetry
algebra for the modified KP equations is derived in this connection homomorphic to
the Virasoro algebras.

1 Introduction

Symmetries are one of the important and currently active areas in soliton theory. They
are closely connected with the integrability of corresponding nonlinear equations. For a
given evolution equation

ut = K(t, x, u)
(

u = u(t, x), ut ≡
∂u

∂t

)
, (1.1)

a vector field σ(t, x, u) is called its symmetry (or generalized symmetry) if σ(t, x, u) satisfies
its linearized equation

dσ(t, x, u)
dt

= K ′[σ] or
∂σ(t, x, u)

∂t
= [K, σ], (1.2)

where the prime means the Gateaux derivative:

K ′[σ] =
∂

∂ε

∣∣∣∣
ε=0

K(u + εσ) (1.3)
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and the Lie product [·, ·] is defined by

[K, σ] = K ′[σ]− σ′[K] =
∂

∂ε

∣∣∣∣
ε=0

K(u + εσ)− ∂

∂ε

∣∣∣∣
ε=0

σ(u + εK). (1.4)

Actually, the symmetries defined above are infinitesimal generators of one-parameter
groups of invariant transformations of ut = K(t, x, u). If a vector field σ does not de-
pend on the time variable t, the condition of σ being a symmetry of (1.1) becomes a
very simple equality, namely [K, σ] = 0, which means that a symmetry σ only needs to
commute with the vector field K generating the considered equation. However if the σ
depends on t, then the problem is not so simple. Some specific methods for dealing with
this case were introduced, for example, in [1] – [4].

Note that the above definition of symmetry may also be viewed as

[ut −K(t, x, u), σ(t, x, u)] = 0, (1.5)

where the Lie product should be understood as the one in the extended vector field Lie
algebra including the time variable t, not just including the space variable x, as in [5]. A
Lie homomorphism exp(adT ) of the vector field Lie algebra with a suitable vector field
T = T (t, x, u) may be applied to the discussion of the integrability of time-dependent
evolution equations. Here adT denotes the adjoint map of the vector field T and thus we
have

(adT )S = [T, S] for any vector field S = S(t, x, u).

Fuchssteiner observed [6] that if the Lie homomorphism exp(adT ) acts on (1.5), a new and
significant result may be reached which states that a new evolution equation

ut = exp(adT )K +
∞∑
i=0

(adT )i

(i + 1)!
∂tT (1.6)

has a symmetry exp(adT )σ(t, x, u), when σ(t, x, u) is a symmetry of ut = K(t, x, u). This
is because we have

exp(adT )[ut −K(t, x, u), σ(t, x, u)] = [exp(adT )(ut −K(t, x, u)), exp(adT )σ(t, x, u)]

and

exp(adT )(ut) = ut −
∞∑
i=0

(adT )i

(i + 1)!
∂tT.

Here we require, of course, that the relevant series converge.
The present paper aims at the construction of time-dependent evolution equations

which possess graded symmetry algebras and most particularly centerless Virasoro alge-
bras. The basic tools we will adopt in this paper are the above observation by Fuchssteiner
[6] and the Lax operator algebra method in [7]. The result of the analysis gives rise to var-
ious concrete realizations of graded Lie algebras. As an illustrative example, two graded
Lie algebras are presented for the modified KP equations. Moreover, an application of our
result for constructing evolution equations with arbitrary time varying coefficients and a
graded symmetry algebra involving these arbitrary coefficients is given for the modified
KP equations. Some concluding remarks are given in the last section.
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2 Variable-coefficient equations from Virasoro algebras

We take the centerless Virasoro algebra:
[Kl1 ,Kl2 ] = 0,

[Kl1 , ρl2 ] = (l1 + γ)Kl1+l2 ,

[ρl1 , ρl2 ] = (l1 − l2)ρl1+l2 ,

(2.1)

in which the vector fields Kl, ρl do not depend explicitly on the time variable t and the
γ is a fixed constant. Note that here the space variable x may belong to IRp or Zp and
u(x, t) may belong to IRq generally. If we define an operator Φ as

ΦKl = Kl+1, Φσl = σl+1, (2.2)

in which σl is a symmetry of ut = Kl, then this operator Φ is hereditary over the above
Virasoro algebra, i.e., it is to satisfy the equality

Φ2[K, S] + [ΦK, ΦS]− Φ{[ΦK, S] + [K, ΦS]} = 0 (2.3)

for any vector fields K, S belonging to that Virasoro algebra (see [8] for example).
We first consider equation

ut = α1(t)Ki1 (2.4)

with α1(t) an arbitrary function of time. Choose a key vector field as

T1 = β1(t)Ki1 , where
∂

∂t
β1(t) = α1(t). (2.5)

Then we have

exp(adT1)(ut) = ut + [T1, ut] = ut − α1(t)Ki1

so that an application of exp(adT1) to the zero equation ut = 0 yields equation (2.4)
considered. Since any vector field which does not depend explicitly on t is a symmetry of
ut = 0, we have, in particular, the symmetries Kl, ρl. Further by applying exp(adT1) to
these symmetries, we obtain two hierarchies of symmetries of (2.4)

exp(adT1)Kl = Kl, (2.6)

σl,i1 = exp(adT1)ρl = ρl + [T1, ρl] = β1(t)[Ki1 , ρl] + ρl = β1(t)(i1 + γ)Ki1+l + ρl,(2.7)

which also constitute the same Virasoro algebra as (2.1). Of course, we might gener-
ate other symmetries of (2.4) from any vector field ρ = ρ(x, u) which causes the series
exp(adT1)ρ to converge. Here we give only two sorts of such symmetries, because any
other symmetries, just based on Virasoro algebras, are not at all clear as symmetries.

We next consider the more general equation

ut = α1(t)Ki1 + α2(t)Ki2 (2.8)

with two arbitrary functions of time α1(t), α2(t). We choose a key vector field

T2 = β2(t)Ki2 , where
∂

∂t
β2(t) = α2(t). (2.9)
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Now we find that an application of exp(adT2) to the evolution equation (2.4) and its
symmetries Kl, σl,i1 yields the considered equation (2.8), together with its following sym-
metries:

exp(adT2)Kl = Kl, (2.10)

σl,i1i2 = exp(adT2)σl,i1 = exp(adT2)[β2(t)(i2 + γ)Ki2+l] + β2(t)(i2 + γ)Ki2+lρl

= β1(t)(i1 + γ)Ki1+l + β2(t)(i2 + γ)Ki2+l + ρl,
(2.11)

which still constitute the same Virasoro algebra as (2.1).
In general, we can obtain the variable-coefficient evolution equation

ut = α1(t)Ki1 + α2(t)Ki2 + · · ·+ αm(t)Kim (2.12)

with m given arbitrary time-dependent functions αj(t), 1 ≤ j ≤ m, and its two hierarchies
of symmetries

exp(adTm) · · · exp(adT1)Kl = Kl, (2.13)

σl,i1···im = exp(adTm)σl,i1···im−1 = · · · = exp(adTm) · · · exp(adT1)ρl

=
m∑

j=0

βj(t)(ij + γ)Kij+l + ρl,
(2.14)

where Tj = βj(t)Kij ,
∂

∂t
βj(t) = αj(t), 1 ≤ j ≤ m. The symmetries so obtained constitute

a Virasoro algebra with the same commutation relations as (2.1):
[Kl1 ,Kl2 ] = 0,

[Kl1 , σl2,i1···im ] = (l1 + γ)Kl1+l2 ,

[σl1,i1···im , σl2,i1···im ] = (l1 − l2)σl1+l2,i1···im .

(2.15)

This may also be directly checked. For example, we can calculate that

[σl1,i1···im , σl2,i1···im ] =

 m∑
j=0

βj(t)(ij + γ)Kij+l1 + ρl1 ,
m∑

j=0

βj(t)(ij + γ)Kij+l2 + ρl2


=

 m∑
j=0

βj(t)(ij + γ)Kij+l1 , ρl2

+

ρl1 ,
m∑

j=0

βj(t)(ij + γ)Kij+l2

+ [ρl1 , ρl2 ]

= (l1 − l2)
m∑

j=0

βj(t)(ij + γ)Kij+l1+l2 + (l1 − l2)ρl1+l2 = (l1 − l2)σl1+l2,i1···im .

Note that the symmetries Kl are generally time-independent, while at the same time, the
symmetries σl,i1···im include m given arbitrary functions of time and so are time-dependent
in the same way as our considered equation (2.12). The symmetries σl,i1···im contain the
generators of Galilean invariance and invariance under scale transformations [9], [10]. On
the other hand, the symmetry algebra (2.15) provides a new explicit realization of the
original Virasoro algebra (2.1). We can still take the Virasoro algebra (2.15) to be a
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starting algebra. However, any new result is really no more than that we have already
reached.

If we choose αi(t), 1 ≤ i ≤ m, to be polynomials in time, then the evolution equation
(2.12) and its symmetries (2.14) are of the polynomial-in-time type (see [11]). Therefore,
we may see that there exist higher-degree polynomial-in-time dependent symmetries for
many evolution equations in 1 + 1 dimensions. This is itself an interesting result in the
symmetry theory of evolution equations, because a soliton equation in 1 + 1 dimensions
usually has only master symmetries of the first order (the reader is referred to [2] for
a definition of master symmetry). Furthermore, our derivation does not refer to any
particular choices of dimensions and space variables. Hence, the evolution equation (2.12)
may be not only both continuous (x ∈ IRp) and discrete (x ∈ Zp), but also both 1 + 1
(p = 1) and higher dimensional (p > 1).

It is well known that there are many integrable equations which possess a centerless
Virasoro algebra (2.1) (see [12] – [17] for example). Among the most famous examples are
the KdV hierarchy in the continuous case and the Toda lattice hierarchy in the discrete
case. According to the result above, we can say that a KdV-type equation

ut = tn1K0 + tn2K1 = tn1ux + tn2(uxxx + 6uux) (n1, n2 ∈ Z/{−1}) (2.16)

possesses a hierarchy of time-dependent symmetries

σl,01 =
tn1+1

2(n1 + 1)
Kl +

3tn2+1

2(n2 + 1)
Kl+1 + ρl. (2.17)

Here, the vector fields Kl, σl, are defined by

Kl = Φlux, ρl = Φl
(

u +
1
2
xux

)
, l ≥ 0,

in which the Φ is a well-known hereditary operator

Φ = ∂2
x + 4u + 2ux∂−1

x .

They constitute a centerless Virasoro algebra (2.1) with γ = 1
2 [15], [18] and thus so do

the symmetries Kl, σl,01. The symmetries σl,01 are of the polynomial-in-time type when
n1 ≥ 0 and n2 ≥ 0, and they are of the Laurent polynomial-in-time type when n1 ≤ −2
or n2 ≤ −2. The latter is worthy of notice, since a time-independent evolution equation
does not have such symmetries [4].

We can also conclude that a Toda-type lattice equation

(u(n))t =

(
p(n)
v(n)

)
t

= K0 + tn1K1 + tn2K0 (n1, n2 ∈ Z/{−1})

= (1 + tn2)

(
v(n)− v(n− 1)

v(n)(p(n)− p(n− 1))

)

+tn1

(
p(n)(v(n)− v(n− 1)) + v(n)(p(n + 1)− p(n− 1))

v(n)(v(n− 1)− v(n + 1)) + v(n)(p(n)2 − p(n− 1)2)

) (2.18)

possesses a hierarchy of time-dependent symmetries

σl,010 = tKl +
tn1+1

n1 + 1
Kl+1 +

tn2+1

n2 + 1
Kl + ρl. (2.19)
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Here, the vector fields Kl, ρl are defined by

Kl = ΦlK0, ρl = Φlρ0, K0 =

(
v − v(1)

v(p− p(−1))

)
, ρ0 =

(
p

2v

)
, l ≥ 0,

in which the hereditary operator Φ is given by

Φ =

(
p (v(1)E2 − v)(E − 1)−1v−1

v(E−1 + 1) v(pE − p(−1))(E − 1)−1v−1

)
.

Here, we have used a normal shift operator E: (Eu)(n) = u(n+1) and u(m) = Emu, m ∈ Z.
These discrete vector fields Kl together with the discrete vector fields ρl constitute a
centerless Virasoro algebra (2.1) with γ = 1 [13] and, thus, the symmetry Lie algebra
consisting of Kl and σl,010 has the same commutation relations as that Virasoro algebra.

3 Variable-coefficient equations from general graded alge-
bras

In this section, we consider more general algebraic structures by starting from a general
graded Lie algebra. In keeping with the notation in [7], let us write a graded Lie algebra
consisting of vector fields not depending explicitly on the time variable t as follows:

E(R) =
∞∑
i=0

E(Ri), [E(Ri), E(Rj)] v E(Ri+j−1), i, j ≥ 0, (3.1)

where E(R−1) = 0 and the Lie product [·, ·] is defined by (1.4). Note that such a graded
Lie algebra is called a master Lie algebra in [7] since it is actually similar to a semi-graded
Lie algebra under the group < Z, ∗ > with i ∗ j = i + j − 1, but not a graded Lie algebra
as defined in [19]. It itself looks like a W1+∞ algebra and includes a Virasoro algebra

E(R0)+E(R1) and a W∞ type algebra
∞∑
i=1

E(Ri) as subalgebras. The W∞ and W1+∞ type

algebras broadly appear in conformal field theory and in 2-dimensional quantum gravity
[20], [21]. However, here we focus on applications to symmetries of variable-coefficient
evolution equations.

Consider a variable-coefficient evolution equation

ut = α1(t)K1 + α2(t)K2 + · · ·+ αm(t)Km, (3.2)

with m given arbitrary time-dependent functions αj(t), 1 ≤ j ≤ m. As in Section 2, we
can first choose a key vector field to be

T1 = β1(t)K1, where
∂

∂t
β1(t) = α1(t). (3.3)

We then observe that the application of exp(adT1) to the zero equation ut = 0 and its
symmetries ρl, ρl ∈ E(Rl) yields the evolution equation ut = α1(t)Ki1 and its symmetries

σ1(ρl) = exp(adT1)ρl =
l∑

j=0

βj
1

j!
(adK1)

jρl. (3.4)
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Note that the series exp(adT1)ρl is truncated at the l + 1-th term. These symmetries also
constitute the same graded Lie algebra as (3.1). We next choose a vector field

T2 = β2(t)K2, where
∂

∂t
β2(t) = α2(t). (3.5)

and make an application of exp(adT2) to ut = α1(t)K1 and its symmetries σ1(ρl). In this
way, we obtain the following evolution equation

ut = α1(t)K1 + α2(t)K2

and its symmetries

σ12(ρl) = exp(adT2)σ1(ρl) =
∑

0≤j1+j2≤l

βj1
1 βj2

2

j1!j2!
(adK1)

j1(adK2)
j2ρl. (3.6)

Note that here we interchanged the position of (adK1)
j1 and (adK2)

j2 , because we have

[K1, [K2, ρl]] = [K2, [K1, ρl]].

In general, we can obtain the variable-coefficient evolution equation (3.2) and its following
symmetries

σ1···m(ρl) = exp(adTm)σ1···m−1(ρl) = · · · = exp(adTm) · · · exp(adT1)ρl

=
∑

0≤ji+···+jm≤l

βj1
1 · · ·βjm

m

j1! · · · jm!
(adK1)

j1 · · · (adKm)jmρl,
(3.7)

where
∂

∂t
βj(t) = αj(t), 1 ≤ j ≤ m. These symmetries still constitute a graded Lie algebra

as at (3.1), that is, we have

[σ1···m(ρl1), σ1···m(ρl2)] = σ1···m([ρl1 , ρl2 ]), ρl1 ∈ E(Rl1), ρl2 ∈ E(Rl2). (3.8)

Therefore, the map

σ1···m : E(R) → σ1···m(E(R)), ρl 7→ σ1···m(ρl), ρl ∈ E(Rl), (3.9)

is a Lie homomorphism between the graded Lie algebra (3.1) and the graded symmetry
algebra

σ1···m(E(R)) =
∞∑

j=0

σ1···m(E(Rj)). (3.10)

Of course, we may also directly prove the Lie homomorphism property (3.8). We use
mathematical induction to prove the required result. The proof is the following:

[σ1···m(ρl1), σ1···m(ρl2)] =

[ ∑
0≤j1+···+jm≤l1

βj1
1 · · ·βjm

m

j1! · · · jm!
(adK1)

j1 · · · (adKm)jmρl1 ,

∑
0≤j′1+···+j′m≤l2

β
j′1
1 · · ·βj′m

m

j′1! · · · j′m!
(adK1)

j′1 · · · (adKm)j′mρl2

]
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=
[ l1∑
jm=0

βjm
m

jm!
(adKm)jmσ1···m−1(ρl1),

l2∑
j′m

β
j′m
m

j′m!
(adKm)j′mσ1···m−1(ρl2)

]

=
l1∑

jm=0

l2∑
j′m=0

β
jm+j′m
m

jm!j′m!

[
(adKm)jmσ1···m−1(ρl1), (adKm)j′mσ1···m−1(ρl2)

]

=
l1+l2−1∑
j′′m=0

β
j′′m
m

j′′m!

∑
jm+j′m=j′′m

j′′m!
jm!j′m!

[
(adKm)jmσ1···m−1(ρl1), (adKm)j′mσ1···m−1(ρl2)

]

=
l1+l2−1∑
j′′m=0

β
j′′m
m

j′′m!
(adKm)j′′m

[
σ1···m−1(ρl1), σ1···m−1(ρl2)

]

=
l1+l2−1∑
j′′m=0

β
j′′m
m

j′′m!
(adKm)j′′mσ1···m−1([ρl1 , ρl2 ])

= σ1···m([ρl1 , ρl2 ]).

Here, in the last but one step, we have used the induction assumption. Generally, the
symmetries σ1···m(ρl) are time-independent when l = 0 and time-dependent when l ≥ 1.

A graded Lie algebra has been exhibited for the time-independent KP hierarchy [1]
in [2], [7], which includes a centerless Virasoro algebra [14], [22]. Therefore, we may
also generate the corresponding graded Lie algebra of time-dependent symmetries for a
resulting new set of variable-coefficient KP equations, and this is done in our paper [11]. In
the next section, we shall go on to construct another graded Lie algebra, which is related
to the modified KP hierarchy.

4 Application to modified KP equations

We first obtain a graded symmetry Lie algebra for modified KP equations and then give
an application of the theory presented in the last section to the symmetries of modified
KP equations. Let us consider the 2 + 1 dimensional spectral operator L corresponding
to the modified KP hierarchy:

L = ∂2
x + u∂x + ∂y, u = u(t, x, y), t, x, y ∈ IR. (4.1)

Evidently, its Gateaux derivative operator reads as L′[X] = X∂x, and, thus, is injective,
i.e., if L′[X1] = L′[X2], then X1 = X2.

Choose the following polynomial differential operators in ∂x

A =
m∑

k=1

ak∂
k
x , ak = ak(x, y, u), m ≥ 1 (4.2)

as candidates for Lax operators [7]. Then we may make the following calculation

AL =
m∑

k=1

ak∂
k
x(∂2

x + u∂x + ∂y)

=
m∑

k=1

ak∂
k+2
x +

m∑
k=1

ak

k∑
i=0

(
k

i

)
(∂k−i

x u)∂i+1
x +

m∑
k=1

ak∂
k
x∂y
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=
m∑

k=1

ak∂
k+2
x +

m∑
k=1

ak(∂k
xu)∂x +

m∑
k=1

ak

k∑
i=1

(
k

i

)
(∂k−i

x u)∂i+1
x +

m∑
k=1

ak∂
k
x∂y

=
m∑

k=1

ak∂
k+2
x +

m∑
k=1

ak(∂k
xu)∂x +

m∑
i=1

m∑
k=i

(
k

i

)
ak(∂k−i

x u)∂i+1
x +

m∑
k=1

ak∂
k
x∂y

=
m∑

k=1

ak∂
k+2
x +

m∑
k=1

ak(∂k
xu)∂x +

m∑
k=1

m∑
i=k

(
i

k

)
ai(∂i−k

x u)∂k+1
x +

m∑
k=1

ak∂
k
x∂y,

LA = (∂2
x + u∂x + ∂y)

m∑
k=1

ak∂
k
x =

m∑
k=1

(akxx∂k
x + 2akx∂k+1

x + ak∂
k+2
x )

+
m∑

k=1

(uakx∂k
x + uak∂

k+1
x ) +

m∑
k=1

(aky∂
k
x + ak∂

k
x∂y).

Here the coefficient
(k

i

)
denotes the standard binomial coefficient, i.e.,

(
k

i

)
=

k!
i!(k − i)!

.

Further we have

[A,L] = AL− LA

=
m∑

k=1

ak(∂k
xu)∂x +

m∑
k=1

m∑
i=k

(
i

k

)
ai(∂i−k

x u)∂k+1
x

−
m∑

k=1

(akxx + uakx + aky)∂k
x −

m∑
k=1

(2akx + uak)∂k+1
x

=
m∑

k=1

ak(∂k
xu)∂x +

m−1∑
k=1

m∑
i=k+1

(
i

k

)
ai(∂i−k

x u)∂k+1
x

−
m∑

k=1

(akxx + uakx + aky)∂k
x −

m∑
k=1

2akx∂k+1
x .

(4.3)

Now we can see that the differential operator A of form (4.2) is a Lax operator, i.e., there
exists a vector field X such that [A,L] = L′[X] = X∂x if and only if the ak, 1 ≤ k ≤ m,
satisfy the following equations

amx = 0,

m∑
i=k

(
i

k − 1

)
ai(∂i−k+1

x u)− (akxx + uakx + aky + 2ak−1,x) = 0,

k = m,m− 1, · · · , 2;

(4.4)

and the vector field X must be the following,

X =
m∑

k=1

ak(∂k
xu)− (a1xx + ua1x + a1y). (4.5)

This vector field is called an eigenvector field corresponding to the Lax operator A of (4.2).
We denote by W the following space:

W =

f + g| f =
∑

i,j≥0

cijx
iyj , cij ∈ C, g =

∑
i,j,l≥0, k∈Z

cijklx
iyj∂k

x∂l
yu, cijkl ∈ C

 , (4.6)
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in which ∂−1
x = 1

2(
∫ x
−∞−

∫∞
x ) dx′, and we introduce the inverse operator ∂−1

x of ∂x over
the space W as follows, namely

∂−1
x h = ∂−1

x (f + g) =
∫ x

0
f dx′ +

1
2

(∫ x

−∞
−
∫ ∞

x

)
g dx′, h = f + g ∈ W. (4.7)

Furthermore suppose that C[y] denotes all polynomials in y, and Cn[y] (n ≥ 0), all poly-
nomials in y with degrees no greater than n. Define a group of coefficients as follows

ak = ak1 + ak2, ak1 = ak|u=0, ak2 = ak − ak1, 1 ≤ k ≤ m, (4.8)

where the aki are given recursively (from m to 1) by

am1 = cm, am2 = 0;

ak−1,1 = −1
2(∂x + ∂−1

x ∂y)ak1 + ck−1,

ak−1,2 = −1
2
(∂x + ∂−1

x ∂y)ak2 −
1
2
∂−1

x (uakx) +
1
2
∂−1

x

m∑
i=k

(
i

k − 1

)
ai(∂i−k+1

x u),

k = m,m− 1, · · · 2,

(4.9)

where ck ∈ C[y], 1 ≤ k ≤ m. Obviously we see that ak = ak1 + ak2 ∈ W, 1 ≤ k ≤ m.
For every set of ck ∈ C[y], 1 ≤ k ≤ m, we can uniquely determine a Lax operator

A =
m∑

k=1
ak∂

k
x =

m∑
k=1

(ak1 + ak2)∂k
x through (4.9), which operator is also written as A =

P (c1, · · · , cm) in order to show the set of ck. We denote by R and Ri the following spaces
of Lax operators

R = {A = P (c1, · · · , cm)|m ≥ 1, ck ∈ C[y], 1 ≤ k ≤ m}, (4.10)
Ri = {A = P (c1, · · · , cm)|m ≥ 1, ck ∈ Ci[y], 1 ≤ k ≤ m}, i ≥ 0. (4.11)

In what follows, we want to prove that R =
∞∑
i=0

Ri is a graded Lie algebra, namely to

prove under the operation

[[A,B]] = A′[Y ]−B′[X] + [A,B], (4.12)

where [A,L] = L′[X], [B,L] = L′[Y ], that we have

[[Ri, Rj ]] v Ri+j−1, R−1 = 0, i, j ≥ 0. (4.13)

We recall that we already have a product property [7]

[[[A,B]], L] = L′[ [X, Y ] ], (4.14)

which will be used to derive a graded symmetry algebra later on. First by (4.9), we
immediately obtain the following two basic results.

Lemma 1 Let A = P (c1, · · · , cm) =
m∑

k=1
ak∂

k
x ∈ R, and set

ak3 = ak1 − ck = ak|u=0 − ck, 1 ≤ k ≤ m. (4.15)

Then we have (1) A is multilinear with respect to c1, · · · , cm; (2) A|u=0 =
m∑

k=1
(ck +ak3)∂k

x ;

(3) if A|u=0 = 0, then A = 0.
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Lemma 2 Let A = P (c1, · · · , cm) =
m∑

k=1
ak∂

k
x ∈ Ri and the ak3 be defined by (4.15). Then

when i = 0, ak3 = 0, 1 ≤ k ≤ m; and when i ≥ 1, am3 = 0 and ak3, 1 ≤ k ≤ m − 1, are
polynomials in x, y with degrees less than i with respect to y.

In order to verify that R =
∞∑
i=0

Ri is a graded Lie algebra under operation (4.12), we

go on to derive two other results.

Lemma 3 If A ∈ R0, then [A,L]|u=0 = X|u=0∂x = 0; and if A ∈ Ri (i ≥ 1), then the
coefficient of the differential operator [A,L]|u=0 is a polynomial in x, y with degrees less
than i with respect to y.

Proof: Assume that

A = P (c1, · · · , cm) =
m∑

k=1

ak∂
k
x .

By noting (4.5), we discover that

[A,L]|u=0 = X|u=0∂x = −(a1xx + ua1x + a1y)|u=0∂x

= −(a11xx + a11y)∂x = −[a13xx + (a13 + c1)y]∂x,

where a13 is defined by (4.15). Therefore, the required result follows from Lemma 2, which
completes the proof.

Lemma 4 If A,B ∈ R0, then [A,B]|u=0 = 0; and if A ∈ Ri, B ∈ Rj (i, j ≥ 0, i + j ≥ 1),
then the coefficients of the differential operator [A,B]|u=0 are polynomials in x, y with
degrees less than i + j with respect to y.

Proof: Suppose that

A = P (c1, · · · , cm) =
m∑

k=1

ak∂
k
x , B = P (d1, · · · , dn) =

n∑
l=1

bl∂
l
x.

Then we have

A|u=0 =
m∑

k=1

(ak3 + ck)∂k
x =

m−1∑
k=1

ak3∂
k
x +

m∑
k=1

ck∂
k
x , (4.16)

B|u=0 =
n∑

l=1

(bl3 + dl)∂l
x =

n−1∑
l=1

bl3∂
l
x +

n∑
l=1

dl∂
l
x, (4.17)

where ak3 = ak|u=0 − ck, 1 ≤ k ≤ m, bl3 = bl|u=0 − dl, 1 ≤ l ≤ n. Then we can calculate
that

[A,B]|u=0 = [A|u=0, B|u=0] =

[
m−1∑
k=1

ak3∂
k
x +

m∑
k=1

ck∂
k
x ,

n−1∑
l=1

bl3∂
l
x +

n∑
l=1

dl∂
l
x

]

=

[
m−1∑
k=1

ak3∂
k
x ,

n−1∑
l=1

bl3∂
l
x

]
+

[
m−1∑
k=1

ak3∂
k
x ,

n∑
l=1

dl∂
l
x

]
+

[
m∑

k=1

ck∂
k
x ,

n−1∑
l=1

bl3∂
l
x

]
.

(4.18)

Based upon this equality, we obtain by Lemma 2 the required result.
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Theorem 1 Let R, Ri, i ≥ 0, be determined by (4.10),(4.11), respectively. Then the Lax

operator algebra R =
∞∑
i=0

Ri forms a graded Lie algebra under the operation [[·, ·]] defined

by (4.12) and thus the eigenvector field algebra E(R) =
∞∑
i=0

E(Ri) forms the same graded

Lie algebra under the operation [·, ·] defined by (1.4), where

E(R) =
{
X|L′[X] = [A,L], A ∈ R

}
,

E(Ri) =
{
X|L′[X] = [A,L], A ∈ Ri

}
, i ≥ 0.

(4.19)

Proof: We first prove equality (4.13), that is,

[[Ri, Rj ]] v Ri+j−1, R−1 = 0, i, j ≥ 0,

which shows that R =
∞∑
i=0

Ri is a graded Lie algebra. Let A ∈ Ri, B ∈ Rj (i, j ≥ 0) and

X ∈ E(Ri), Y ∈ E(Rj) be the eigenvector fields of A,B, respectively, namely [A,L] =
L′[X] = X∂x, [B,L] = L′[Y ] = Y ∂x. Obviously we have

[[A,B]] = A′[Y ]−B′[X] + [A,B] ∈ R,

i.e., [[A,B]] possesses form (4.2), and thus we may assume that

[[A,B]] =
s∑

r=1

er∂
r
x = P (f1, · · · , fs).

We observe that

[[A,B]]|u=0 = (A′[Y ]−B′[X] + [A,B])|u=0

= A′[Y |u=0]|u=0 −B′[X|u=0]|u=0 + [A,B]|u=0.
(4.20)

When i+ j = 0, i.e., i = j = 0, it follows from the above equality, Lemma 3 and Lemma 4
that [[A,B]]|u=0 = 0. Thus by Lemma 1, we obtain [[A,B]] = 0, i.e. [[A,B]] ∈ R−1. Now we
assume that i + j ≥ 1. Note that A′[Y |u=0]|u=0 and B′[X|u=0]|u=0 are linear with Y |u=0

and X|u=0, respectively. It follows similarly from (4.20), Lemma 3 and Lemma 4 that the
coefficients of the differential operator [[A,B]]|u=0 are polynomials in x, y with degrees less
than i + j with respect to y. It means by Lemma 1 that er|u=0 = er3 + fr, 1 ≤ r ≤ s,
are polynomials in x, y with degrees less than i + j with respect to y. On the other hand,
by Lemma 2, the degree of er3 = er|u=0 − fr with respect to y is less than the maximum
degree of the fl, 1 ≤ l ≤ s, with respect to y. Therefore, fr ∈ Ci+j−1[y], 1 ≤ r ≤ s, which
means that [[A,B]] ∈ Ri+j−1. In conclusion, we see that relation (4.13) holds.

The second result of the theorem is obvious, since we have (4.14), i.e., [[[A,B]], L] =
[X, Y ]∂x when [A,L] = X∂x and [B,L] = Y ∂x. Therefore, the proof is complete.

By noting (4.16), (4.17) and (4.18), we may obtain from (4.20) that

[[P (c1, · · · , cm), P (d1, · · · , cn)]] = P

(
f1, · · · , fm+n−3,

n

2
cmydn −

m

2
cmdny

)
, (4.21)
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where P (c1, · · · , cm) =
m∑

k=1
ak∂

k
x =

m∑
k=1

(ak1 + ak2)∂k
x , the ak1 and the ak2 being defined by

(4.9). However, it is very complicated to obtain the explicit expressions for polynomials
fi. It follows from (4.21) that[

σ{m}(f), σ{n}(g)
]

= σ{m+n−2}
(

n

2
fyg −

m

2
fgy

)
, m, n ≥ 1,

where σ{0}(f) = 0, is a Lie product. The special case of m = n = 2 leads to an interesting
Virasoro-type Lie algebra[

σ{2}(f), σ{2}(g)
]

= σ{2}(fyg − fgy).

Now let us choose the specific Lax operators. If we choose these as

Am = P (0, · · · , 0︸ ︷︷ ︸
m

, 1) =
m+1∑
k=1

a
{m}
k ∂k

x , m ≥ 0, (4.22)

Bin = P (0, · · · , 0︸ ︷︷ ︸
n

, yi) =
n+1∑
l=1

b
{in}
l ∂l

x, i ≥ 1, n ≥ 0, (4.23)

then the corresponding eigenvector fields read as

Xm = [Am, L]∂−1
x =

m+1∑
k=1

a
{m}
k (∂k

xu)−
(
a
{m}
1xx + ua

{m}
1x + a

{m}
1y

)
, m ≥ 0, (4.24)

Yin = [Bin, L]∂−1
x =

n+1∑
l=1

b
{in}
l (∂l

xu)−
(
b
{in}
1xx + ub

{in}
1x + b

{in}
1y

)
, i ≥ 1, n ≥ 0. (4.25)

By Lemma 1, we see that

R0 = Span{Am|m ≥ 0}, Ri = Span{Bjn|n ≥ 0, 0 ≤ j ≤ i}, i ≥ 1; (4.26)

E(R0) = Span{Xm|m ≥ 0}, E(Ri) = Span{Yjn|n ≥ 0, 0 ≤ j ≤ i}, i ≥ 1.(4.27)

The equations ut = Xm, m ≥ 0, constitute the integrable modified KP hierarchy. By
Theorem 1, this modified KP hierarchy has two Virasoro algebras

< R0 + R1, [[·, ·]] > and < E(R0) + E(R1), [·, ·] > (4.28)

and two graded Lie algebras

< R =
∞∑
i=0

Ri, [[·, ·]] > and < E(R) =
∞∑
i=0

E(Ri), [·, ·] > . (4.29)

In particular, the equation ut = X2 is exactly the normal modified KP equation introduced
in [23] (see (4.35) below) and the space E(R1) includes all the master symmetries presented
in [24].
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Through Theorem 1, we find at once that every modified KP equation ut = Xi (i ≥
0), Xi given by (4.24), possesses a hierarchy of common time-independent symmetries
{Xm}∞m=0 and infinitely many hierarchies of polynomial-in-time dependent symmetriesσi(Ykn) =

k∑
j=0

tj

j!
(adXi)

jYkn


∞

n=0

, k ≥ 1. (4.30)

Further by applying the theory presented in the last section , we obtain the following
consequence. A modified KP equation with m given arbitrary functions αi(t), 1 ≤ i ≤ m,

ut = α1(t)Xi1 + α2(t)Xi2 + · · ·+ αm(t)Xim (4.31)

has a graded symmetry algebra

< σi1i2···im(E(R)) =
∞∑
i=0

σi1i2···im(E(Ri)), [·, ·] > . (4.32)

The map σi1i2···im is defined by

σi1i2···im(ρi) = exp(adXi1
) · · · exp(adXim

)ρi

=
∑

0≤j1+j2+···+jm≤i

βj1
1 βj2

2 · · ·βjm
m

j1!j2! · · · jm!
(adXi1

)j1(adXi2
)j2 · · · (adXim

)jmρi, ρi ∈ E(Ri),
(4.33)

where ∂
∂tβj(t) = αj(t), 1 ≤ j ≤ m. Moreover, this map is a Lie algebra homomorphism

between the graded vector field algebra defined in (4.29) and the graded symmetry algebra
defined by (4.32). In other words, we have

[σi1i2···im(Xm1), σi1i2···im(Xm2)] = 0,

[σi1i2···im(Xm1), σi1i2···im(Yj1n1)] = σi1i2···im([Xm1 , Yj1n1 ]),

[σi1i2···im(Yj1n1), σi1i2···im(Yj2n2)] = σi1i2···im([Yj1n1 , Yj2n2 ]).

(4.34)

The symmetries σi1i2···im(Yin) contain m given arbitrary functions of time and thus the
polynomial-in-time symmetries (4.30) generated by the master symmetries Ykn are no
more than special cases amongst these.

Some concrete examples of the Lax operators A, B and the corresponding eigenvector
fields X, Y are listed in the following:-
(i) The Lax operators and vector fields of the modified KP equations:

A0 = P (1) = ∂x, X0 = ux;

A1 = P (0, 1) = ∂2
x + u∂x, X1 = −uy;

A2 = P (0, 0, 1) =
3∑

k=1

a
{2}
k ∂k

x = ∂3
x +

3
2
u∂2

x +
(

3
8
u2 +

3
4
ux −

3
4
∂−1

x uy

)
∂x,

X2 =
3∑

k=1

a
{2}
k (∂k

xu)− (a{2}1xx + ua
{2}
1x + a

{2}
1y )

=
1
4
uxxx −

3
8
u2ux −

3
4
ux∂−1

x uy +
3
4
∂−1

x uyy.

(4.35)
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(ii) The Lax operators and i-th master symmetries of the modified KP equations:

Bi0 = P (yi) = yi∂x = yiA0, Yi0 = yiux − iyi−1 = yiX0 − iyi−1;

Bi1 =
2∑

l=1

b
{i1}
l ∂l

x = yi∂2
x +

(
−1

2
ixyi−1 + yiu

)
∂x = yiA1 −

1
2
ixyi−1A0,

Yi1 =
2∑

l=1

b
{i1}
l (∂l

xu)− (b{i1}1xx + ub
{i1}
1x + b

{i1}
1y )

= −yiuy −
1
2
ixyi−1ux −

1
2
iyi−1u +

1
2
i(i− 1)xyi−2

= yiX1 −
1
2
ixyi−1X0 −

1
2
iyi−1u +

1
2
i(i− 1)xyi−2.

From these, we see that ut = X2 is, indeed, the normal modified KP equation introduced
in [23]. It is also a two-dimensional generalization of the modified KdV equation and may
be connected with the KP equation by a Miura transformation [23].

5 Concluding remarks

A main result is the construction of graded symmetry algebras for a broad class of variable-
coefficient evolution equations with given arbitrary time-dependent functions as coeffi-
cients, starting from known graded Lie algebras, in particular, centerless Virasoro alge-
bras. A Lie homomorphism exp(adT ) of the vector field Lie algebra plays a central role in
the construction of time-dependent symmetries of these equations. On the other hand, a
graded Lax operator algebra and a graded symmetry algebra are presented for the modified
KP hierarchy, in the style of the Lax operator method of [7]. This gives a concrete exam-
ple of graded Lie algebras. Furthermore, the time-dependent symmetries are obtained for
variable-coefficient modified KP equations as an application of our main result.

We point out that coupled systems of soliton equations may be constructed by pertur-
bation [25], [26] and, thus, various new realizations of graded symmetry algebras may be
presented for integrable coupled systems, based upon the theory presented in this paper.
Moreover by applying the perturbation iteratively, we may obtain infinitely many new
realizations of graded Lie algebras, by starting from a known one.

There are also some other symmetries which may be constructed. From the scale
transformations, for example, we may take Ti = xiuxi , x = (xi), as a key vector field. The
application of exp(adTi) to the known particular equations may lead to some important
equations with specific space-dependent coefficients. An interesting remaining problem is
whether or not we can construct integrable evolution equations with given arbitrary space-
dependent functions as coefficients and in what fashion we can construct their symmetries
with space-dependent functions as coefficients if they exist. Of course, we may also ask
whether or not there is any important application of these various equations with variable-
coefficients to physical problems - such as, for example, to applicable conformal field theory.
All of these ideas need further investigation.
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