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Abstract

An inclined periodic soliton solution can be expressed as imbricate series of rational
soliton solutions. A convenient form of the imbrication is given by using the bilin-
ear form. A lattice soliton solution which propagaties in any direction can be also
constructed by doubly imbricating rational solitons.

1 Introduction

The recent development of the nonlinear wave theory clarifies the role of a soliton in
various systems. The inverse scattering theory shows that the time-asymptotic state of
any initial conditions consists of solitons and ripples under the boundary condition that
amplitudes tend to zero as x→±∞. Solitons are stable and the interaction between them
affects only phase shifts [1]. Therefore, solitons are regarded as fundamental structures
in nonlinear integrable systems. Spatial structures of solitons are usually solitary waves
whose amplitudes tend to zero as x→±∞. It is known that soliton equations often allow
an exact nonlinear superposition principle [2]-[8].

Let U(x − cst) be a solitary wave solution of a nonlinear equation which is invariant
under the group of translations, then the function

u(x− ct) =
∞∑

n=−∞
aU(x− ct− nh), (1)

is periodic with a period of h. If this series of solitons is substituted into the equation and
values of the velocity c (usually c 6= cs) and the constant a can be determined in a consistent
way, expression (1) is an exact solution of the given equation. Such a decomposition was
first found by Toda [5] for the case of a cnoidal wave of the Toda lattice and the Korteweg-
de Vries (K-dV) equations. A double cnoidal wave is biperiodic in space, which is regarded
as the superposition of two line solitons of different sizes and is expressed in terms of two-
dimensional Riemann theta functions [3, 4].
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The two-dimensional generalization of the K-dV equation was given by Kadomtsev
and Petviashvili [9] to discuss the stability of a one-dimensional soliton or line soliton
against long transverse perturbation, which is known as the Kadomtsev-Petviashvili (K-
P) equation

(ut + 6uux + uxxx)x + 3 s uyy = 0, s = ±1, (2)

which corresponds to the cases of negative and positive dispersions when s = +1 and
s = −1, respectively. They have shown that the line soliton of the K-dV equation is stable
in the case of negative dispersion and is unstable for positive dispersion. This leads to the
conjecture that localized solitons should be formed in the positive dispersion case since
the line soliton is unstable. Such solitons have been found by Manakov et al. [10] and
Ablowitz and Satsuma [11], which are no longer exponential in character but take the
form of rational functions in space variables. Kuznetsov and Turitsyn [12] have shown
that rational solitons are stable to any infinitesimal disturbances.

Another kind of a two-dimensional localized soliton is a periodic soliton, which was
found by Zaitsev [2] at first. He obtained the x-periodic soliton solution from the imbri-
cation of rational solitons in the x-direction. Periodic soliton solutions which describe the
multisoliton interactions have been obtained by Tajiri and Murakami [13, 14] by using the
bilinear transformation method. The stability of y-periodic and x-periodic solitons has
been discussed by Zhdanov [15], using the inverse scattering transformation method. He
has shown that they are unstable to the transverse disturbances. He also obtained the
solution which describes the nonlinear stage of disturbances of a line soliton propagating
in the x-direction and pointed out that a line soliton decays into a lower amplitude line
soliton and y-periodic solitons. Although a line soliton and a periodic soliton are both lin-
early unstable to long wave disturbances, we can not rule out the possibility of observation
of these solitons.

Interactions between a line soliton and a rational soliton have been investigated by
Johnson and Thompson [16] and Freeman [17]. In the previous papers [14], [18]-[20], the
interactions between two y-periodic solitons, between the y-periodic soliton and the line
soliton and between the y-periodic soliton and the rational soliton were investigated. We
found periodic soliton resonances in each case, which are qualitatively different from the
resonant interactions between line solitons of K-P equation with negative dispersion [21].
These results lead to the conjecture that a close relation exists between the existence of
a periodic soliton resonance and soliton instability. The emission of the periodic soliton
or the rational soliton from the line soliton (periodic soliton) means the instability of
the line soliton (periodic soliton). The absorption of the periodic soliton or the rational
soliton in the line soliton (periodic soliton) corresponds to the resonance of the line soliton
(periodic soliton) with the periodic soliton or the rational soliton. From these facts,
the rational soliton can be regarded as a fundamental constituent together with the line
soliton in unstable systems. Then, it is hoped to show that an inclined periodic soliton is
also constructed by the imbricate series of rational solitons. Recently, the lattice soliton
solution that has doubly a periodic array of the localized structure in the x-y plane was
presented to the K-P equation with positive dispersion from doubly imbricate series of
rational solitons [22]. Unfortunately, this lattice soliton propagates only in the x-direction.
In this paper, it is shown that an inclined periodic soliton solution can be constructed as
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imbricate series of rational solitons. The lattice soliton solution that shows propagation
in arbitrary direction is also obtained.

2 Inclined Periodic Soliton Solutions as Imbricate Series of
Rational Solitons

The inclined periodic solution [13] to equation (2) with s = −1 (positive dispersion) is
given by

u = 2

[
α2 − β2

K
− α2 − β2

√
K

cosh(αx+ γy − Ωrt+ σ) cos(βx+ δy − Ωit+ θ)

−2αβ√
K

sinh(αx+ γy − Ωrt+ σ) sin(βx+ δy − Ωit+ θ)
]

/[
cosh(αx+ γy − Ωrt+ σ)− 1√

K
cos(βx+ δy − Ωit+ θ)

]2
,

(3)

where

Ωr = α3 − 3αβ2 − 3
αγ2 − αδ2 + 2βγδ

α2 + β2
,

Ωi = 3α2β − β3 − 3
2αγδ − βγ2 + βδ2

α2 + β2
,

K =
β2(α2 + β2)2 + (βγ − αδ)2

−α2(α2 + β2)2 + (βγ − αδ)2
.

(4)

The existence condition for the nonsingular solution (3) is given by K > 1. Solution (3)
is rewritten in the convenient form by using the bilinear form,

u = 2
∂2

∂x2 ln f

with

f =
√
K cosh(αx+ γy − Ωrt+ σ)− cos(βx+ δy − Ωit+ θ). (5)

The rational soliton solution to the K-P equation with positive dispersion is given by

u = 4
1/(L+ L∗)2 − ξ2 + η2

[1/(L+ L∗)2 + ξ2 + η2]
2 , (6)

where{
ξ = Re[x− 2iLy − 12L2t] + ξ0,
η = Im[x− 2iLy − 12L2t] + η0,

(7)

where ξ0 and η0 are arbitrary constants and ∗ indicates the complex conjugate. This
is a localized solution with velocity c = (cx, cy), cx = 12|L|2, cy = −12Im(L) and decays
like (x2 + y2)−1 as (x2 + y2)1/2 → ∞. It is interesting to note that the rational soliton
solution can be rewritten as the following expression

u = − ∂2

∂x2 ln

[
1

(ξ + ir0(η))
2 · 1

(ξ − ir0(η))
2

]
, (8)
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where

r0 =

[
η2 +

1
(L+ L∗)2

]1/2

. (9)

Then, we assume the form of the imbricate series for the inclined periodic soliton
solution as follows:

u = − ∂2

∂x2 ln

[{ ∞∑
n=−∞

1
[(ϕ(x, y, t) + iψ(x, y, t))/2π − n]2

}

×
{ ∞∑

n=−∞

1
[(ϕ(x, y, t)− iψ(x, y, t))/2π − n]2

}]
,

(10)

where ϕ(x, y, t) and ψ(x, y, t) are functions of x, y and t to be determined. It is important
to note that (10) is rewritten in the following form,

u = 2
∂2

∂x2 ln [coshψ(x, y, t)− cosϕ(x, y, t)] . (11)

Comparing (11) with (5), we find{
coshψ(x, y, t) =

√
K cosh(αx+ γy − Ωrt+ σ),

cosϕ(x, y, t) = cos(βx+ δy − Ωit+ θ),
(12)

or  coshψ(x, y, t) = cosh(αx+ γy − Ωrt+ σ),

cosϕ(x, y, t) =
1√
K

cos(βx+ δy − Ωit+ θ). (13)

Eqs. (12) and (13) are readily solved to give ψ = ln
[√

K cosh(αx+ γy − Ωrt+ σ) +
√
K cosh2(αx+ γy − Ωrt+ σ)− 1

]
,

ϕ = βx+ δy − Ωit+ θ,
(14)

and 
ψ = αx+ γy − Ωrt+ σ,

ϕ = arccos
[

1√
K

cos(βx+ δy − Ωit+ θ)
]
,

(15)

respectively. Substituting (14) or (15) into (10), we have the inclined periodic soliton
solution as imbricate series of rational soliton solution.

Taking α→ 0 and δ → 0 in (4) and (14), we have
ψ = ln

√1 +
β4

γ2
cosh(γy + σ) +

√(
1 +

β4

γ2

)
cosh2(γy + σ)− 1

 = ψ0,

ϕ = βx−
(
−β3 + 3

γ2

β

)
t+ θ = ϕ0,

(16)
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and solution (10) is expressed by

u = 2
∂2

∂x2 ln
[
sin
(
ϕ0 + iψ0

2

)
sin
(
ϕ0 − iψ0

2

)]
= −β

2

2

{
cosec2

(
ϕ0 + iψ0

2

)
+ cosec2

(
ϕ0 − iψ0

2

)}
,

(17)

which is equal to the following equation

u = −2


∞∑

n=−∞

 1(
x− ωt+ θ̃ + iψ̃0 − 2πn/β

)2 +
1(

x− ωt+ θ̃ − iψ̃0 − 2πn/β
)2


, (18)

where ω = −β2 + 3γ2/β2, ψ̃0 = ψ0/β, which is given by Zaitsev [2]. Thus, solution (10)
is in agreement with the result of [2] taking the limit α→ 0 and δ → 0.

Now, we consider the asymptotic formulas of the solution. As an example, taking the
limit α, β, γ and δ→ 0 with α/β → 0, δ/γ → 0, δ/α→ l1 ' O(1) and γ/β → l2 ' O(1),
we have

u = − ∂2

∂x2 ln




∞∑
n=−∞

1(
x− 3l22t+ i

√
1/l22 + l2

2y2 − 2πn/β
)2


×


∞∑

n=−∞

1(
x− 3l22t− i

√
1/l22 + l2

2y2 − 2πn/β
)2


 ,

(19)

which is a simple summation of rational solitons with L = l2/2. Therefore, the hump
which constitutes the inclined periodic soliton with small α, β, γ and δ resembles a rational
soliton. In this sense, it is proper to regard the inclined periodic soliton as a nonlinear
superposition of rational solitons.

3 Lattice Soliton Solution

The lattice soliton solution given by reference [22] has only propagation in the x- direc-
tion. In this section, the lattice soliton solution which shows propagation in an arbitrary
direction is constructed as double imbricate series of rational solitons.

We assume the form of the solution as follow

u(x, y, t) = −2

[∑
m,n

{
1

[ξ + ir(η)− (mh+ 2πin)]2
+

1
[ξ − ir(η)− (mh− 2πin)]2

}
+ c̃

]
, (20)

where{
ξ = x+ βy − γt+ ξ0,
η = y − δt+ η0.

(21)

The summation ranges over all integer pair m and n; β, γ, δ and c̃ are some real constants,
r(η) is a function of η to be determined and h is an interval. As this superposition is not
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a simple summation in the sense of linear theory, the function r(η) is different from r0(η)
given by (9), owing to the nonlinearity. If we take the order of summation over m and n in
(21) the same as the order of the definition of elliptic functions, equation (20) is rewritten
by using Weierstrass’ ℘ function [23] as follows

u = −2 [℘(ξ + ir(η)|ω1, ω3) + ℘(ξ − ir(η)|ω1, ω3) + c] , (22)

where periods 2ω1 = h, 2ω3 = 2πi ; and

c = c̃+ 2
∑
m,n

m2+n2 6=0

′ 1
(mh+ 2πin)2

where the summation ranges over all integer pairs (m,n) except for (0, 0). We must
determine r(η) for (22) to satisfy (2) with s = −1.

By using the relations [23]{
[℘(ξ ± ir(η))]2

}′
=

1
6
℘′′′(ξ ± ir(η)) (23)

and ∣∣∣∣∣∣
℘(ξ + ir(η)) ℘′(ξ + ir(η)) 1
℘(ξ − ir(η)) −℘′(ξ − ir(η)) 1
℘(2ir(η)) −℘′(2ir(η)) 1

∣∣∣∣∣∣ = 0, (24)

we can show that

(3u2 + uxx)xx = 24
∂

∂x

[
{℘(2ir(η)) + c} {℘′(ξ + ir(η)) + ℘′(ξ − ir(η))}

+ ℘′(2ir(η)) {℘(ξ + ir(η))− ℘(ξ − ir(η))}
]
.

(25)

Substituting (22) into (2) and taking account of (25), we have

∂

∂x

{[
i
d2r

dη2 + 4℘′(2ir|ω1, ω3)

]
[℘(ξ + ir|ω1, ω3)− ℘(ξ − ir|ω1, ω3)]

+

[
γ

3
+ 4H + 4℘(2ir|ω1, ω3) + i

δ

3
dr

dη
+
(
β + i

dr

dη

)2
]
℘′(ξ + ir|ω1, ω3)

+

[
γ

3
+ 4H + 4℘(2ir|ω1, ω3)− i

δ

3
dr

dη
+
(
β − i

dr

dη

)2
]
℘′(ξ − ir|ω1, ω3)

}
= 0.

(26)

We find that coefficients of ℘′(ξ + ir) and ℘′(ξ − ir) are complex conjugate each other
and, if δ =−6β, the coefficient of the term {℘(ξ + ir(η))− ℘(ξ − ir(η))} coincides with
the derivative of that of the terms ℘′(ξ + ir) and ℘′(ξ − ir), and have only to impose the
following condition for r(η)(

dr

dη

)2

=
γ

3
+ 4H + β2 + 4℘(2ir|ω1, ω3) (27)

which is a sufficient condition for (22) to be a solution of the K-P equation with positive
dispersion (2). By using the relation

℘

(
2ir(η)

∣∣∣∣ ω1 =
αh

2
, ω3 =πi

)
= −1

4
℘

(
r(η)

∣∣∣∣ ω̃1 =
π

2
, ω̃3 =

ih

4

)
, (28)
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Eq. (27) is rewritten as follows(
dr(η)
dη

)2

=
γ

3
+ 4H + β2 − ℘(r(η)|ω̃1, ω̃3). (29)

As the minimum value of the function ℘(r|ω̃1, ω̃3) is e1 = ℘(ω̃1|ω̃1, ω̃3) > 0, the reality
condition for r(η) gives the following condition

γ

3
+ 4H + β2 − e1 > 0, (30)

whi ch may be regarded as the existence condition for a bounded solution.
Following [22], we have the solution of equation (29) as follows:

r(η) =
1√

e1 − e3
cn−1 [E cn(κη + θ, k2), k1] , (31)

where e3 =℘(ω̃3|ω̃1, ω̃3) < 0 and k1 =
√
−(2e3 + e1)/(e1 − e3) which is the modulus of the

elliptic function,

E2 =
A−B

A
, (32)

k2 = E

/√
1− k1

2

k1
2 + E2, (33)

κ = k1

√
A

√
1− k1

2

k1
2 + E2, (34)

with

A = (e1 − e3)
(
γ

3
+ 4H + β2 − e3

)
, B = (e1 − e3)

2.

It should be noted that the r.h.s. of (32) is always positive under condition (30) and less
than 1. Therefore, r(η) takes a bounded real value for all η. Equation (34) is rewritten as
follows

γ = 3

[
κ2

e1 − e3
− 4H − β2 − (e1 + e3)

]
, (35)

which may be regarded as the dispersion relation of a lattice soliton. The substitution of
(31) into (22) gives the exact solution of the K-P equation with positive dispersion. Thus,
we obtain the lattice soliton solution that has propagation in an arbitrary direction.

4 Concluding Remarks

We have shown that the inclined periodic soliton solution is expressed as exact imbricate
series of rational soliton solutions. A convenient form of the imbricate series is given by
using the bilinear form. The lattice soliton solution can be also constructed by doubly
imbricating rational solitons, which show a doubly periodic array of localized structures
in the x-y plane and propagation in an arbitrary direction. As this superposition is not a
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simple summation in the sense of linear theory, the shape of constituent humps of these
periodic waves is a little different from that of the rational soliton. However, according
as the interval between humps increases more and more, the form of constituent humps
approaches to the exact rational soliton solution. In this sense, it is proper to regard
periodic solitons as the imbrication of rational solitons.
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