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Transformation Properties of

ẍ + f1(t)ẋ + f2(t)x + f3(t)x
n = 0

Norbert EULER

Department of Mathematics Lule̊a University of Technology, S-971 87 Lule̊a, Sweden

Abstract

In this paper, we consider a general anharmonic oscillator of the form ẍ + f1(t)ẋ +
f2(t)x+f3(t)xn = 0, with n ∈ Q. We seek the most general conditions on the functions
f1, f2 and f3, by which the equation may be integrable, as well as conditions for the
existence of Lie point symmetries. Time-dependent first integrals are constructed. A
nonpoint transformation is introduced by which the equation is linearized.

1 Introduction

Recently we have reported some results on the integrability of the nonlinear anharmonic
oscillator

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)xn = 0. (1)

Here ẋ ≡ dx/dt, ẍ ≡ d2x/dt2 and n ∈ Q. Conditions on the functions f1, f2, and f3 as
well as the constant n were derived for which the equation admits point transformations
in integrable equations. The Lie point symmetries were obtained only for the case where
f1, f2 and f3 are constants. The Painlevé analysis for special cases of n was performed.
For more details, we refer to the papers of Euler et al [6], Duarte et al [2] and Duarte et al
[3]. In the present paper, we generalize those results, introduce a nonpoint transformation
which linearizes (1), and do a Lie point symmetry classification of (1), whereby conditions
for the existence of Lie point symmetries are given on f1, f2 and f3. Before doing so,
we would like to make some literatorical remarks on point transformations, nonpoint
transformations, and integrability of ordinary differential equations (ODEs), relevant in
the present considerations.

In being faced with a nonlinear ordinary differential equation (NODE), one unsually
wants to construct its general solution. If the general solution can be obtained, the equa-
tion is said to be integrable. Constructing such solutions for NODEs is in general difficult.
In fact, in most cases the general solution of NODEs cannot be obtained in closed form, so
that one has to be satisfied by solving the equation numerically or by constructing some
special exact solutions. Much attention has been focused on the classification of NODEs
as integrable and nonintegrable ones. In the case of second order ODEs, the construction
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of a first integral is of fundamental importance. It is desirable to have a simple approach
to obtaining time-dependent first integrals of NODEs.

Several methods for the identification of integrable ODEs have been proposed. A
method dating back to the beginning of the development of differential calculus, is to
find a coordinate transformation which transforms a particular differential equation in
a differential equation with a known general solution. To find a transformation which
transforms a NODE in a linear ODE would certainly be a way in which to solve the
NODE in general. In particular, the problem of linearizing second-order ODEs has been
of great interest. The utilization of point transformations for the linearization is the usual
procedure (see, for example Duarte et al [1], Sarlet et al [13], and Moreira [11]). Since the
time of Tresse [17], it is known that the most general second-order ODE which may be
linearized by a point transformation, is of the form

ẍ+ Λ3(x, t)ẋ3 + Λ2(x, t)ẋ2 + Λ1(x, t)ẋ+ Λ0(x, t) = 0, (2)

whereby the functions Λj must satisfy the following conditions:

Λ1xx − 2Λ2xt + 3Λ3tt + 6Λ3Λ0x + 3Λ0Λ3x − 3Λ3Λ1t − 3Λ1Λ3t − Λ2Λ1x + 2Λ2Λ2t = 0,

Λ2tt − 2Λ1xt + 3Λ0xx − 6Λ0Λ3t − 3Λ3Λ0t + 3Λ0Λ2x + 3Λ2Λ0x + Λ1Λ2t − 2Λ1Λ1x = 0.
(3)

(We use the notation Λ1x ≡ ∂Λ1/∂x, Λ1xx ≡ ∂2Λ1/∂x
2, etc.) In fact, (2) is the most

general second-order ODE which may be point transformed by the invertible point trans-
formation

X(T ) = F (x, t), T (x, t) = G(x, t),
∂(T,X)
∂(t, x)

6= 0, (4)

in the free particle equation

d2X

dT 2
= 0. (5)

Transformation (4) is obtained by solving F and G from

Λ3 = (GxFxx −GxxFx) ∆−1,

Λ2 = (GtFxx + 2GxFtx − 2FxGtx − FtGxx) ∆−1,

Λ1 = (GxFtt + 2GtFtx − 2FtGtx − FxGtt) ∆−1

Λ0 = (GtFtt −GttFt) ∆−1.

(6)

Here ∆ ≡ GtFx −GxFt 6= 0.
The compatibility condition of system (6) is given by (3). If the point transformation

(4) is known, the first integrals, Lie point symmetries, and general solution of (5) may
be used to obtain the corresponding ones for (2). We use this result in Section 4 in the
classification of Lie point symmetries for (1). In particular, the first integral of (5) is

I

(
dX

dT

)
=
dX

dT
,

so that the first integral of (2) takes the form

I(t, x, ẋ) =
Ft + Fxẋ

Gt +Gxẋ
;
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which is, in general, a time-dependent first integral. The free particle equation (5) admits
eight Lie point symmetry generators forming the sl(3,R) Lie algebra under the Lie bracket.
Those Lie point symmetry generators are

G1 =
∂

∂T
, G2 =

∂

∂X
, G3 = T

∂

∂T
, G4 = X

∂

∂X
, G5 = X

∂

∂T
,

G6 = T
∂

∂X
, G7 = T

(
T
∂

∂T
+X

∂

∂X

)
, G8 = X

(
T
∂

∂T
+X

∂

∂X

)
.

This is the maximum number of Lie point symmetries which any second-order ODE might
admit. In fact, any nonlinear second order ODE may admit the sl(3,R) Lie point sym-
metry algebra provided it admits eight Lie point symmetries. In such a case a point
transformation can be found which would linearize the equation, i.e., transform the equa-
tion in the free particle equation (5). This leads to the statement:

A necessary and sufficient condition for a second-order ODE to be linearizable by a
point transformation, is that the equation admits the sl(3,R) Lie point symmetry algebra.

Linearization by point transformations was studied in some detail by several authors
(see for example the works of Leach [9], Sarlet et al [13], and Duarte et al [1]). An example
of a nonlinear second-order ODE that admits the sl(3,R) Lie point symmetry algebra is
the equation (Leach [9])

ẍ+ αxẋ+
α2

9
x3 = 0, (7)

where α is an arbitrary real constant. This equation plays an important role in our
Lie point symmetry classification of (1) (see Section 4). The general solution of (7) was
obtained by Duarte et al [1] by the invertible point transformation

X(T ) =
t

x
− 1

6
αt2, T (x, t) =

1
x
− 1

3
αt,

which transforms (7) in the free particle equation (5). The general solution of the free
particle equation is X(T ) = k1T + k2, so that the general solution of (7) follows:

x(t) =
t− k1

1
6αt

2 − k1
1
3αt+ k2

. (8)

Here k1 and k2 are integrating constants. This result is used to solve some of the equations
in Table 1 and Table 2 of Section 4.

It is clear that if one is able to find the invertible point transfromation by which a
NODE may be linearized, the general solution of the NODE is easily obtained. We refer
to the book of Steeb [14]. Since (1) is not linearizable by a point transformation, we aim
to find point transformations in other integrable equations (Section 2 and Section 5), and
to linearize (1) by a nonpoint transformation (Section 3).

If a NODE admits a Lie point symmetry, the symmetry may be used to calculate point
transformations which transform the NODE either in an autonomous ODE or an ODE
with lower order. A Lie point symmetry classification of (1) is performed in Section 4.
For more details on Lie point symmetries, we refer to the books of Olver [12], Fushchych
et al [8] and Steeb [15].
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The problem of classifying second order ODEs with respect to the singularity struc-
ture of their soluitions, was considered by a school of French Mathematicians under the
leadership of P. Painlevé in the period from 1893 till 1902. They classified the equation

A1(x, t)ẍ+A2(x, t)ẋ2 +A3(x, t)ẋ+A4(x, t) = 0,
∂mjAj

∂xmj
= 0, j = 1, . . . , 4 (9)

(m1, . . . ,m4 may be different integers) with respect to the following classification criterion:

The critical points of solutions of (9), that are branch points and essential singularities,
should be fixed points.

Any function which is a solution of an equation of this class of ODEs would, therefore,
have only poles as movable singularities. They obtained fifty second-order ODEs. The
equations satisfying the above criterion are said to have the Painlevé property. Fourty-four
of these fifty equations can be solved by standard functions. The remaining six are known
as the Painlevé transcendents; they define transcendental functions. It is important to
note that the Painlevé transcendents admit no Lie point symmetry transformations. The
classification of (9) was done under the Mobius group of transformations

X(T ) =
ψ1(t)x+ ψ2(t)
ψ3(t)x+ ψ4(t)

, T = φ(t),

where ψj and φ are analytic functions of t. Given a particular nonlinear second-order
ODE, one could ask the question:

Does there exist an invertible point transformation which may transform a given non-
linear ODE in one of the integrable second-order ODEs classified by Painlevé?

This is generally a difficult question to answer. In our paper, Euler et al [7], an invertible
point transformation was obtained for an anharmonic oscillator of the form (1) by which
the equation may be transformed in the second Painlevé transcendent. We discuss this
result in Section 5 of the present paper in detail.

It is clear that the point transformation (4) preserves the Lie point symmetry stuc-
ture as well as the integrability structure of a given ODE. By introducing a nonpoint
transformation of the form

X(T ) = F (x, t), dT (x, t) = G(x, t)dt, (10)

one preserves only the integrability structure and not the symmetry structure of the equa-
tion. A transformation of this type was considered by Euler et al (1994) in their calcu-
lations of approximate solutions of nonlinear multidimensional heat equations. Duarte
et al (1994) made use of transformation (10) and obtained equations which may be non-
point transformed in the free particle equation (5). They showed, by way of examples,
transformation (10) may lead to the linearization of NODEs not linearizable by a point
transformation. In Section 3 of the present paper, we utilize this transformation for the
linearization of (1).
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2 First integrals by point transformations

In this section we consider the problem of constructing invertible point transformations of
the form (4), i.e.,

X(T ) = F (x, t), T (x, t) = G(x, t),

for equation (1), i.e.,

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)xn = 0.

Note that (1) is a special case of (2). That is, for Λ3 = Λ2 = 0, Λ1 = α(t) equation (2)
takes the form

ẍ+ α1(t)ẋ+ Λ0(x, t) = 0. (11)

By condition, (3) it follows that (11) may be linearized by a point transformation of the
form (4) if and only if Λ0 is a linear function of x, where α is an arbitrary function of t.
This leads to the following result:

Equation (1), with n /∈ {0, 1}, cannot be linearized by a point transformation.

We now consider the integrable equation

d2X

dT 2
+Xn = 0, (12)

which admits the first integral

I

(
X,

dX

dT

)
=

1
2

(
dX

dT

)2

+
Xn+1

n+ 1
.

By the point transformation (4) equation (12) takes the form

ẍ+A3ẋ
3 +A2ẋ

2 +A1ẋ+A0 = 0, (13)

where

A3 =
(
FxxGx −GxxFx +G3

xF
n
)
∆−1,

A2 =
(
GtFxx + 2GxFxt − 2FxGxt − FtGxx + 3GtG

2
xF

n
)
∆−1,

A1 =
(
GxFxt + 2GtFxt − 2FtGxt − FxGtt + 3G2

tGxF
n
)
∆−1,

A0 =
(
GtFtt − FtGtt +G3

tF
n
)
∆−1

(14)

and ∆ ≡ FxGt − FtGx 6= 0. In order to obtain an equation of the form (1), we set

F (x, t) = f(t)x, G(x, t) = g(t), (15)

where f , g are smooth functions, to be determined in terms of the coefficient functions of
(1), namely f1, f2 and f3. System (14) leads to

A3 = A2 = 0, A1 =
2ḟ ġ − fg̈

f ġ
, A0 =

ġf̈ − ḟ g̈

f ġ
x+ ġfn−1xn.
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The functions f1, f2 and f3 then take the form

f1(t) =
2ḟ
f
− g̈

ġ
, f2(t) =

f̈

f
− ḟ

f

g̈

ġ
, f3(t) = ġ2fn−1. (16)

We can state the following

Theorem 1: Equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)xn = 0

may be point transformed in the equation

d2X

dT 2
+Xn = 0,

by the transformation

X(T ) = f(t)x, T (x, t) = g(t)

in the following cases:

a) For n 6∈ {−3, 0, 1} the transformation coefficients are

f(t) = Cf
1/(n+3)
3 (t) exp

(∫ t 2f1(ζ)
n+ 3

dζ

)
, (17)

g(t) =
∫ t f

1/2
3 (ζ)

f (n−1)/2(ζ)
dζ (18)

with the following conditions on the equation coefficients

f2 =
1

n+ 3
f̈3

f3
− n+ 4

(n+ 3)2

(
ḟ3

f3

)2

+
n− 1

(n+ 3)2

(
ḟ3

f3

)
f1+2

1
n+ 3

ḟ1+2
n+ 1

(n+ 3)2
f2
1 .(19)

b) For n = −3 the transformation coefficients are

g(t) =
∫ t√

f3(ρ) exp
(

2
∫ ρ

φ(ζ) dζ
)
dρ, (20)

f(t) = exp
(∫ t

φ(ζ) dζ
)
, (21)

where φ is the solution of the Riccati equation

φ̇ = φ2 − f1(t)φ+ f2(t). (22)

The condition on the equation coefficients is

f1(t) = −1
2
ḟ3

f3
. (23)
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To prove Theorem 1 one needs to invert system (16) and integrate to obtain f and
g. The compatibility condition of (16) results in the differential relations (19) and (23),
which provides the condition of existence of an invertible point transformation of (1) in
the integrable equation (12).

By the point transformation (4) with (15), the first integral of (1) is

I(t, x, ẋ) =
1
2

(
ḟ

ġ
x+

f

ġ
ẋ

)2

+
1

n+ 1
fn+1xn+1,

(n 6= −1), where f and g as well as the corresponding conditions on f1, f2, and f3, are
given in Theorem 1.

3 Linearization by nonpoint transformation

In this section, we make use of the nonpoint transformation (10), i.e.,

X(T ) = F (x, t), dT (x, t) = G(x, t)dt.

Let us pose the following problem: Find functions F and G in transformation (10), by
which the general anharmonic oscillator (1) transforms in

d2X

dT 2
+ k1

dX

dT
+ k2X

p = 0. (24)

Here k1, k2 are real constants, and p ∈ Q. Applying transformation (10) to (24), we obtain

ẍ+A2(x, t)ẋ2 +A1(x, t)ẋ+A0(x, t) = 0 (25)

where

A2(x, t) =
Fxx

Fx
− Gx

G
, A1(x, t) = 2

Fxt

Fx
− Gt

G
− Gx

G

Ft

Fx
+ k1,

A0(x, t) =
Ftt

Fx
− Ft

Fx

Gt

G
+ k1

Ft

Fx
− k2G

2F
p

Fx
.

In order to obtain an equation of the form (1), we set

A2 = 0, A1 = f1(t), A0 = f2(t)x+ f3(t)xn.

The condition A2 = 0 leads to the following special form for (10):

X(T ) = f(t)xm, dT (x, t) = g(t)xm−1dt, (26)

so that

f1(t) =
m+ 1
m

ḟ

f
− ġ

g
+ k1, f2(t) =

1
m

(
f̈

f
− ḟ

f

ġ

g
+ k1

ḟ

f

)
, f3(t) =

k2

m
g2fp−1.

We can now state

Theorem 2: Equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)xn = 0
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may be nonpoint transformed in the equation

d2X

dT 2
+ k1

dX

dT
+ k2X

p = 0, k1, k2 ∈ R, p ∈ Q,

by transformation (26), with

f(t) = f
m/(n+3)
3 exp

{
2m
n+ 3

∫ t

f1(ρ)dρ− 2k1
m

n+ 3
t

}
,

g(t) =
(
m

k2

)1/2

f1−(n+1)/(2m)

(27)

and

p =
n+ 1
m

− 1 n 6∈ {−3, 1}, m 6∈ {0, 1}, p 6= 1, m(p+ 1) 6= −2,

if and only if

f2 =
1

n+ 3
f̈3

f3
− n+ 4

(n+ 3)2

(
ḟ3

f3

)2

+
n− 1

(n+ 3)2

(
ḟ3

f3

)
f1 + 2

1
n+ 3

ḟ1

+2
n+ 1

(n+ 3)2
f2
1 +

k1

(n+ 3)2

{
4
ḟ3

f3
− 2(n− 1)f1 − 4k1

}
.

(28)

Remark: Conditions (19) and (28) are identical if k1 = 0. The nonpoint transforma-
tion does, therefore, not identify a wider class of integrable equations of the form (1).

Let us now find a nonpoint transformation which linearizes (1). Note that the constant
m, in the nonpoint transformation (26), may be chosen arbitrary (except for 0 and 1).
With the choice

m = n+ 1,

equation (1), for n ∈ Q\{−3,−1, 1}, is linearized in

d2X

dT 2
+ k1

dX

dT
+ k2 = 0, k2 6= 0. (29)

With this value for m, transformation (26) reduces to

X(T ) = f(t)xn+1, dT =

√
n+ 1
k2

f3(t)f(t) xn dt, (30)

where

f(t) = f
(n+1)/(n+3)
3 exp

{
2
(
n+ 1
n+ 3

)∫ t

f1(ρ)dρ− 2k1

(
n+ 1
n+ 3

)
t

}
. (31)

Thus, if condition (28) holds, (1) may be linearized by transformation (30). Note also that
(29) may be point transformed in the free particle equation. For k1 = 0, a first integral of
(1) takes the form

I(t, x, ẋ) =
1
2

(
Ft + Fxẋ

G

)2

+ F, (32)

with

F (x, t) = f(t)xn+1, G(x, t) =

√
n+ 1
k2

f3(t)f(t)xn,

and f given by (31) if condition (28) (with k1 = 0) is satisfied.
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4 Lie point symmetry transformations

4.1 Introduction

In this section, we obtain continuous transfromations which leave equation (1) invariant,
and therefore transform solutions of (1) to solutions of (1). This type of transformations
forms a group, namely, the Lie point transfromation group. Let a Lie point transformation
be given in the following form:

t̃ = ϕ(x, t, ε), x̃ = ψ(x, t, ε). (33)

Here ε is the group parameter, the group identity is the identity transformation at ε =
0, and the group inverse is the inverse transformation. One can define an infinitesimal
generator Z for the Lie point transformation group by

Z = ξ(x, t)
∂

∂t
+ η(x, t)

∂

∂x
(34)

so that

t̃(x, t, ε) = t+ εZt+O(ε2), x̃(x, t, ε) = x+ εZx+O(ε2).

Integral curves of the generator Z are group orbits of the transformation group; that is by
integrating the autonomous system

dt̃

dε
= ξ(x̃, t̃),

dx̃

dε
= η(x̃, t̃) (35)

with the initial conditions x̃(ε = 0) = x, t̃(ε = 0) = t, we arrive at the finite transformation
(33). A function J(x, t) is an invariant of the Lie point transformation group (invariant
under the action of the transformation group) if and only if

ZJ(x, t) = 0. (36)

This is known as the invariance condition. Clearly, the invariant functions of a Lie point
transformation group are the first integrals of the corresponding autonomous system (35).
In order to find a Lie point transformation group which leaves a second order ODE

F (t, x, ẋ, ẍ) = 0 (37)

invariant, we need to prolong the infinitesimal generator Z to

Z(2) = Z + η(1) ∂

∂ẋ
+ η(2) ∂

∂ẍ

and apply the invariance condition to the ODE at F = 0, i.e.,

Z(2)F
∣∣∣
F=0

= 0. (38)

The prolongation coefficients of Z are

η(r) =
dr

dtr
[η(x, t)− ẋξ(x, t)] + x(r+1)ξ(x, t).
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A generator which satisfies condition (38) for a particular ODE is known as a Lie point
symmetry generator for that ODE. The corresponding Lie point transformation is known
as a Lie point symmetry transformation for the particular ODE. For some ODE, the
invariance condition may lead to several Lie point symmetry generators. This set of Lie
point symmetry generators form an algebra under the Lie bracket, known as a Lie point
symmetry algebra for the equation.

It is clear that an invertible point transformation which transforms one ODE in another,
will also transform Lie point symmetry generators of one equation in Lie point symmetry
generators of other equation. In particular, the sl(3,R) Lie point symmetry algebra of (2)
is spanned by the following Lie point symmetry generators

G1 = QT
∂

∂t
+ PT

∂

∂x
, G2 = QX

∂

∂t
+ PX

∂

∂x
, G3 = G

(
QT

∂

∂t
+ PT

∂

∂x

)
,

G4 = F

(
QX

∂

∂t
+ PX

∂

∂x

)
, G5 = F

(
QT

∂

∂t
+ PT

∂

∂x

)
, G6 = G

(
QX

∂

∂t
+ PX

∂

∂x

)
,

G7 = G (GQT + FQX)
∂

∂t
+G (GPT + FPX)

∂

∂x
,

G8 = F (FQX +GQT )
∂

∂t
+ F (FPX +GPT )

∂

∂x
.

This is obtained by applying the point transformation (4) and transforming the Lie point
symmetry generators of the free particle equation (5). We denote the inverse transforma-
tion by x(X,T ) = P (X,T ), t(X,T ) = Q(X,T )). The integrable equation (12) admits the
following Lie point symmetry generators

G1 =
∂

∂T
, G2 = T

∂

∂T
−
(

2
n− 1

)
X

∂

∂X
,

so that Lie point symmetry generators of (1) can be obtained by the point transformations
derived in Section 2 if the appropriate conditions are satisfied. The Lie point symmetry
generators for (1), obtained by the point transformation of the form (4) with F and G
given by (15), are of the form

G1 = QT
∂

∂t
+ PT

∂

∂x
,

G2 =
{
g(t)QT −

(
2

n− 1

)
xQX

}
∂

∂t
−
{
g(t)PT −

(
2

n− 1

)
f(t)xPX

}
∂

∂x
,

(39)

whereby the conditions given in Theorem 1 have to be satisfied. This result is contained
in our Lie point symmetry classification of (1) (see subsection 4.2).

Lie point symmetries of an ODE may be used to find invertible point transfromations
for ODEs. Let (37) admit the Lie point symmetry generator (34). An invertible point
transformation of the form (4), which transforms (37) in an ODE of the autonomous form

G(X, Ẋ, Ẍ) = 0,

is obtained by solving the system of first-order PDEs

ZT = 1, ZX = 0,
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whereas the solution of

ZT = 0, ZX = 1

provides the point transformation in an equation of the form

H(T, Y, Ẏ ) = 0,

where Ẋ(T ) = Y (T ). Thus, if an ODE admits Lie point symmetries, it may be used to
find first integrals of the ODE. This procedure was followed by Leach and Maharaj [10]
for an anharmonic oscillator with multiple anharmonicities.

4.2 Lie point symmetry classification of (1)

Our aim in this section is to do a general Lie point symmetry classification of (1), that
is, we give the most general conditions on f1, f2 and f3 for which Lie point symmetries
of (1) exist. The aim is not to find all possible functions by which (1) admits Lie point
symmetries but merely to give theorems of existence. We consider this form of classification
useful since particular equations of the form (1) can easily be tested for the existence of
Lie point symmetries.

On applying the invariance condition (38) on (1), we obtain the following restrictions
on the infinitesimal functions ξ and η for generator (34):

ξ(x, t) = h1(t)x+ h2(t), η(x, t) = (ḣ1 − f1h1)x2 + g2(t)x+ g1(t).

Here hj , gj are smooth functions to be determined by the conditions

xn+1A1 + xnA2 + xn−1A3 + x2A4 + xA5 +A6 = 0,
xnB1 + xB2 +B3 = 0.

(40)

The A’s and B’s are functions of f1, f2, f3, h1, h2, g1 and g2. In particular,

A1 = (2− n)f1f3 + h1ḟ3 + nf3ḣ1, A2 = (n− 1)f3g2 + h2ḟ3 + 2f3ḣ2, A3 = nf3g1,

A4 = f1f2h1 − f1h1ḟ1 +
d

dt
(f2h1)− f2

1 ḣ1 − 2ḟ1ḣ1 − h1f̈1 + h
(3)
1 ,

A5 = f1ġ2 + h2ḟ2 + 2f2ḣ2 + g̈2, A6 = f2g1 + f1ġ1 + g̈1,

B1 = 3f3h1, B2 = 3f2h1 − 3
d

dt
(h1f1) + 3ḧ1, B3 = 2ġ2 +

d

dt
(f1h2)− ḧ2.

In general, one has to consider three cases depending on the nonlinearity: The linear case
n ∈ {0, 1}, the case n = 2 as well as the case n ∈ Q\{0, 1, 2}.

Case 1: The linear case, i.e., n = 0 and n = 1. The equation can be point transformed
in the free particle equation. The Lie point symmetry algebra is sl(3,R), as discussed in
the introduction. The Lie point symmetry generators are of the form

Z = (h1(t)x+ h2(t))
∂

∂t
+
{(
ḣ1(t)− f1(t)h1(t)

)
x2 + g1(t)x+ g2(t)

} ∂

∂x
,

where h1, h2, g1, and g2 take on particular functional forms, in terms of f1, f2 and f3.
This case was discussed in detail by Duarte et al [1].
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Case 2: n = 2. System (40) reduces to the system

A1 = 0, A2 +A4 = 0, A3 +A5 = 0, A6 = 0,
B1 = 0, B2 = 0, B3 = 0.

From the equation B1 = 0, it follows that h1 = 0 so that the Lie point symmetry
generator takes on the form

Z = h2(t)
∂

∂t
+ (g2(t)x+ g1(t))

∂

∂x
, (41)

where the remaining conditions on g1, g2 and h2 are

f3g2 + h2ḟ3 + 2f3ḣ2 = 0, (42)

2f3g1 + f1ġ2 + h2ḟ2 + 2f2ḣ2 + g̈2 = 0, (43)

f2g1 + f1ġ1 + g̈1 = 0, (44)

2ġ2 +
d

dt
(f1h2)− ḧ2 = 0. (45)

Note that h1 = 0 for all n ≥ 2. In solving conditions (42)–(45) we have to consider two
subcases, namely g1 = 0 and g1 6= 0.

Subcase 2.1: g1 = 0. By (42) and (45), we obtain

g2(t) = − d

dt
[ln f3]h2 − 2ḣ2 ≡

1
2
ḣ2 −

1
2
f1h2, (46)

ḣ2 = c1 −
1
5

(
2
d

dt
[ln f3]− f1

)
h2. (47)

Inserting (46) and (47) into (43) leads to an expression of the form

F1(f1, f2, f3)h2 + c1F2(f1, f2, f3) = 0, (48)

where

F1 =
(
−12f3

1 f
3
3 + 50f1f2f

3
3 − 80f1f

3
3 ḟ1 + 125f3

3 ḟ2 + 22f2
1 f

2
3 ḟ3

−100f2f3ḟ3 + 35f2
3 ḟ1ḟ3 + 21f1f3ḟ

2
3 − 84ḟ3

3 − 50f3
3 f̈1

−15f1f
2
3 f̈3 + 105f3ḟ3f̈3 − 25f2

3 f
(3)
3

)
/
(
125f3

3

)
,

(49)

F2 = 2
(
−6f2

1 f
2
3 + 25f2f

2
3 − 10f2

3 ḟ1 − f1f3ḟ3 + 6ḟ2
3 − 5f3f̈3

)
/
(
25f2

3

)
. (50)

This leads to the following

Theorem 3: The most general Lie point symmetry generator (34), which the equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)x2 = 0

may admit, is of the form

Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

if and only if f1, f2 and f3 satisfy one of the following conditions:
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a) F2 = 0, then h2 is given by

h2(t) = f
−2/5
3 exp

(
1
5

∫ t

f1(ζ)dζ
)[

c1

∫ t

f
2/5
3 (ρ) exp

(
−1

5

∫ ρ

f1(ζ)dζ
)
dρ+ c2

]
.

and g2 is given by (46).

b) F1 = 0 with c1 = 0, then h2 is given by

h2(t) = c2f
−2/5
3 exp

(
1
5

∫ t

f1(ζ)dζ
)

and g2 is given by (46).

c) F1 6= 0 and F2 6= 0 with c1 6= 0, then

h2(t) = −c1F2

F1

and g2 is given by (46), whereby the condition on f1, f2 and f3 is

Ḟ1F2 − Ḟ2F1 − F 2
1 −

(
2
5
ḟ3f

−1
3 − 1

5
f1

)
F1F2 = 0.

Here F1 and F2 are given by (49) and (50), respectively.

A note on the proof of Theorem 3: If F2 = 0, it follows that F1 ≡ 0. The infinitesimal
function h2 in the symmetry generator (41) is then obtained by integrating (47), whereby
g2 is given by (46). If F2 6= 0 and c1 6= 0, then F1 must be nonzero, so that h2 = −c1F1/F2

has to satisfy (47).

Remark: Condition F2 = 0 is identical to the condition by which (1) is point trans-
formable in the integrable equation (12) and linearizable by the nonpoint transformation
(30) (with n = 2). The Lie point symmetries (39) (with n = 2) obtained by the point
transformations of Section 2, are those corresponding to Theorem 3a. The most gen-
eral Lie point symmetry generator which follows from the conditions of Theorem 3b, and
Theorem 3c cannot be obtained from the symmetries of the integrable equation (12).

Subcase 2.2: g1 6= 0. Equations (42) and (45) remain the same, therefore, relations
(46) and (47) hold also for this subcase. By (43), g1 is given by

g1(t) = − 1
2f3

(
f1ġ2 + h2ḟ2 + 2f2ḣ2 + g̈2

)
, (51)

so that (44) leads to the expression

F1(f1, f2, f3)h2 + c1F2(f1, f2, f3) = 0
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where

F1 =
(
72f5

1 f
5
3 − 1250f1f

2
2 f

5
3 + 1800f3

1 f
5
3 ḟ1 + 5000f1f

5
3 ḟ

2
1 − 2500f2

1 f
5
3 ḟ2 − 3125f2f

5
3 ḟ2

−3125f5
3 ḟ1ḟ2 − 720f4

1 f
4
3 ḟ3 + 2500f2

1 f2f
4
3 ḟ3 + 2500f2

2 f
4
3 ḟ3 − 8300f2

1 f
4
3 ḟ1ḟ3

+3125f2f
4
3 ḟ1ḟ3 − 6875f4

3 ḟ
2
1 ḟ3 + 13125f1f

4
3 ḟ2ḟ3 + 2730f3

1 f
3
3 ḟ

2
3 − 13125f1f2f

3
3 ḟ

2
3

+14100f1f
3
3 ḟ1ḟ

2
3 − 22500f3

3 ḟ2ḟ
2
3 − 1485f2

1 f
2
3 ḟ

2
3 + 22500f2f

2
3 ḟ

3
3 − 3150f2

3 ḟ1ḟ
3
3

−20790f1f3ḟ
4
3 + 49896ḟ5

3 + 4000f2
1 f

5
3 f̈1 + 6250f5

3 ḟ1f̈1 − 10375f1f
4
3 ḟ3f̈1

+7875f3
3 ḟ

2
3 f̈1 − 5625f1f

5
3 f̈2 + 11250f4

3 ḟ3f̈2 − 1100f3
1 f

4
3 f̈3 + 5625f1f2f

4
3 f̈3

−5625f1f
4
3 ḟ1f̈3 + 9375f4

3 ḟ2f̈3 + 600f2
1 f

3
3 ḟ3f̈3 − 20625f2f

3
3 ḟ3f̈3 + 1875f3

3 ḟ1ḟ3f̈3

+33300f1f
2
3 ḟ

2
3 f̈3 − 103950f3ḟ

3
3 f̈3 − 3125f4

3 f̈1f̈3 − 5625f1f
3
3 f̈

2
3 + 39375f2

3 ḟ3f̈
2
3

+3750f1f
5
3 f

(3)
1 − 4375f4

3 ḟ3f
(3)
1 − 3125f5

3 f
(3)
2 + 125f2

1 f
4
3 f

(3)
3 + 3125f2f

4
3 f

(3)
3

−8625f3
3 ḟ3f

(3)
3 + 29250f2

3 ḟ
2
3 f

(3)
3 − 9375f3

3 f̈3f
(3)
3 + 1250f5

3 f
(4)
1 + 1250f1f

4
3 f

(4)
3

−5625f3
3 ḟ3f

(4)
3 + 625f4

3 f
(5)
3

)
/
(
6250f6

3

)
,

(52)

F2 =
(
36f4

1 f
4
3 − 625f2

2 f
4
3 + 720f2

1 f
4
3 ḟ1 + 700f4

3 ḟ
2
1 − 1250f1f

4
3 ḟ2 − 288f3

1 f
3
3 ḟ3

+1250f1f2f
3
3 ḟ3 − 1630f1f

3
3 ḟ1ḟ3 + 2500f3

3 ḟ2ḟ3 + 429f2
1 f

2
3 ḟ

2
3 − 2500f2f

2
3 ḟ

2
3

+680f2
3 ḟ1ḟ3 + 1188f1f3ḟ

3
3 − 3564ḟ4

3 + 1100f1f
4
3 f̈1 − 950f3

3 ḟ3f̈1

−1250f4
3 f̈2 − 190f2

1 f
3
3 f̈3 + 1250f2f

3
3 f̈3 − 300f3

3 ḟ1f̈3 − 1390f1f
2
3 ḟ3f̈3

+5940f3ḟ
2
3 f̈3 − 1075f2

3 f̈
2
3 + 500f4

3 f
(3)
1 + 300f1f

3
3 f

(3)
3

−1600f2
3 ḟ3f

(3)
3 + 250f3

3 f
(4)
3

)
/
(
625f5

3

)
.

(53)

This leads to the following

Theorem 4: The most general Lie point symmetry generator (34), which the equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)x2 = 0

may admit, is of the form

Z = h2(t)
∂

∂t
+ {g2(t)x+ g1(t)}

∂

∂x

if and only if f1, f2 and f3 satisfy one of the following conditions:

a) F2 = 0, then h2 is given by

h2(t) = f
−2/5
3 exp

(
1
5

∫ t

f1(ζ)dζ
)[

c1

∫ t

f
2/5
3 (ρ) exp

(
−1

5

∫ ρ

f1(ζ)dζ
)
dρ+ c2

]
,

g1 by (51), and g2 is given by (46).

b) F1 = 0 with c1 = 0, then h2 is given by

h2(t) = c2f
−2/5
3 exp

(
1
5

∫ t

f1(ζ)dζ
)
,

g1 by (51), and g2 is given by (46).
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c) F1 6= 0 and F2 6= 0 with c1 6= 0, then

h2(t) = −c1F2

F1
,

g1 by (51), and g2 is given by (46), whereby the condition on f1, f2 and f3 is

Ḟ1F2 − Ḟ2F1 − F 2
1 −

(
2
5
ḟ3f

−1
3 − 1

5
f1

)
F1F2 = 0

Here F1 and F2 are given by (52) and (53), respectively.

Case 3: n ∈ Q\{0, 1, 2}. This leads to the system

A2 = 0 A3 = 0, B3 = 0, A5 = 0.

From the equation A2 = 0, it follows that g1 = 0, so that the remaining conditions on
h2 and g2 are

(n− 1)f3g2 + h2ḟ3 + 2f3ḣ2 = 0, (54)

f1ġ2 + h2ḟ2 + 2f2ḣ2 + g̈2 = 0, (55)

2ġ2 +
d

dt
(f1h2)− ḧ2 = 0. (56)

To solve this system of equations, we need to consider two subcases:

Subcase 3.1: n = −3. This leads to

Theorem 5: The most general Lie point symmetry generator (34), which the equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)x−3 = 0

may admit, is of the form

Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

if and only if

f1 = −1
2
ḟ3

f3
, (57)

where h2 is a solution of

h
(3)
2 + 4Γ(t)ḣ2 + 2Γ̇(t)h2 = 0 (58)

with

Γ(t) = − 1
16

[
d

dt
(ln f3)

]2
+

1
4
d2

dt2
(ln f3) + f2

and

g2(t) =
1
4
d

dt
(ln f3) +

1
2
ḣ2.
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Note that condition (57) is identical to the condition derived in Section 2, for an
invertible point transformation of (1) with n = −3. Therefore, all Lie point symmetries
of (1) with n = −3, which follow from Theorem 5, may also be obtained by applying the
point transformation, in Section 2, in the Lie point symmetries of (12) (with n = −3).

Note that (58) may be transformed in the free particle equation (5): Let

A(t) =
ḣ2

h2
.

In this case, (58) reduces to

Ä+ 3AȦ+ 4Γ(t)A+A3 + 2Γ̇(t) = 0.

Comparing this equation with (2), we find that condition (3) is satisfied.

Subcase 3.2: n 6= −3. By (54) and (56), we obtain

g2(t) = −
(

1
n− 1

)
h2
d

dt
(ln f3)− 2

(
1

n− 1

)
ḣ2, (59)

ḣ2 = c1 −
(
n− 1
n+ 3

){
2

n− 1
d

dt
(ln f3)− f1

}
h2. (60)

Inserting (59) and (60) into (55) leads to

F1(f1, f2, f3)h2 + c1F2(f1, f2, f3) = 0,

where

F1 =
[
−4(n2 − 1)f3

1 f
3
3 + 2(n3 + 5n2 + 3n− 9)f1f2f

3
3 − 8n(n+ 3)f1f

3
3 ḟ1

+(n3 + 9n2 + 27n+ 27)f3
3 ḟ2 − 2(n2 − 6n− 3)f2

1 f
2
3 ḟ3 − 4(n+ 3)2f2f

2
3 ḟ3

−(n+ 3)(n− 9)f2
3 ḟ1ḟ3 + 3(n− 1)(n+ 5)f1f3ḟ

2
3 − 2(n+ 4)(n+ 5)ḟ3

3

−2(n+ 3)2f3
3 f̈1 − 3(n− 1)(n+ 3)f1f

2
3 f̈3 + 3(n+ 3)(n+ 5)f3ḟ3f̈3

−(n+ 3)2f2
3 f

(3)
3

]
/
[
(n+ 3)3f3

3

]
,

(61)

F2 = 2
[
−2(n+ 1)f2

1 f
2
3 + (n+ 3)2f2f

2
3 − 2(n+ 3)f2

3 ḟ1

−(n− 1)f1f3ḟ3 + (n+ 4)ḟ2
3 − (n+ 3)f3f̈3

]
/
[
(n+ 3)2f2

3

]
.

(62)

This leads to

Theorem 6: The most general Lie point symmetry generator (34), which the equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)xn = 0,

with n ∈ Q\{−3, 0, 1, 2}, may admit, is of the form

Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

if and only if f1, f2 and f3 satisfy one of the following conditions:



326 N. EULER

a) F2 = 0, then h2 is given by

h2(t) = f
−2/(n+3)
3 exp

(
n− 1
n+ 3

∫ t

f1(ζ)dζ
)
×

×
[
c1

∫ t

f
2/(n+3)
3 (ρ) exp

(
−n− 1
n+ 3

∫ ρ

f1(ζ)dζ
)
dρ+ c2

]
,

and g2 is given by (59).

b) F1 = 0 with c1 = 0, then h2 is given by

h2(t) = c2f
−2/n+3
3 exp

(
n− 1
n+ 3

∫ t

f1(ζ)dζ
)
,

and g2 is given by (59).

c) F1 6= 0 and F2 6= 0 with c1 6= 0, then

h2(t) = −c1F2

F1
,

and g2 is given by (46), whereby the condition on f1, f2 and f3 is

Ḟ1F2 − Ḟ2F1 − F 2
1 −

n− 1
n+ 3

(
2

n− 1
ḟ3f

−1
3 − f1

)
F1F2 = 0.

Here F1 and F2 are given by (52) and (53), respectively.

Remark: The condition F2 = 0 is identical to the condition for transforming (1) in
the integrable equation (12) and linearizing (1) by the non-oint transformation (30).

An important special case of equation (1) is the case where f1 = f2 = 0. By applying
Theorem 3 to Theorem 6 we calculate the conditions on f3 for which there exist Lie point
symmetries of (1) (see Table 1 and Table 2). The general form of f3 can be given in all
cases, except where g1 6= 0, i.e., Theorem 4. For this case, we only list the conditions on
f3 (Table 1). Let us view the original determining equations for this case:

g̈1 = 0, g2(t) =
1
2
ḣ2 −

1
2
c1, f3(t) = −1

4
h

(3)
2

g1
.

This set of equations may be converted into a condition on h2, namely

h2h
(4)
2 −

(
−5

2
ḣ2 +

ġ1
g1
h2 −

1
2
c1

)
h

(3)
2 = 0,

where h3)
2 6= 0. We did study solutions of this equation.
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Table 1: ẍ+ f3(t)x2 = 0

Theorem 3: Lie Symmetry Generator Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

Theorem 3a

h2(t) = − c1
k1

(k1t+ k2) + c2(k1t+ k2)2

g2(t) = c2k1(k1t+ k2)− 3c1

Z1 = (k1t+ k2)2
∂

∂t
+ k1(k1t+ k2)x

∂

∂x
, Z2 =

1
k1

(k1t+ k2)
∂

∂t
+
n+ 1
n− 1

x
∂

∂x

[Z1, Z2] = −Z1

Condition on f3

F2 ≡
2

25f2
3

{
6ḟ2

3 − 5f3f̈3

}
= 0

General solution for f3

f3(t) = (k1t+ k2)
−5 , k1, k2 ∈ R

Theorem 3b

h2(t) = c2k
−2/5
3

(
−1

5
t2 +

2
5
k1t+ k2

)
, g2(t) = −c2

5
k
−2/5
3 (t− k1)

Condition on f3

F1 ≡
1

125f3
3

{
−84ḟ3

3 + 105f3ḟ3f̈3 − 25f2
3 f

(3)
3

}
= 0

General solution for f3

f3(t) = k3

(
−1

5
t2 +

2
5
k1t+ k2

)
, k1, k2, k3 ∈ R
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Table 1 (continued)

Thoerem 3c

h2(t) = k1t
2 + k2t+ k3 g2(t) = k1t+

1
2
(k2 − c1)

Condition on f3

21ḟ2
3 f̈

2
3 − 42f3f̈

3
3 − 24ḟ3

3 f
(3)
3 + 62f3ḟ3f̈3f

(3)
3 − 15f2

3

(
f

(3)
3

)2
− 12f3ḟ

2
3 f

(4)
3 + 10f2

3 f̈3f
(4)
3

= 0

Condition on f3 with the subsititions: A(t) = ḟ3f
−1
3 and B(A) = Ȧ(t)(

10B3 − 2A2B2
)
B′′ −

(
5B2 + 2A2B

)
(B′)2 + 12AB2B′ − 12B3 = 0

Note: The equation for B can be linearized by a point transformation.

General solution for f3

f3(t) = k4(k1t
2 + k2t+ k3)−5/2 exp

{
c1
2

∫ t dρ

k1ρ2 + k2ρ+ k3

}
, kj ∈ R

Theorem 4: Lie Symmetry Generator Z = h2(t)
∂

∂t
+ {g1(t) + g2(t)x}

∂

∂x

Theorem 4a

h2(t) = f
−2/5
3

{
c1

∫ t

f
2/5
3 (ρ)dρ+ c2

}
, g2(t) = −1

5
ḟ3

f3
h2 − 2c1

g1(t) = k1t+ k2, k1, k2 ∈ R

Condition on f3

F2 ≡
1

625f5
3

{
−3564ḟ4

3 + 5940f3ḟ
2
3 f̈3 − 1075f2

3 f̈
2
3 − 1600f2

3 ḟ3f
(3)
3 + 250f3

3 f
(4)
3

}
= 0
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Table 1 (continued)

Condition on f3 with the subsititions: A(t) = ḟ3f
−1
3 and B(A) = Ȧ(t)

250B2B′′ + 250B(B′)2 − 600ABB′ − 325B2 + 490A2B − 49A4 = 0

Note: The equation for B cannot be linearized by a point transformation.

Theorem 4b

h2(t) = c2f
−2/5
3 , g2(t) = −c2

5
ḟ3f

−7/5
3

g1(t) = k1t+ k2, k1, k2 ∈ R

Condition on f3

F1 ≡
1

6250f6
3

{
49896ḟ5

3 − 103950f3ḟ
3
3 f̈3 + 39375f2

3 ḟ3f̈
2
3 + 29250f2

3 ḟ
2
3 f

(3)
3

−9375f3
3 f̈3f

(3)
3 − 5625f3

3 ḟ3f
(4)
3 + 625f4

3 f
(5)
3

}
= 0

Condition on f3 with the subsititions: A(t) = ḟ3f
−1
3 and B(A) = Ȧ(t)

625B3B′′′ + 2500B2(B′ −A)B′′ + 625B(B′)3 − 2500BA(B′)2 + 125B(29A2 − 25B)B′

+3750B2A− 2450BA3 + 196A5 = 0

Theorem 4c

h2(t) = −F2

F1
, g2(t) = −1

5
ḟ3

f3
h2 − 2c1

g1(t) = k1t+ k2, k1, k2 ∈ R

Condition on f3

24948ḟ6
3 f̈

2
3 + · · · 31 terms · · ·+ 500f6

3 f
(4)
3 f

(6)
3 = 0
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Table 2: ẍ+ f3(t)xn = 0

Theorem 5: n = −3. Lie Symmetry Generator Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

h2(t) = c1t
2 + c2t+ c3, g2(t) = c1t+

1
2
c2, f3 = constant

Z1 = t2
∂

∂t
+ xt

∂

∂x
, Z2 = t

∂

∂t
+

1
2
x
∂

∂x
, Z3 =

∂

∂t

[Z1, Z2] = −Z1, [Z1, Z3] = −2Z2, [Z2, Z3] = −Z3

Theorem 6: n ∈ Q\{−3, 0, 1, 2}. Lie Symmetry Generators Z = h2(t)
∂

∂t
+ g2(t)x

∂

∂x

Theorem 6a

h2(t) = − c1
k1

(k1t+ k2) + c2(k1t+ k2)2, g2(t) = c2k1(k1t+ k2)− c1

(
n+ 1
n− 1

)

Z1 = (k1t+ k2)2
∂

∂t
+ k1(k1t+ k2)x

∂

∂x
, Z2 =

1
k1

(k1t+ k2)
∂

∂t
+
(
n+ 1
n− 1

)
x
∂

∂x

[Z1, Z2] = −Z1

Condition on f3

F2 ≡
2

(n+ 3)2f2
3

{
(n+ 4)ḟ2

3 − (n+ 3)f3f̈3

}
= 0

General solution for f3

f3(t) = (k1t+ k2)−(n+3), k1, k2 ∈ R

Theorem 6b

h2(t) = c2k
−2/(n+3)
3

{
− 1
n+ 3

t2 + k1
2

n+ 3
t+ k2

}
, g2(t) = − c2

n+ 3
k
−2/(n+3)
3 (t− k1)
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Table 2 (continued)

Condition on f3

F1 ≡ − 1
(n+ 3)3f3

3

{
−2(n2 + 9n+ 20)ḟ3

3 + 3(n2 + 8n+ 15)f3ḟ3f̈3 − (n+ 3)2f2
3 f

(3)
3

}
= 0

General solution for f3

f3(t) = k3

{
− 1
n+ 3

t2 + k1
2

n+ 3
t+ k2

}−(n+3)/2

Theorem 6c:

h2(t) = k1t
2 + k2t+ k3, g2 = k1t+

1
2
(k2 − c1)

Condition on f3

3(n+ 5)ḟ2
3 f̈

2
3 − 6(n+ 5)f3f̈

3
3 − 4(n+ 4)ḟ3

3 f
(3)
3 + (42 + 10n)f3ḟ3f̈3f

(3)
3

−3(n+ 3)f2
3

(
f

(3)
3

)2
− 2(n+ 4)f3ḟ

2
3 f

(4)
3 + 2(n+ 3)f2

3 f̈3f
(4)
3 = 0

Condition on f3 with the subsititions: A(t) = ḟ3f
−1
3 and B(A) = Ȧ(t)

2
{
(n+ 3)(B3)−A2B2

}
B′′ −

{
(n+ 3)B2 + 2A2B

}
(B′)2 + 12AB2B′ − 12B3 = 0

Note: The equation for B can be linearized by a point transformation.

General solution for f3

f3(t) = k4(k1t
2 + k2t+ k3)−(n+3)/2 exp

{
c1

(
n− 1

2

)∫ t dρ

k1ρ2 + k2ρ+ k3

}
, kj ∈ R
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4.3 Invertible point transformations by Lie point symmetries

One can now use the Lie point symmetry generators obtained above to construct time
dependent first integrals of (1). We give the point transformation in general form and do
an example to illustrate the procedure.

In Table 1 and Table 2 we make use of the substitution

ḟ3

f3
= A(t), B(A) = Ȧ(t),

by which we are able to reduce the order of the differential conditions on f3 by two. It
follows that

f̈3

f3
= B +A2,

f (3)

f3
= B′B + 3BA+A3,

f
(4)
3

f3
= B′′B2 + (B′)2B + 4B′BA+ 3B2 + 6BA2 +A4,

f
(5)
3

f3
= B′′′B3 + 4B′′B′B2 + (B′)3B + 5B′′B2A+ 5(B′)2BA+ 10B′B2

+10B′BA2 + 15B2A+ 10BA3 +A5,

where B′ ≡ dB/dA, etc.
Let us consider the transformation of (1) in an autonomous form by the use of the most

general Lie point symmetry generator for the nonlinear equation (1), namely

Z = h2(t)
∂

∂t
+ {g1(t) + g2(t)x}

∂

∂x
.

The defining equations for the point transformations

X(T ) = F (x, t), T (x, t) = G(x, t)

are

h2(t)
∂T

∂t
+ {g1(t) + g2(t)x}

∂T

∂x
= 1,

h2(t)
∂X

∂t
+ {g1(t) + g2(t)x}

∂X

∂x
= 0.

The general solution of this system is

X(T ) = ϕ1(ω), T (x, t) =
∫ t 1

h2(ρ)
dρ+ ϕ2(ω),

ω = x exp
{
−
∫ t g2(ρ)

h2(ρ)
dρ

}
−
∫ t g1(ρ)

h2(ρ)
exp

{
−
∫ ρ g2(ζ)

h2(ζ)
dζ

}
dρ,

(63)

where ϕ1 and ϕ2 are arbitrary functions of ω and may be chosen in a convenient form.
To construct a point transformation which may transfrom (1) in a first-order ODE, one

needs to solve the system

h2(t)
∂T

∂t
+ {g1(t) + g2(t)x}

∂T

∂x
= 0,

h2(t)
∂X

∂t
+ {g1(t) + g2(t)x}

∂X

∂x
= 1.
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The general solution of this system is

X(T ) =
∫ t 1

h2(ρ)
dρ+ ψ1(ω), T (x, t) = ψ2(ω),

ω = x exp
{
−
∫ t g2(ρ)

h2(ρ)
dρ

}
−
∫ t g1(ρ)

h2(ρ)
exp

{
−
∫ ρ g2(ζ)

h2(ζ)
dζ

}
dρ,

where ψ1 and ψ2 may be chosen arbitrary. It can be shown that this point transformation
reduces (1) in an Abel equation of the first kind, i.e.,

dY

dT
+ Γ3(T )Y 3 + Γ2(T )Y 2 + Γ1(T )Y + Γ0(T ) = 0

with Y = dX/dT . Since the known solutions of the Abel equation are restricted to special
forms of the functions Γ, it is usually a useless exercise. However, if the equation admits
a two-dimensional Lie point symmetry algebra, it is well known that the reduction may
be performed such that the reduced equation (in this case, the Abel equation) admits a
Lie point symmetry. In particular, if Z1 and Z2 are symmetry generators of the equation
to be reduced, and

[Z1, Z2] = λZ1,

then the generator Z1 should be used to perform the reduction. This will ensure that the
symmetry generator Z2 is ‘preserved’ by the reduction, i.e., the reduced equation will admit
the generator Z2 in transformed form. This is important to note, since the integrating
factor µ of any first-order ODE of the form ẋ = −M(x, t)/N(x, t), which admits the Lie
point symmetry generator Z = ξ∂/∂t+ η∂/∂x, is given by µ = (Nη +Mξ)−1. Note also
that it is not a simple task to find Lie point symmetry generators for a first order ODE.
In particular, the determining equation of a Lie point symmetry generator for the ODE
ẋ = f(x, t) is

−ξ ∂f
∂t

− η
∂f

∂x
+
∂η

∂t
+ f

∂η

∂x
− f

∂ξ

∂t
− f2 ∂ξ

∂x
= 0.

As an example, we transform

ẍ+ k3

(
− 1
n+ 3

t2 +
2k1

n+ 3
t+ k2

)−(n+3)/2

xn = 0, k1, k2 ∈ R, (64)

for n ∈ Q\{−3, 0, 1}, in an autonomous form. This case corresponds to Theorem 6b given
in Table 2. Note that

g2 =
1
2
ḣ2, h2(t) = − 1

n+ 3
t2 +

2k1

n+ 3
t+ k2.

The general form of the point transformation is given by (63). We let ϕ1 = ω,
ϕ2 = 0. It follows that

X(T ) = h
−1/2
2 x, T (x, t) =

∫ t dρ

h2(ρ)
.

This transformation leads to the autonomous equation

d2X

dT 2
−
{(

k1

n+ 3

)2

+
k2

n+ 3

}
X + c

(n+3)/2
2 Xn = 0



334 N. EULER

which has the first integral

T

(
X,

dX

dT

)
=
(
dX

dT

)2

−
{(

k1

n+ 3

)2

+
k2

n+ 3

}
X2 +

(
2

n+ 1

)
c
(n+3)/2
2 Xn+1 = 0.

A first integral for (64) is then

I(t, x, ẋ) =
1
h2

(
−1

2
ḣ2x+ h2ẋ

)2

− 1
h2

{(
k1

n+ 3

)2

+
k2

n+ 3

}
x2

+
2

n+ 1
c
(n+3)/2
2 h

−(n+1)/2
2 xn+1.

5 Transforming in the second Painlevé transcendent

By using the Lie point symmetry generators classified in the previous section, we are able
to construct point transformations by which (1) may be transformed in a second equation.
However, this method does not allow for a transformation in an equation without a Lie
point symmetry. This can easily be shown: Consider a second equation in the variables
(X,T ) with no symmetry. To construct a point transformation in this equation by a Lie
point symmetry generator Z = ξ∂/∂t + η∂/∂t of the first equation with variables (x, t),
we need to solve the system

ξ
∂X

∂t
+ η

∂X

∂x
= 0, ξ

∂T

∂t
+ η

∂T

∂x
= 0,

which implies that the Jacobian is zero.
There is an important class of equations which do not admit Lie point symmetries, but

are integrable. These are the six Painlevé transcendents, as discussed in the introduction.
We consider the following problem (Euler et al 1991): Find the condition on f1, f2, and
f3 for which (1), with n = 3, i.e.,

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)x3 = 0,

may be point transformed in the second Painlevé transcendent

d2X

dT 2
− TX − 2X3 − a = 0, a ∈ R. (65)

By the point transformation

X(T ) = f(t)x, T (x, t) = g(t) (66)

we obtain the following expressions:

f1(t) = 2
ḟ

f
− g̈

ġ
, f2(t) =

f̈

f
− ḟ

f

g̈

ġ
− gġ2, f3(t) = −2(fġ)2.

Inverting this system leads to

Theorem 7: Equation

ẍ+ f1(t)ẋ+ f2(t)x+ f3(t)x3 = 0
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may be point transformed in

d2X

dT 2
− TX − 2X3 = 0

by the invertible point transformation

X(T ) = f(t)x, T (x, t) = g(t),

where

f(t) = kf
1/6
3 exp

{∫ t 1
3
f1(ρ)dρ

}
,

g(t) =
k2

18f8/3
3

(
−6f3f̈3 + 7ḟ2

3 − 2f1f3ḟ3 − 12ḟ1f
2
3 + 36f2f

2
3 − 8f2

1 f
2
3

)
exp

{
2
3

∫ t

f1(ρ)dρ
}
,

under the following conditions:

9f (4)
3 f3

3 − 54f (3)
3 ḟ3f

2
3 + 18f (3)

3 f3
3 f1 − 36f̈2

3 f
2
3 + 192f̈3ḟ

2
3 f3 − 78f̈3ḟ3f

2
3 f1 + 36f̈3f

3
3 f2

+3f̈3f
3
3 f

2
1 − 112ḟ4

3 + 64ḟ3
3 f3f1 + 6ḟ2

3 ḟ1f
2
3 − 72ḟ2

3 f
2
3 f2 + 90ḟ3ḟ2f

3
3 − 27ḟ3f̈1f

3
3

−57ḟ3ḟ1f
3
3 f1 + 72ḟ3f

3
3 f2f1 − 14ḟ3f

3
3 f

3
1 − 54f̈2f

4
3 − 90ḟ2f

4
3 f1 + 18f (3)

1 f4
3

+54f̈1f
4
3 f1 + 36ḟ2

1 f
4
3 − 36ḟ1f

4
3 f2 + 60ḟ1f

4
3 f

2
1 − 36f4

3 f2f
2
1 + 8f4

3 f
4
1 = 0,

(67)

with

−6f3f̈3 + 7ḟ2
3 − 2f1f3ḟ3 − 12ḟ1f

2
3 + 36f2f

2
3 − 8f2

1 f
2
3 6= 0. (68)

Remark: The l.h.s. of (68) equal to zero is identical to the condition obtained in
Section 2 by which (1) may be point transformed in d2X/dT 2 + X3 = 0, and which
linearizes (1) by a nonpoint transformation (with n = 3).

It is easy to show that if f1, f2 and f3 are such that the l.h.s. of (68) is equal to zero,
then condition (67) is satisfied identically for those functional forms. In Euler et al [6],
we showed that (1) passes the Painlevé test if and only if condition (67) is satisfied. (We
refer to the book of Steeb and Euler [16] for more details on the Painlevé test of nonlinear
evolution equations.) Thus, if conditions (67) and (68) are satisfied, equation (1) has the
Painlevé property and is therefore integrable; this is true since there exists an invertible
point transformation in the second Painlevé transcendent. Moreover, equation (1) with
f1, f2 and f3, which make the l.h.s. of (68) equal to zero, also has the Painlevé property,
since the Painlevé test is passed and the equation can invertibly be point transformed in
the integrable equation d2X/dT 2 +X3 = 0.

Let us finally consider the special case where f1 = f2 = 0. By (67), we obtain the
condition

9A(3) − 18ÄA+ 12ȦA2 − 9Ȧ2 −A4 = 0, (69)

where A(t) = ḟ3/f3. This equation admits three Lie point symmetry generators

Z1 = − t
2

6
∂

∂t
+
(

1
3
At+ 1

)
∂

∂A
, Z2 = t

∂

∂t
−A

∂

∂A
, Z3 =

∂

∂t
.
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By using these symmetry properties, (69) may be transformed in the following Abel equa-
tion

dU

dT
= g1(T )U + g2(T )U2 + g3(T )U3,

where

U(T ) =
(
dX

dT

)−1

, T (u,A) = u exp{−2X}, X(T ) = lnA, u(A) =
dA

dt
,

g1(T ) =
1
T 2

(
1
9
− 4

3
T + 5T 2 − 6T 3

)
, g2(T ) =

1
T

(2− 7T ) , g3(T ) = − 1
T
.

6 Conclusion

We have seen that if condition (19) (with n /∈ {−3,−1, 0, 1}) is satisfied, equation (1) has
the following properties:

a) Equation (1) may be point transformed in

d2X

dT 2
+Xn = 0.

b) Equation (1) may be linearized in

d2X

dT 2
+ k2 = 0, k2 ∈ R\{0}

by a nonpoint transformation.

c) Equation (1) admits a two-dimensional Lie point symmetry algebra.

By the Lie point symmetry classification, we have observed that (1) admits a Lie
symmetry generator with g1 6= 0 only in the case n = 2. This is a very complicated case to
solve in general. We have given the general conditions on f1, f2 and f3 for the existence
of Lie symmetries in this case as well as all other cases of n. Leach and Maharaj [10]
calculated some special cases where the Lie point symmetries may be given explicitly.

For the case n = 3, we have given the necessary and sufficient conditions on f1, f2 and
f3 by which (1) has the Painlevé property. This includes also condition (19) with n = 3.
A detailed Painlevé analysis of (1) will be the subject of a future paper.
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