Transformation Properties of
 $\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0$

Norbert EULER

Department of Mathematics Luleå University of Technology, S-971 87 Luleå, Sweden

Abstract

In this paper, we consider a general anharmonic oscillator of the form $\ddot{x}+f_{1}(t) \dot{x}+$ $f_{2}(t) x+f_{3}(t) x^{n}=0$, with $n \in \mathcal{Q}$. We seek the most general conditions on the functions f_{1}, f_{2} and f_{3}, by which the equation may be integrable, as well as conditions for the existence of Lie point symmetries. Time-dependent first integrals are constructed. A nonpoint transformation is introduced by which the equation is linearized.

1 Introduction

Recently we have reported some results on the integrability of the nonlinear anharmonic oscillator

$$
\begin{equation*}
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0 \tag{1}
\end{equation*}
$$

Here $\dot{x} \equiv d x / d t, \ddot{x} \equiv d^{2} x / d t^{2}$ and $n \in \mathcal{Q}$. Conditions on the functions f_{1}, f_{2}, and f_{3} as well as the constant n were derived for which the equation admits point transformations in integrable equations. The Lie point symmetries were obtained only for the case where f_{1}, f_{2} and f_{3} are constants. The Painlevé analysis for special cases of n was performed. For more details, we refer to the papers of Euler et al [6], Duarte et al [2] and Duarte et al [3]. In the present paper, we generalize those results, introduce a nonpoint transformation which linearizes (1), and do a Lie point symmetry classification of (1), whereby conditions for the existence of Lie point symmetries are given on f_{1}, f_{2} and f_{3}. Before doing so, we would like to make some literatorical remarks on point transformations, nonpoint transformations, and integrability of ordinary differential equations (ODEs), relevant in the present considerations.

In being faced with a nonlinear ordinary differential equation (NODE), one unsually wants to construct its general solution. If the general solution can be obtained, the equation is said to be integrable. Constructing such solutions for NODEs is in general difficult. In fact, in most cases the general solution of NODEs cannot be obtained in closed form, so that one has to be satisfied by solving the equation numerically or by constructing some special exact solutions. Much attention has been focused on the classification of NODEs as integrable and nonintegrable ones. In the case of second order ODEs, the construction
of a first integral is of fundamental importance. It is desirable to have a simple approach to obtaining time-dependent first integrals of NODEs.

Several methods for the identification of integrable ODEs have been proposed. A method dating back to the beginning of the development of differential calculus, is to find a coordinate transformation which transforms a particular differential equation in a differential equation with a known general solution. To find a transformation which transforms a NODE in a linear ODE would certainly be a way in which to solve the NODE in general. In particular, the problem of linearizing second-order ODEs has been of great interest. The utilization of point transformations for the linearization is the usual procedure (see, for example Duarte et al [1], Sarlet et al [13], and Moreira [11]). Since the time of Tresse [17], it is known that the most general second-order ODE which may be linearized by a point transformation, is of the form

$$
\begin{equation*}
\ddot{x}+\Lambda_{3}(x, t) \dot{x}^{3}+\Lambda_{2}(x, t) \dot{x}^{2}+\Lambda_{1}(x, t) \dot{x}+\Lambda_{0}(x, t)=0, \tag{2}
\end{equation*}
$$

whereby the functions Λ_{j} must satisfy the following conditions:

$$
\begin{align*}
& \Lambda_{1 x x}-2 \Lambda_{2 x t}+3 \Lambda_{3 t t}+6 \Lambda_{3} \Lambda_{0 x}+3 \Lambda_{0} \Lambda_{3 x}-3 \Lambda_{3} \Lambda_{1 t}-3 \Lambda_{1} \Lambda_{3 t}-\Lambda_{2} \Lambda_{1 x}+2 \Lambda_{2} \Lambda_{2 t}=0, \tag{3}\\
& \Lambda_{2 t t}-2 \Lambda_{1 x t}+3 \Lambda_{0 x x}-6 \Lambda_{0} \Lambda_{3 t}-3 \Lambda_{3} \Lambda_{0 t}+3 \Lambda_{0} \Lambda_{2 x}+3 \Lambda_{2} \Lambda_{0 x}+\Lambda_{1} \Lambda_{2 t}-2 \Lambda_{1} \Lambda_{1 x}=0 .
\end{align*}
$$

(We use the notation $\Lambda_{1 x} \equiv \partial \Lambda_{1} / \partial x, \Lambda_{1 x x} \equiv \partial^{2} \Lambda_{1} / \partial x^{2}$, etc.) In fact, (2) is the most general second-order ODE which may be point transformed by the invertible point transformation

$$
\begin{equation*}
X(T)=F(x, t), \quad T(x, t)=G(x, t), \quad \frac{\partial(T, X)}{\partial(t, x)} \neq 0, \tag{4}
\end{equation*}
$$

in the free particle equation

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}=0 \tag{5}
\end{equation*}
$$

Transformation (4) is obtained by solving F and G from

$$
\begin{align*}
& \Lambda_{3}=\left(G_{x} F_{x x}-G_{x x} F_{x}\right) \Delta^{-1}, \\
& \Lambda_{2}=\left(G_{t} F_{x x}+2 G_{x} F_{t x}-2 F_{x} G_{t x}-F_{t} G_{x x}\right) \Delta^{-1}, \\
& \Lambda_{1}=\left(G_{x} F_{t t}+2 G_{t} F_{t x}-2 F_{t} G_{t x}-F_{x} G_{t t}\right) \Delta^{-1} \tag{6}\\
& \Lambda_{0}=\left(G_{t} F_{t t}-G_{t t} F_{t}\right) \Delta^{-1} .
\end{align*}
$$

Here $\Delta \equiv G_{t} F_{x}-G_{x} F_{t} \neq 0$.
The compatibility condition of system (6) is given by (3). If the point transformation (4) is known, the first integrals, Lie point symmetries, and general solution of (5) may be used to obtain the corresponding ones for (2). We use this result in Section 4 in the classification of Lie point symmetries for (1). In particular, the first integral of (5) is

$$
I\left(\frac{d X}{d T}\right)=\frac{d X}{d T}
$$

so that the first integral of (2) takes the form

$$
I(t, x, \dot{x})=\frac{F_{t}+F_{x} \dot{x}}{G_{t}+G_{x} \dot{x}} ;
$$

which is, in general, a time-dependent first integral. The free particle equation (5) admits eight Lie point symmetry generators forming the $s l(3, \mathcal{R})$ Lie algebra under the Lie bracket. Those Lie point symmetry generators are

$$
\begin{array}{llrl}
\mathcal{G}_{1} & =\frac{\partial}{\partial T}, & \mathcal{G}_{2}=\frac{\partial}{\partial X}, \quad \mathcal{G}_{3}=T \frac{\partial}{\partial T}, & \mathcal{G}_{4}=X \frac{\partial}{\partial X}, \quad \mathcal{G}_{5}=X \frac{\partial}{\partial T} \\
\mathcal{G}_{6} & =T \frac{\partial}{\partial X}, & \mathcal{G}_{7}=T\left(T \frac{\partial}{\partial T}+X \frac{\partial}{\partial X}\right), & \mathcal{G}_{8}=X\left(T \frac{\partial}{\partial T}+X \frac{\partial}{\partial X}\right)
\end{array}
$$

This is the maximum number of Lie point symmetries which any second-order ODE might admit. In fact, any nonlinear second order ODE may admit the $\operatorname{sl}(3, \mathcal{R})$ Lie point symmetry algebra provided it admits eight Lie point symmetries. In such a case a point transformation can be found which would linearize the equation, i.e., transform the equation in the free particle equation (5). This leads to the statement:

A necessary and sufficient condition for a second-order $O D E$ to be linearizable by a point transformation, is that the equation admits the $\operatorname{sl}(3, \mathcal{R})$ Lie point symmetry algebra.

Linearization by point transformations was studied in some detail by several authors (see for example the works of Leach [9], Sarlet et al [13], and Duarte et al [1]). An example of a nonlinear second-order ODE that admits the $\operatorname{sl}(3, \mathcal{R})$ Lie point symmetry algebra is the equation (Leach [9])

$$
\begin{equation*}
\ddot{x}+\alpha x \dot{x}+\frac{\alpha^{2}}{9} x^{3}=0 \tag{7}
\end{equation*}
$$

where α is an arbitrary real constant. This equation plays an important role in our Lie point symmetry classification of (1) (see Section 4). The general solution of (7) was obtained by Duarte et al [1] by the invertible point transformation

$$
X(T)=\frac{t}{x}-\frac{1}{6} \alpha t^{2}, \quad T(x, t)=\frac{1}{x}-\frac{1}{3} \alpha t
$$

which transforms (7) in the free particle equation (5). The general solution of the free particle equation is $X(T)=k_{1} T+k_{2}$, so that the general solution of (7) follows:

$$
\begin{equation*}
x(t)=\frac{t-k_{1}}{\frac{1}{6} \alpha t^{2}-k_{1} \frac{1}{3} \alpha t+k_{2}} . \tag{8}
\end{equation*}
$$

Here k_{1} and k_{2} are integrating constants. This result is used to solve some of the equations in Table 1 and Table 2 of Section 4.

It is clear that if one is able to find the invertible point transfromation by which a NODE may be linearized, the general solution of the NODE is easily obtained. We refer to the book of Steeb [14]. Since (1) is not linearizable by a point transformation, we aim to find point transformations in other integrable equations (Section 2 and Section 5), and to linearize (1) by a nonpoint transformation (Section 3).

If a NODE admits a Lie point symmetry, the symmetry may be used to calculate point transformations which transform the NODE either in an autonomous ODE or an ODE with lower order. A Lie point symmetry classification of (1) is performed in Section 4. For more details on Lie point symmetries, we refer to the books of Olver [12], Fushchych et al [8] and Steeb [15].

The problem of classifying second order ODEs with respect to the singularity structure of their soluitions, was considered by a school of French Mathematicians under the leadership of P. Painlevé in the period from 1893 till 1902. They classified the equation

$$
\begin{equation*}
A_{1}(x, t) \ddot{x}+A_{2}(x, t) \dot{x}^{2}+A_{3}(x, t) \dot{x}+A_{4}(x, t)=0, \quad \frac{\partial^{m_{j}} A_{j}}{\partial x^{m_{j}}}=0, \quad j=1, \ldots, 4 \tag{9}
\end{equation*}
$$

(m_{1}, \ldots, m_{4} may be different integers) with respect to the following classification criterion:
The critical points of solutions of (9), that are branch points and essential singularities, should be fixed points.

Any function which is a solution of an equation of this class of ODEs would, therefore, have only poles as movable singularities. They obtained fifty second-order ODEs. The equations satisfying the above criterion are said to have the Painlevé property. Fourty-four of these fifty equations can be solved by standard functions. The remaining six are known as the Painlevé transcendents; they define transcendental functions. It is important to note that the Painlevé transcendents admit no Lie point symmetry transformations. The classification of (9) was done under the Mobius group of transformations

$$
X(T)=\frac{\psi_{1}(t) x+\psi_{2}(t)}{\psi_{3}(t) x+\psi_{4}(t)}, \quad T=\phi(t),
$$

where ψ_{j} and ϕ are analytic functions of t. Given a particular nonlinear second-order ODE, one could ask the question:

Does there exist an invertible point transformation which may transform a given nonlinear ODE in one of the integrable second-order ODEs classified by Painlevé?

This is generally a difficult question to answer. In our paper, Euler et al [7], an invertible point transformation was obtained for an anharmonic oscillator of the form (1) by which the equation may be transformed in the second Painlevé transcendent. We discuss this result in Section 5 of the present paper in detail.

It is clear that the point transformation (4) preserves the Lie point symmetry stucture as well as the integrability structure of a given ODE. By introducing a nonpoint transformation of the form

$$
\begin{equation*}
X(T)=F(x, t), \quad d T(x, t)=G(x, t) d t, \tag{10}
\end{equation*}
$$

one preserves only the integrability structure and not the symmetry structure of the equation. A transformation of this type was considered by Euler et al (1994) in their calculations of approximate solutions of nonlinear multidimensional heat equations. Duarte et al (1994) made use of transformation (10) and obtained equations which may be nonpoint transformed in the free particle equation (5). They showed, by way of examples, transformation (10) may lead to the linearization of NODEs not linearizable by a point transformation. In Section 3 of the present paper, we utilize this transformation for the linearization of (1).

2 First integrals by point transformations

In this section we consider the problem of constructing invertible point transformations of the form (4), i.e.,

$$
X(T)=F(x, t), \quad T(x, t)=G(x, t)
$$

for equation (1), i.e.,

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0 .
$$

Note that (1) is a special case of (2). That is, for $\Lambda_{3}=\Lambda_{2}=0, \Lambda_{1}=\alpha(t)$ equation (2) takes the form

$$
\begin{equation*}
\ddot{x}+\alpha_{1}(t) \dot{x}+\Lambda_{0}(x, t)=0 . \tag{11}
\end{equation*}
$$

By condition, (3) it follows that (11) may be linearized by a point transformation of the form (4) if and only if Λ_{0} is a linear function of x, where α is an arbitrary function of t. This leads to the following result:

Equation (1), with $n \notin\{0,1\}$, cannot be linearized by a point transformation.
We now consider the integrable equation

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}+X^{n}=0 \tag{12}
\end{equation*}
$$

which admits the first integral

$$
I\left(X, \frac{d X}{d T}\right)=\frac{1}{2}\left(\frac{d X}{d T}\right)^{2}+\frac{X^{n+1}}{n+1}
$$

By the point transformation (4) equation (12) takes the form

$$
\begin{equation*}
\ddot{x}+A_{3} \dot{x}^{3}+A_{2} \dot{x}^{2}+A_{1} \dot{x}+A_{0}=0 \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{3}=\left(F_{x x} G_{x}-G_{x x} F_{x}+G_{x}^{3} F^{n}\right) \Delta^{-1} \\
& A_{2}=\left(G_{t} F_{x x}+2 G_{x} F_{x t}-2 F_{x} G_{x t}-F_{t} G_{x x}+3 G_{t} G_{x}^{2} F^{n}\right) \Delta^{-1} \\
& A_{1}=\left(G_{x} F_{x t}+2 G_{t} F_{x t}-2 F_{t} G_{x t}-F_{x} G_{t t}+3 G_{t}^{2} G_{x} F^{n}\right) \Delta^{-1} \tag{14}\\
& A_{0}=\left(G_{t} F_{t t}-F_{t} G_{t t}+G_{t}^{3} F^{n}\right) \Delta^{-1}
\end{align*}
$$

and $\Delta \equiv F_{x} G_{t}-F_{t} G_{x} \neq 0$. In order to obtain an equation of the form (1), we set

$$
\begin{equation*}
F(x, t)=f(t) x, \quad G(x, t)=g(t) \tag{15}
\end{equation*}
$$

where f, g are smooth functions, to be determined in terms of the coefficient functions of (1), namely f_{1}, f_{2} and f_{3}. System (14) leads to

$$
A_{3}=A_{2}=0, \quad A_{1}=\frac{2 \dot{f} \dot{g}-f \ddot{g}}{f \dot{g}}, \quad A_{0}=\frac{\dot{g} \ddot{f}-\dot{f} \ddot{g}}{f \dot{g}} x+\dot{g} f^{n-1} x^{n}
$$

The functions f_{1}, f_{2} and f_{3} then take the form

$$
\begin{equation*}
f_{1}(t)=\frac{2 \dot{f}}{f}-\frac{\ddot{g}}{\dot{g}}, \quad f_{2}(t)=\frac{\ddot{f}}{f}-\frac{\dot{f}}{f} \frac{\ddot{g}}{\dot{g}}, \quad f_{3}(t)=\dot{g}^{2} f^{n-1} . \tag{16}
\end{equation*}
$$

We can state the following
Theorem 1: Equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0
$$

may be point transformed in the equation

$$
\frac{d^{2} X}{d T^{2}}+X^{n}=0
$$

by the transformation

$$
X(T)=f(t) x, \quad T(x, t)=g(t)
$$

in the following cases:
a) For $n \notin\{-3,0,1\}$ the transformation coefficients are

$$
\begin{align*}
& f(t)=C f_{3}^{1 /(n+3)}(t) \exp \left(\int^{t} \frac{2 f_{1}(\zeta)}{n+3} d \zeta\right) \tag{17}\\
& g(t)=\int^{t} \frac{f_{3}^{1 / 2}(\zeta)}{f^{(n-1) / 2}(\zeta)} d \zeta \tag{18}
\end{align*}
$$

with the following conditions on the equation coefficients

$$
\begin{equation*}
f_{2}=\frac{1}{n+3} \frac{\ddot{f_{3}}}{f_{3}}-\frac{n+4}{(n+3)^{2}}\left(\frac{\dot{f}_{3}}{f_{3}}\right)^{2}+\frac{n-1}{(n+3)^{2}}\left(\frac{\dot{f}_{3}}{f_{3}}\right) f_{1}+2 \frac{1}{n+3} \dot{f}_{1}+2 \frac{n+1}{(n+3)^{2}} f_{1}^{2} \cdot(\tag{19}
\end{equation*}
$$

b) For $n=-3$ the transformation coefficients are

$$
\begin{align*}
& g(t)=\int^{t} \sqrt{f_{3}(\rho)} \exp \left(2 \int^{\rho} \phi(\zeta) d \zeta\right) d \rho \tag{20}\\
& f(t)=\exp \left(\int^{t} \phi(\zeta) d \zeta\right) \tag{21}
\end{align*}
$$

where ϕ is the solution of the Riccati equation

$$
\begin{equation*}
\dot{\phi}=\phi^{2}-f_{1}(t) \phi+f_{2}(t) . \tag{22}
\end{equation*}
$$

The condition on the equation coefficients is

$$
\begin{equation*}
f_{1}(t)=-\frac{1}{2} \frac{\dot{f_{3}}}{f_{3}} . \tag{23}
\end{equation*}
$$

To prove Theorem 1 one needs to invert system (16) and integrate to obtain f and g. The compatibility condition of (16) results in the differential relations (19) and (23), which provides the condition of existence of an invertible point transformation of (1) in the integrable equation (12).

By the point transformation (4) with (15), the first integral of (1) is

$$
I(t, x, \dot{x})=\frac{1}{2}\left(\frac{\dot{f}}{\dot{g}} x+\frac{f}{\dot{g}} \dot{x}\right)^{2}+\frac{1}{n+1} f^{n+1} x^{n+1}
$$

($n \neq-1$), where f and g as well as the corresponding conditions on f_{1}, f_{2}, and f_{3}, are given in Theorem 1.

3 Linearization by nonpoint transformation

In this section, we make use of the nonpoint transformation (10), i.e.,

$$
X(T)=F(x, t), \quad d T(x, t)=G(x, t) d t
$$

Let us pose the following problem: Find functions F and G in transformation (10), by which the general anharmonic oscillator (1) transforms in

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}+k_{1} \frac{d X}{d T}+k_{2} X^{p}=0 \tag{24}
\end{equation*}
$$

Here k_{1}, k_{2} are real constants, and $p \in \mathcal{Q}$. Applying transformation (10) to (24), we obtain

$$
\begin{equation*}
\ddot{x}+A_{2}(x, t) \dot{x}^{2}+A_{1}(x, t) \dot{x}+A_{0}(x, t)=0 \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{2}(x, t)=\frac{F_{x x}}{F_{x}}-\frac{G_{x}}{G}, \quad A_{1}(x, t)=2 \frac{F_{x t}}{F_{x}}-\frac{G_{t}}{G}-\frac{G_{x}}{G} \frac{F_{t}}{F_{x}}+k_{1} \\
& A_{0}(x, t)=\frac{F_{t t}}{F_{x}}-\frac{F_{t}}{F_{x}} \frac{G_{t}}{G}+k_{1} \frac{F_{t}}{F_{x}}-k_{2} G^{2} \frac{F^{p}}{F_{x}}
\end{aligned}
$$

In order to obtain an equation of the form (1), we set

$$
A_{2}=0, \quad A_{1}=f_{1}(t), \quad A_{0}=f_{2}(t) x+f_{3}(t) x^{n}
$$

The condition $A_{2}=0$ leads to the following special form for (10):

$$
\begin{equation*}
X(T)=f(t) x^{m}, \quad d T(x, t)=g(t) x^{m-1} d t \tag{26}
\end{equation*}
$$

so that

$$
f_{1}(t)=\frac{m+1}{m} \frac{\dot{f}}{f}-\frac{\dot{g}}{g}+k_{1}, \quad f_{2}(t)=\frac{1}{m}\left(\frac{\ddot{f}}{f}-\frac{\dot{f}}{f} \frac{\dot{g}}{g}+k_{1} \frac{\dot{f}}{f}\right), \quad f_{3}(t)=\frac{k_{2}}{m} g^{2} f^{p-1}
$$

We can now state
Theorem 2: Equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0
$$

may be nonpoint transformed in the equation

$$
\frac{d^{2} X}{d T^{2}}+k_{1} \frac{d X}{d T}+k_{2} X^{p}=0, \quad k_{1}, k_{2} \in \mathcal{R}, \quad p \in \mathcal{Q}
$$

by transformation (26), with

$$
\begin{align*}
& f(t)=f_{3}^{m /(n+3)} \exp \left\{\frac{2 m}{n+3} \int^{t} f_{1}(\rho) d \rho-2 k_{1} \frac{m}{n+3} t\right\} \\
& g(t)=\left(\frac{m}{k_{2}}\right)^{1 / 2} f^{1-(n+1) /(2 m)} \tag{27}
\end{align*}
$$

and

$$
p=\frac{n+1}{m}-1 \quad n \notin\{-3,1\}, \quad m \notin\{0,1\}, \quad p \neq 1, \quad m(p+1) \neq-2
$$

if and only if

$$
\begin{align*}
f_{2}= & \frac{1}{n+3} \frac{\ddot{f_{3}}}{f_{3}}-\frac{n+4}{(n+3)^{2}}\left(\frac{\dot{f}_{3}}{f_{3}}\right)^{2}+\frac{n-1}{(n+3)^{2}}\left(\frac{\dot{f_{3}}}{f_{3}}\right) f_{1}+2 \frac{1}{n+3} \dot{f}_{1} \\
& +2 \frac{n+1}{(n+3)^{2}} f_{1}^{2}+\frac{k_{1}}{(n+3)^{2}}\left\{4 \frac{\dot{f}_{3}}{f_{3}}-2(n-1) f_{1}-4 k_{1}\right\} \tag{28}
\end{align*}
$$

Remark: Conditions (19) and (28) are identical if $k_{1}=0$. The nonpoint transformation does, therefore, not identify a wider class of integrable equations of the form (1).

Let us now find a nonpoint transformation which linearizes (1). Note that the constant m, in the nonpoint transformation (26), may be chosen arbitrary (except for 0 and 1). With the choice

$$
m=n+1
$$

equation (1), for $n \in \mathcal{Q} \backslash\{-3,-1,1\}$, is linearized in

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}+k_{1} \frac{d X}{d T}+k_{2}=0, \quad k_{2} \neq 0 \tag{29}
\end{equation*}
$$

With this value for m, transformation (26) reduces to

$$
\begin{equation*}
X(T)=f(t) x^{n+1}, \quad d T=\sqrt{\frac{n+1}{k_{2}} f_{3}(t) f(t)} x^{n} d t \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
f(t)=f_{3}^{(n+1) /(n+3)} \exp \left\{2\left(\frac{n+1}{n+3}\right) \int^{t} f_{1}(\rho) d \rho-2 k_{1}\left(\frac{n+1}{n+3}\right) t\right\} \tag{31}
\end{equation*}
$$

Thus, if condition (28) holds, (1) may be linearized by transformation (30). Note also that (29) may be point transformed in the free particle equation. For $k_{1}=0$, a first integral of (1) takes the form

$$
\begin{equation*}
I(t, x, \dot{x})=\frac{1}{2}\left(\frac{F_{t}+F_{x} \dot{x}}{G}\right)^{2}+F \tag{32}
\end{equation*}
$$

with

$$
F(x, t)=f(t) x^{n+1}, \quad G(x, t)=\sqrt{\frac{n+1}{k_{2}} f_{3}(t) f(t)} x^{n}
$$

and f given by (31) if condition $(28)\left(\right.$ with $\left.k_{1}=0\right)$ is satisfied.

4 Lie point symmetry transformations

4.1 Introduction

In this section, we obtain continuous transfromations which leave equation (1) invariant, and therefore transform solutions of (1) to solutions of (1). This type of transformations forms a group, namely, the Lie point transfromation group. Let a Lie point transformation be given in the following form:

$$
\begin{equation*}
\tilde{t}=\varphi(x, t, \varepsilon), \quad \tilde{x}=\psi(x, t, \varepsilon) \tag{33}
\end{equation*}
$$

Here ε is the group parameter, the group identity is the identity transformation at $\varepsilon=$ 0 , and the group inverse is the inverse transformation. One can define an infinitesimal generator Z for the Lie point transformation group by

$$
\begin{equation*}
Z=\xi(x, t) \frac{\partial}{\partial t}+\eta(x, t) \frac{\partial}{\partial x} \tag{34}
\end{equation*}
$$

so that

$$
\tilde{t}(x, t, \varepsilon)=t+\varepsilon Z t+O\left(\varepsilon^{2}\right), \quad \tilde{x}(x, t, \varepsilon)=x+\varepsilon Z x+O\left(\varepsilon^{2}\right)
$$

Integral curves of the generator Z are group orbits of the transformation group; that is by integrating the autonomous system

$$
\begin{equation*}
\frac{d \tilde{t}}{d \varepsilon}=\xi(\tilde{x}, \tilde{t}), \quad \frac{d \tilde{x}}{d \varepsilon}=\eta(\tilde{x}, \tilde{t}) \tag{35}
\end{equation*}
$$

with the initial conditions $\tilde{x}(\varepsilon=0)=x, \tilde{t}(\varepsilon=0)=t$, we arrive at the finite transformation (33). A function $J(x, t)$ is an invariant of the Lie point transformation group (invariant under the action of the transformation group) if and only if

$$
\begin{equation*}
Z J(x, t)=0 \tag{36}
\end{equation*}
$$

This is known as the invariance condition. Clearly, the invariant functions of a Lie point transformation group are the first integrals of the corresponding autonomous system (35). In order to find a Lie point transformation group which leaves a second order ODE

$$
\begin{equation*}
F(t, x, \dot{x}, \ddot{x})=0 \tag{37}
\end{equation*}
$$

invariant, we need to prolong the infinitesimal generator Z to

$$
Z^{(2)}=Z+\eta^{(1)} \frac{\partial}{\partial \dot{x}}+\eta^{(2)} \frac{\partial}{\partial \ddot{x}}
$$

and apply the invariance condition to the ODE at $F=0$, i.e.,

$$
\begin{equation*}
\left.Z^{(2)} F\right|_{F=0}=0 \tag{38}
\end{equation*}
$$

The prolongation coefficients of Z are

$$
\eta^{(r)}=\frac{d^{r}}{d t^{r}}[\eta(x, t)-\dot{x} \xi(x, t)]+x^{(r+1)} \xi(x, t)
$$

A generator which satisfies condition (38) for a particular ODE is known as a Lie point symmetry generator for that ODE. The corresponding Lie point transformation is known as a Lie point symmetry transformation for the particular ODE. For some ODE, the invariance condition may lead to several Lie point symmetry generators. This set of Lie point symmetry generators form an algebra under the Lie bracket, known as a Lie point symmetry algebra for the equation.

It is clear that an invertible point transformation which transforms one ODE in another, will also transform Lie point symmetry generators of one equation in Lie point symmetry generators of other equation. In particular, the $s l(3, \mathcal{R})$ Lie point symmetry algebra of (2) is spanned by the following Lie point symmetry generators

$$
\begin{aligned}
& \mathcal{G}_{1}=Q_{T} \frac{\partial}{\partial t}+P_{T} \frac{\partial}{\partial x}, \quad \mathcal{G}_{2}=Q_{X} \frac{\partial}{\partial t}+P_{X} \frac{\partial}{\partial x}, \quad \mathcal{G}_{3}=G\left(Q_{T} \frac{\partial}{\partial t}+P_{T} \frac{\partial}{\partial x}\right), \\
& \mathcal{G}_{4}=F\left(Q_{X} \frac{\partial}{\partial t}+P_{X} \frac{\partial}{\partial x}\right), \quad \mathcal{G}_{5}=F\left(Q_{T} \frac{\partial}{\partial t}+P_{T} \frac{\partial}{\partial x}\right), \quad \mathcal{G}_{6}=G\left(Q_{X} \frac{\partial}{\partial t}+P_{X} \frac{\partial}{\partial x}\right), \\
& \mathcal{G}_{7}=G\left(G Q_{T}+F Q_{X}\right) \frac{\partial}{\partial t}+G\left(G P_{T}+F P_{X}\right) \frac{\partial}{\partial x}, \\
& \mathcal{G}_{8}=F\left(F Q_{X}+G Q_{T}\right) \frac{\partial}{\partial t}+F\left(F P_{X}+G P_{T}\right) \frac{\partial}{\partial x} .
\end{aligned}
$$

This is obtained by applying the point transformation (4) and transforming the Lie point symmetry generators of the free particle equation (5). We denote the inverse transformation by $x(X, T)=P(X, T), t(X, T)=Q(X, T))$. The integrable equation (12) admits the following Lie point symmetry generators

$$
\mathcal{G}_{1}=\frac{\partial}{\partial T}, \quad \mathcal{G}_{2}=T \frac{\partial}{\partial T}-\left(\frac{2}{n-1}\right) X \frac{\partial}{\partial X},
$$

so that Lie point symmetry generators of (1) can be obtained by the point transformations derived in Section 2 if the appropriate conditions are satisfied. The Lie point symmetry generators for (1), obtained by the point transformation of the form (4) with F and G given by (15), are of the form

$$
\begin{align*}
& \mathcal{G}_{1}=Q_{T} \frac{\partial}{\partial t}+P_{T} \frac{\partial}{\partial x}, \\
& \mathcal{G}_{2}=\left\{g(t) Q_{T}-\left(\frac{2}{n-1}\right) x Q_{X}\right\} \frac{\partial}{\partial t}-\left\{g(t) P_{T}-\left(\frac{2}{n-1}\right) f(t) x P_{X}\right\} \frac{\partial}{\partial x}, \tag{39}
\end{align*}
$$

whereby the conditions given in Theorem 1 have to be satisfied. This result is contained in our Lie point symmetry classification of (1) (see subsection 4.2).

Lie point symmetries of an ODE may be used to find invertible point transfromations for ODEs. Let (37) admit the Lie point symmetry generator (34). An invertible point transformation of the form (4), which transforms (37) in an ODE of the autonomous form

$$
G(X, \dot{X}, \ddot{X})=0
$$

is obtained by solving the system of first-order PDEs

$$
Z T=1, \quad Z X=0
$$

whereas the solution of

$$
Z T=0, \quad Z X=1
$$

provides the point transformation in an equation of the form

$$
H(T, Y, \dot{Y})=0
$$

where $\dot{X}(T)=Y(T)$. Thus, if an ODE admits Lie point symmetries, it may be used to find first integrals of the ODE. This procedure was followed by Leach and Maharaj [10] for an anharmonic oscillator with multiple anharmonicities.

4.2 Lie point symmetry classification of (1)

Our aim in this section is to do a general Lie point symmetry classification of (1), that is, we give the most general conditions on f_{1}, f_{2} and f_{3} for which Lie point symmetries of (1) exist. The aim is not to find all possible functions by which (1) admits Lie point symmetries but merely to give theorems of existence. We consider this form of classification useful since particular equations of the form (1) can easily be tested for the existence of Lie point symmetries.

On applying the invariance condition (38) on (1), we obtain the following restrictions on the infinitesimal functions ξ and η for generator (34):

$$
\xi(x, t)=h_{1}(t) x+h_{2}(t), \quad \eta(x, t)=\left(\dot{h}_{1}-f_{1} h_{1}\right) x^{2}+g_{2}(t) x+g_{1}(t)
$$

Here h_{j}, g_{j} are smooth functions to be determined by the conditions

$$
\begin{align*}
& x^{n+1} A_{1}+x^{n} A_{2}+x^{n-1} A_{3}+x^{2} A_{4}+x A_{5}+A_{6}=0 \tag{40}\\
& x^{n} B_{1}+x B_{2}+B_{3}=0
\end{align*}
$$

The A 's and B 's are functions of $f_{1}, f_{2}, f_{3}, h_{1}, h_{2}, g_{1}$ and g_{2}. In particular,

$$
\begin{aligned}
& A_{1}=(2-n) f_{1} f_{3}+h_{1} \dot{f}_{3}+n f_{3} \dot{h}_{1}, \quad A_{2}=(n-1) f_{3} g_{2}+h_{2} \dot{f}_{3}+2 f_{3} \dot{h}_{2}, \quad A_{3}=n f_{3} g_{1} \\
& A_{4}=f_{1} f_{2} h_{1}-f_{1} h_{1} \dot{f}_{1}+\frac{d}{d t}\left(f_{2} h_{1}\right)-f_{1}^{2} \dot{h}_{1}-2 \dot{f}_{1} \dot{h}_{1}-h_{1} \ddot{f}_{1}+h_{1}^{(3)} \\
& A_{5}=f_{1} \dot{g}_{2}+h_{2} \dot{f}_{2}+2 f_{2} \dot{h}_{2}+\ddot{g}_{2}, \quad A_{6}=f_{2} g_{1}+f_{1} \dot{g}_{1}+\ddot{g}_{1} \\
& B_{1}=3 f_{3} h_{1}, \quad B_{2}=3 f_{2} h_{1}-3 \frac{d}{d t}\left(h_{1} f_{1}\right)+3 \ddot{h}_{1}, \quad B_{3}=2 \dot{g}_{2}+\frac{d}{d t}\left(f_{1} h_{2}\right)-\ddot{h}_{2} .
\end{aligned}
$$

In general, one has to consider three cases depending on the nonlinearity: The linear case $n \in\{0,1\}$, the case $n=2$ as well as the case $n \in \mathcal{Q} \backslash\{0,1,2\}$.

Case 1: The linear case, i.e., $n=0$ and $n=1$. The equation can be point transformed in the free particle equation. The Lie point symmetry algebra is $s l(3, \mathcal{R})$, as discussed in the introduction. The Lie point symmetry generators are of the form

$$
Z=\left(h_{1}(t) x+h_{2}(t)\right) \frac{\partial}{\partial t}+\left\{\left(\dot{h}_{1}(t)-f_{1}(t) h_{1}(t)\right) x^{2}+g_{1}(t) x+g_{2}(t)\right\} \frac{\partial}{\partial x}
$$

where h_{1}, h_{2}, g_{1}, and g_{2} take on particular functional forms, in terms of f_{1}, f_{2} and f_{3}. This case was discussed in detail by Duarte et al [1].

Case 2: $n=2$. System (40) reduces to the system

$$
\begin{aligned}
& A_{1}=0, \quad A_{2}+A_{4}=0, \quad A_{3}+A_{5}=0, \quad A_{6}=0 \\
& B_{1}=0, \quad B_{2}=0, \quad B_{3}=0
\end{aligned}
$$

From the equation $B_{1}=0$, it follows that $h_{1}=0$ so that the Lie point symmetry generator takes on the form

$$
\begin{equation*}
Z=h_{2}(t) \frac{\partial}{\partial t}+\left(g_{2}(t) x+g_{1}(t)\right) \frac{\partial}{\partial x} \tag{41}
\end{equation*}
$$

where the remaining conditions on g_{1}, g_{2} and h_{2} are

$$
\begin{align*}
& f_{3} g_{2}+h_{2} \dot{f}_{3}+2 f_{3} \dot{h}_{2}=0 \tag{42}\\
& 2 f_{3} g_{1}+f_{1} \dot{g}_{2}+h_{2} \dot{f}_{2}+2 f_{2} \dot{h}_{2}+\ddot{g}_{2}=0 \tag{43}\\
& f_{2} g_{1}+f_{1} \dot{g}_{1}+\ddot{g}_{1}=0 \tag{44}\\
& 2 \dot{g}_{2}+\frac{d}{d t}\left(f_{1} h_{2}\right)-\ddot{h}_{2}=0 \tag{45}
\end{align*}
$$

Note that $h_{1}=0$ for all $n \geq 2$. In solving conditions (42)-(45) we have to consider two subcases, namely $g_{1}=0$ and $g_{1} \neq 0$.

Subcase 2.1: $g_{1}=0$. By (42) and (45), we obtain

$$
\begin{align*}
& g_{2}(t)=-\frac{d}{d t}\left[\ln f_{3}\right] h_{2}-2 \dot{h}_{2} \equiv \frac{1}{2} \dot{h}_{2}-\frac{1}{2} f_{1} h_{2} \tag{46}\\
& \dot{h}_{2}=c_{1}-\frac{1}{5}\left(2 \frac{d}{d t}\left[\ln f_{3}\right]-f_{1}\right) h_{2} . \tag{47}
\end{align*}
$$

Inserting (46) and (47) into (43) leads to an expression of the form

$$
\begin{equation*}
F_{1}\left(f_{1}, f_{2}, f_{3}\right) h_{2}+c_{1} F_{2}\left(f_{1}, f_{2}, f_{3}\right)=0 \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
F_{1}= & \left(-12 f_{1}^{3} f_{3}^{3}+50 f_{1} f_{2} f_{3}^{3}-80 f_{1} f_{3}^{3} \dot{f}_{1}+125 f_{3}^{3} \dot{f}_{2}+22 f_{1}^{2} f_{3}^{2} \dot{f}_{3}\right. \\
& -100 f_{2} f_{3} \dot{f}_{3}+35 f_{3}^{2} \dot{f}_{1} \dot{f}_{3}+21 f_{1} f_{3} \dot{f}_{3}^{2}-84 \dot{f}_{3}^{3}-50 f_{3}^{3} \ddot{f}_{1} \tag{49}\\
& \left.-15 f_{1} f_{3}^{2} \ddot{f}_{3}+105 f_{3} \dot{f}_{3} \ddot{f}_{3}-25 f_{3}^{2} f_{3}^{(3)}\right) /\left(125 f_{3}^{3}\right) \\
F_{2}= & 2\left(-6 f_{1}^{2} f_{3}^{2}+25 f_{2} f_{3}^{2}-10 f_{3}^{2} \dot{f}_{1}-f_{1} f_{3} \dot{f}_{3}+6 \dot{f}_{3}^{2}-5 f_{3} \ddot{f}_{3}\right) /\left(25 f_{3}^{2}\right) . \tag{50}
\end{align*}
$$

This leads to the following
Theorem 3: The most general Lie point symmetry generator (34), which the equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{2}=0
$$

may admit, is of the form

$$
Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}
$$

if and only if f_{1}, f_{2} and f_{3} satisfy one of the following conditions:
a) $F_{2}=0$, then h_{2} is given by

$$
h_{2}(t)=f_{3}^{-2 / 5} \exp \left(\frac{1}{5} \int^{t} f_{1}(\zeta) d \zeta\right)\left[c_{1} \int^{t} f_{3}^{2 / 5}(\rho) \exp \left(-\frac{1}{5} \int^{\rho} f_{1}(\zeta) d \zeta\right) d \rho+c_{2}\right] .
$$

and g_{2} is given by (46).
b) $F_{1}=0$ with $c_{1}=0$, then h_{2} is given by

$$
h_{2}(t)=c_{2} f_{3}^{-2 / 5} \exp \left(\frac{1}{5} \int^{t} f_{1}(\zeta) d \zeta\right)
$$

and g_{2} is given by (46).
c) $F_{1} \neq 0$ and $F_{2} \neq 0$ with $c_{1} \neq 0$, then

$$
h_{2}(t)=-\frac{c_{1} F_{2}}{F_{1}}
$$

and g_{2} is given by (46), whereby the condition on f_{1}, f_{2} and f_{3} is

$$
\dot{F}_{1} F_{2}-\dot{F}_{2} F_{1}-F_{1}^{2}-\left(\frac{2}{5} \dot{f}_{3} f_{3}^{-1}-\frac{1}{5} f_{1}\right) F_{1} F_{2}=0
$$

Here F_{1} and F_{2} are given by (49) and (50), respectively.
A note on the proof of Theorem 3: If $F_{2}=0$, it follows that $F_{1} \equiv 0$. The infinitesimal function h_{2} in the symmetry generator (41) is then obtained by integrating (47), whereby g_{2} is given by (46). If $F_{2} \neq 0$ and $c_{1} \neq 0$, then F_{1} must be nonzero, so that $h_{2}=-c_{1} F_{1} / F_{2}$ has to satisfy (47).

Remark: Condition $F_{2}=0$ is identical to the condition by which (1) is point transformable in the integrable equation (12) and linearizable by the nonpoint transformation (30) (with $n=2$). The Lie point symmetries (39) (with $n=2$) obtained by the point transformations of Section 2, are those corresponding to Theorem 3a. The most general Lie point symmetry generator which follows from the conditions of Theorem 3b, and Theorem 3c cannot be obtained from the symmetries of the integrable equation (12).

Subcase 2.2: $g_{1} \neq 0$. Equations (42) and (45) remain the same, therefore, relations (46) and (47) hold also for this subcase. By (43), g_{1} is given by

$$
\begin{equation*}
g_{1}(t)=-\frac{1}{2 f_{3}}\left(f_{1} \dot{g}_{2}+h_{2} \dot{f}_{2}+2 f_{2} \dot{h}_{2}+\ddot{g}_{2}\right), \tag{51}
\end{equation*}
$$

so that (44) leads to the expression

$$
F_{1}\left(f_{1}, f_{2}, f_{3}\right) h_{2}+c_{1} F_{2}\left(f_{1}, f_{2}, f_{3}\right)=0
$$

where

$$
\begin{align*}
& F_{1}=\left(72 f_{1}^{5} f_{3}^{5}-1250 f_{1} f_{2}^{2} f_{3}^{5}+1800 f_{1}^{3} f_{3}^{5} \dot{f}_{1}+5000 f_{1} f_{3}^{5} \dot{f}_{1}^{2}-2500 f_{1}^{2} f_{3}^{5} \dot{f}_{2}-3125 f_{2} f_{3}^{5} \dot{f}_{2}\right. \\
& -3125 f_{3}^{5} \dot{f}_{1} \dot{f}_{2}-720 f_{1}^{4} f_{3}^{4} \dot{f}_{3}+2500 f_{1}^{2} f_{2} f_{3}^{4} \dot{f}_{3}+2500 f_{2}^{2} f_{3}^{4} \dot{f}_{3}-8300 f_{1}^{2} f_{3}^{4} \dot{f}_{1} \dot{f}_{3} \\
& +3125 f_{2} f_{3}^{4} \dot{f}_{1} \dot{f}_{3}-6875 f_{3}^{4} \dot{f}_{1}^{2} \dot{f}_{3}+13125 f_{1} f_{3}^{4} \dot{f}_{2} \dot{f}_{3}+2730 f_{1}^{3} f_{3}^{3} \dot{f}_{3}^{2}-13125 f_{1} f_{2} f_{3}^{3} \dot{f}_{3}^{2} \\
& +14100 f_{1} f_{3}^{3} \dot{f}_{1} \dot{f}_{3}^{2}-22500 f_{3}^{3} \dot{f}_{2} \dot{f}_{3}^{2}-1485 f_{1}^{2} f_{3}^{2} \dot{f}_{3}^{2}+22500 f_{2} f_{3}^{2} \dot{f}_{3}^{3}-3150 f_{3}^{2} \dot{f}_{1} \dot{f}_{3}^{3} \\
& -20790 f_{1} f_{3} \dot{f}_{3}^{4}+49896 \dot{f}_{3}^{5}+4000 f_{1}^{2} f_{3}^{5} \ddot{f}_{1}+6250 f_{3}^{5} \dot{f}_{1} \ddot{f}_{1}-10375 f_{1} f_{3}^{4} \dot{f}_{3} \ddot{f}_{1} \\
& +7875 f_{3}^{3} \dot{f}_{3}^{2} \ddot{f}_{1}-5625 f_{1} f_{3}^{5} \ddot{f}_{2}+11250 f_{3}^{4} \dot{f}_{3} \ddot{f}_{2}-1100 f_{1}^{3} f_{3}^{4} \ddot{f}_{3}+5625 f_{1} f_{2} f_{3}^{4} \ddot{f}_{3} \tag{52}\\
& -5625 f_{1} f_{3}^{4} \dot{f}_{1} \ddot{f}_{3}+9375 f_{3}^{4} \dot{f}_{2} \ddot{f}_{3}+600 f_{1}^{2} f_{3}^{3} \dot{f}_{3} \ddot{f}_{3}-20625 f_{2} f_{3}^{3} \dot{f}_{3} \ddot{f}_{3}+1875 f_{3}^{3} \dot{f}_{1} \dot{f}_{3} \ddot{f}_{3} \\
& +33300 f_{1} f_{3}^{2} \dot{f}_{3}^{2} \ddot{f}_{3}-103950 f_{3} \dot{f}_{3}^{3} \ddot{f}_{3}-3125 f_{3}^{4} \ddot{f}_{1} \ddot{f}_{3}-5625 f_{1} f_{3}^{3} \ddot{f}_{3}^{2}+39375 f_{3}^{2} \dot{f}_{3} \ddot{f}_{3}^{2} \\
& +3750 f_{1} f_{3}^{5} f_{1}^{(3)}-4375 f_{3}^{4} \dot{f}_{3} f_{1}^{(3)}-3125 f_{3}^{5} f_{2}^{(3)}+125 f_{1}^{2} f_{3}^{4} f_{3}^{(3)}+3125 f_{2} f_{3}^{4} f_{3}^{(3)} \\
& -8625 f_{3}^{3} \dot{f}_{3} f_{3}^{(3)}+29250 f_{3}^{2} \dot{f}_{3}^{2} f_{3}^{(3)}-9375 f_{3}^{3} \ddot{f}_{3} f_{3}^{(3)}+1250 f_{3}^{5} f_{1}^{(4)}+1250 f_{1} f_{3}^{4} f_{3}^{(4)} \\
& \left.-5625 f_{3}^{3} \dot{f}_{3} f_{3}^{(4)}+625 f_{3}^{4} f_{3}^{(5)}\right) /\left(6250 f_{3}^{6}\right), \\
& F_{2}=\left(36 f_{1}^{4} f_{3}^{4}-625 f_{2}^{2} f_{3}^{4}+720 f_{1}^{2} f_{3}^{4} \dot{f}_{1}+700 f_{3}^{4} \dot{f}_{1}^{2}-1250 f_{1} f_{3}^{4} \dot{f}_{2}-288 f_{1}^{3} f_{3}^{3} \dot{f}_{3}\right. \\
& +1250 f_{1} f_{2} f_{3}^{3} \dot{f}_{3}-1630 f_{1} f_{3}^{3} \dot{f}_{1} \dot{f}_{3}+2500 f_{3}^{3} \dot{f}_{2} \dot{f}_{3}+429 f_{1}^{2} f_{3}^{2} \dot{f}_{3}^{2}-2500 f_{2} f_{3}^{2} \dot{f}_{3}^{2} \\
& +680 f_{3}^{2} \dot{f}_{1} \dot{f}_{3}+1188 f_{1} f_{3} \dot{f}_{3}^{3}-3564 \dot{f}_{3}^{4}+1100 f_{1} f_{3}^{4} \ddot{f}_{1}-950 f_{3}^{3} \dot{f}_{3} \ddot{f}_{1} \\
& -1250 f_{3}^{4} \ddot{f}_{2}-190 f_{1}^{2} f_{3}^{3} \ddot{f}_{3}+1250 f_{2} f_{3}^{3} \ddot{f}_{3}-300 f_{3}^{3} \dot{f}_{1} \ddot{f}_{3}-1390 f_{1} f_{3}^{2} \dot{f}_{3} \ddot{f}_{3} \tag{53}\\
& +5940 f_{3} \dot{f}_{3}^{2} \ddot{f}_{3}-1075 f_{3}^{2} \ddot{f}_{3}^{2}+500 f_{3}^{4} f_{1}^{(3)}+300 f_{1} f_{3}^{3} f_{3}^{(3)} \\
& \left.-1600 f_{3}^{2} \dot{f}_{3} f_{3}^{(3)}+250 f_{3}^{3} f_{3}^{(4)}\right) /\left(625 f_{3}^{5}\right) \text {. }
\end{align*}
$$

This leads to the following
Theorem 4: The most general Lie point symmetry generator (34), which the equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{2}=0
$$

may admit, is of the form

$$
Z=h_{2}(t) \frac{\partial}{\partial t}+\left\{g_{2}(t) x+g_{1}(t)\right\} \frac{\partial}{\partial x}
$$

if and only if f_{1}, f_{2} and f_{3} satisfy one of the following conditions:
a) $F_{2}=0$, then h_{2} is given by

$$
h_{2}(t)=f_{3}^{-2 / 5} \exp \left(\frac{1}{5} \int^{t} f_{1}(\zeta) d \zeta\right)\left[c_{1} \int^{t} f_{3}^{2 / 5}(\rho) \exp \left(-\frac{1}{5} \int^{\rho} f_{1}(\zeta) d \zeta\right) d \rho+c_{2}\right]
$$

g_{1} by (51), and g_{2} is given by (46).
b) $F_{1}=0$ with $c_{1}=0$, then h_{2} is given by

$$
h_{2}(t)=c_{2} f_{3}^{-2 / 5} \exp \left(\frac{1}{5} \int^{t} f_{1}(\zeta) d \zeta\right)
$$

g_{1} by (51), and g_{2} is given by (46).
c) $F_{1} \neq 0$ and $F_{2} \neq 0$ with $c_{1} \neq 0$, then

$$
h_{2}(t)=-\frac{c_{1} F_{2}}{F_{1}}
$$

g_{1} by (51), and g_{2} is given by (46), whereby the condition on f_{1}, f_{2} and f_{3} is

$$
\dot{F}_{1} F_{2}-\dot{F}_{2} F_{1}-F_{1}^{2}-\left(\frac{2}{5} \dot{f}_{3} f_{3}^{-1}-\frac{1}{5} f_{1}\right) F_{1} F_{2}=0
$$

Here F_{1} and F_{2} are given by (52) and (53), respectively.
Case 3: $n \in \mathcal{Q} \backslash\{0,1,2\}$. This leads to the system

$$
A_{2}=0 \quad A_{3}=0, \quad B_{3}=0, \quad A_{5}=0
$$

From the equation $A_{2}=0$, it follows that $g_{1}=0$, so that the remaining conditions on h_{2} and g_{2} are

$$
\begin{align*}
& (n-1) f_{3} g_{2}+h_{2} \dot{f}_{3}+2 f_{3} \dot{h}_{2}=0, \tag{54}\\
& f_{1} \dot{g}_{2}+h_{2} \dot{f}_{2}+2 f_{2} \dot{h}_{2}+\ddot{g}_{2}=0, \tag{55}\\
& 2 \dot{g}_{2}+\frac{d}{d t}\left(f_{1} h_{2}\right)-\ddot{h}_{2}=0 . \tag{56}
\end{align*}
$$

To solve this system of equations, we need to consider two subcases:
Subcase 3.1: $n=-3$. This leads to
Theorem 5: The most general Lie point symmetry generator (34), which the equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{-3}=0
$$

may admit, is of the form

$$
Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}
$$

if and only if

$$
\begin{equation*}
f_{1}=-\frac{1}{2} \frac{\dot{f}_{3}}{f_{3}} \tag{57}
\end{equation*}
$$

where h_{2} is a solution of

$$
\begin{equation*}
h_{2}^{(3)}+4 \Gamma(t) \dot{h}_{2}+2 \dot{\Gamma}(t) h_{2}=0 \tag{58}
\end{equation*}
$$

with

$$
\Gamma(t)=-\frac{1}{16}\left[\frac{d}{d t}\left(\ln f_{3}\right)\right]^{2}+\frac{1}{4} \frac{d^{2}}{d t^{2}}\left(\ln f_{3}\right)+f_{2}
$$

and

$$
g_{2}(t)=\frac{1}{4} \frac{d}{d t}\left(\ln f_{3}\right)+\frac{1}{2} \dot{h}_{2} .
$$

Note that condition (57) is identical to the condition derived in Section 2, for an invertible point transformation of (1) with $n=-3$. Therefore, all Lie point symmetries of (1) with $n=-3$, which follow from Theorem 5 , may also be obtained by applying the point transformation, in Section 2, in the Lie point symmetries of (12) (with $n=-3$).

Note that (58) may be transformed in the free particle equation (5): Let

$$
A(t)=\frac{\dot{h}_{2}}{h_{2}} .
$$

In this case, (58) reduces to

$$
\ddot{A}+3 A \dot{A}+4 \Gamma(t) A+A^{3}+2 \dot{\Gamma}(t)=0 .
$$

Comparing this equation with (2), we find that condition (3) is satisfied.
Subcase 3.2: $n \neq-3$. By (54) and (56), we obtain

$$
\begin{align*}
& g_{2}(t)=-\left(\frac{1}{n-1}\right) h_{2} \frac{d}{d t}\left(\ln f_{3}\right)-2\left(\frac{1}{n-1}\right) \dot{h}_{2}, \tag{59}\\
& \dot{h}_{2}=c_{1}-\left(\frac{n-1}{n+3}\right)\left\{\frac{2}{n-1} \frac{d}{d t}\left(\ln f_{3}\right)-f_{1}\right\} h_{2} . \tag{60}
\end{align*}
$$

Inserting (59) and (60) into (55) leads to

$$
F_{1}\left(f_{1}, f_{2}, f_{3}\right) h_{2}+c_{1} F_{2}\left(f_{1}, f_{2}, f_{3}\right)=0,
$$

where

$$
\begin{align*}
F_{1}= & {\left[-4\left(n^{2}-1\right) f_{1}^{3} f_{3}^{3}+2\left(n^{3}+5 n^{2}+3 n-9\right) f_{1} f_{2} f_{3}^{3}-8 n(n+3) f_{1} f_{3}^{3} \dot{f}_{1}\right.} \\
& +\left(n^{3}+9 n^{2}+27 n+27\right) f_{3}^{3} \dot{f}_{2}-2\left(n^{2}-6 n-3\right) f_{1}^{2} f_{3}^{2} \dot{f}_{3}-4(n+3)^{2} f_{2} f_{3}^{2} \dot{f}_{3} \\
& -(n+3)(n-9) f_{3}^{2} \dot{f}_{1} \dot{f}_{3}+3(n-1)(n+5) f_{1} f_{3} \dot{f}_{3}^{2}-2(n+4)(n+5) \dot{f}_{3}^{3} \tag{61}\\
& -2(n+3)^{2} f_{3}^{3} \ddot{f}_{1}-3(n-1)(n+3) f_{1} f_{3}^{2} \ddot{\ddot{f}_{3}}+3(n+3)(n+5) f_{3} \dot{f}_{3} \ddot{f}_{3} \\
& \left.-(n+3)^{2} f_{3}^{2} f_{3}^{(3)}\right] /\left[(n+3)^{3} f_{3}^{3}\right], \\
F_{2}= & 2\left[-2(n+1) f_{1}^{2} f_{3}^{2}+(n+3)^{2} f_{2} f_{3}^{2}-2(n+3) f_{3}^{2} \dot{f}_{1}\right. \tag{62}\\
& \left.-(n-1) f_{1} f_{3} \dot{f}_{3}+(n+4) \dot{f}_{3}^{2}-(n+3) f_{3} \ddot{f}_{3}\right] /\left[(n+3)^{2} f_{3}^{2}\right] .
\end{align*}
$$

This leads to
Theorem 6: The most general Lie point symmetry generator (34), which the equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0,
$$

with $n \in \mathcal{Q} \backslash\{-3,0,1,2\}$, may admit, is of the form

$$
Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}
$$

if and only if f_{1}, f_{2} and f_{3} satisfy one of the following conditions:
a) $F_{2}=0$, then h_{2} is given by

$$
\begin{aligned}
& h_{2}(t)=f_{3}^{-2 /(n+3)} \exp \left(\frac{n-1}{n+3} \int^{t} f_{1}(\zeta) d \zeta\right) \times \\
& \times\left[c_{1} \int^{t} f_{3}^{2 /(n+3)}(\rho) \exp \left(-\frac{n-1}{n+3} \int^{\rho} f_{1}(\zeta) d \zeta\right) d \rho+c_{2}\right]
\end{aligned}
$$

and g_{2} is given by (59).
b) $F_{1}=0$ with $c_{1}=0$, then h_{2} is given by

$$
h_{2}(t)=c_{2} f_{3}^{-2 / n+3} \exp \left(\frac{n-1}{n+3} \int^{t} f_{1}(\zeta) d \zeta\right)
$$

and g_{2} is given by (59).
c) $F_{1} \neq 0$ and $F_{2} \neq 0$ with $c_{1} \neq 0$, then

$$
h_{2}(t)=-\frac{c_{1} F_{2}}{F_{1}}
$$

and g_{2} is given by (46), whereby the condition on f_{1}, f_{2} and f_{3} is

$$
\dot{F}_{1} F_{2}-\dot{F}_{2} F_{1}-F_{1}^{2}-\frac{n-1}{n+3}\left(\frac{2}{n-1} \dot{f}_{3} f_{3}^{-1}-f_{1}\right) F_{1} F_{2}=0
$$

Here F_{1} and F_{2} are given by (52) and (53), respectively.
Remark: The condition $F_{2}=0$ is identical to the condition for transforming (1) in the integrable equation (12) and linearizing (1) by the non-oint transformation (30).

An important special case of equation (1) is the case where $f_{1}=f_{2}=0$. By applying Theorem 3 to Theorem 6 we calculate the conditions on f_{3} for which there exist Lie point symmetries of (1) (see Table 1 and Table 2). The general form of f_{3} can be given in all cases, except where $g_{1} \neq 0$, i.e., Theorem 4 . For this case, we only list the conditions on f_{3} (Table 1). Let us view the original determining equations for this case:

$$
\ddot{g}_{1}=0, \quad g_{2}(t)=\frac{1}{2} \dot{h}_{2}-\frac{1}{2} c_{1}, \quad f_{3}(t)=-\frac{1}{4} \frac{h_{2}^{(3)}}{g_{1}} .
$$

This set of equations may be converted into a condition on h_{2}, namely

$$
h_{2} h_{2}^{(4)}-\left(-\frac{5}{2} \dot{h}_{2}+\frac{\dot{g}_{1}}{g_{1}} h_{2}-\frac{1}{2} c_{1}\right) h_{2}^{(3)}=0
$$

where $h_{2}^{3)} \neq 0$. We did study solutions of this equation.

Table 1: $\ddot{x}+f_{3}(t) x^{2}=0$

Theorem 3: Lie Symmetry Generator $Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}$

Theorem 3a

$$
\begin{aligned}
& h_{2}(t)=-\frac{c_{1}}{k_{1}}\left(k_{1} t+k_{2}\right)+c_{2}\left(k_{1} t+k_{2}\right)^{2} \\
& g_{2}(t)=c_{2} k_{1}\left(k_{1} t+k_{2}\right)-3 c_{1} \\
& Z_{1}=\left(k_{1} t+k_{2}\right)^{2} \frac{\partial}{\partial t}+k_{1}\left(k_{1} t+k_{2}\right) x \frac{\partial}{\partial x}, \quad Z_{2}=\frac{1}{k_{1}}\left(k_{1} t+k_{2}\right) \frac{\partial}{\partial t}+\frac{n+1}{n-1} x \frac{\partial}{\partial x} \\
& {\left[Z_{1}, Z_{2}\right]=-Z_{1}}
\end{aligned}
$$

Condition on f_{3}
$F_{2} \equiv \frac{2}{25 f_{3}^{2}}\left\{6 \dot{f}_{3}^{2}-5 f_{3} \ddot{f}_{3}\right\}=0$
General solution for f_{3}
$f_{3}(t)=\left(k_{1} t+k_{2}\right)^{-5}, \quad k_{1}, k_{2} \in \mathcal{R}$

Theorem 3b

$h_{2}(t)=c_{2} k_{3}^{-2 / 5}\left(-\frac{1}{5} t^{2}+\frac{2}{5} k_{1} t+k_{2}\right), \quad g_{2}(t)=-\frac{c_{2}}{5} k_{3}^{-2 / 5}\left(t-k_{1}\right)$
Condition on f_{3}
$F_{1} \equiv \frac{1}{125 f_{3}^{3}}\left\{-84 \dot{f}_{3}^{3}+105 f_{3} \dot{f}_{3} \ddot{f}_{3}-25 f_{3}^{2} f_{3}^{(3)}\right\}=0$
General solution for f_{3}
$f_{3}(t)=k_{3}\left(-\frac{1}{5} t^{2}+\frac{2}{5} k_{1} t+k_{2}\right), \quad k_{1}, k_{2}, k_{3} \in \mathcal{R}$

Table 1 (continued)

Thoerem 3c

$$
h_{2}(t)=k_{1} t^{2}+k_{2} t+k_{3} \quad g_{2}(t)=k_{1} t+\frac{1}{2}\left(k_{2}-c_{1}\right)
$$

Condition on f_{3}

$$
21 \dot{f}_{3}^{2} \ddot{f}_{3}^{2}-42 f_{3} \ddot{f}_{3}^{3}-24 \dot{f}_{3}^{3} f_{3}^{(3)}+62 f_{3} \dot{f}_{3} \ddot{f}_{3} f_{3}^{(3)}-15 f_{3}^{2}\left(f_{3}^{(3)}\right)^{2}-12 f_{3} \dot{f}_{3}^{2} f_{3}^{(4)}+10 f_{3}^{2} \ddot{f}_{3} f_{3}^{(4)}
$$

$$
=0
$$

Condition on f_{3} with the subsititions: $A(t)=\dot{f}_{3} f_{3}^{-1}$ and $B(A)=\dot{A}(t)$

$$
\left(10 B^{3}-2 A^{2} B^{2}\right) B^{\prime \prime}-\left(5 B^{2}+2 A^{2} B\right)\left(B^{\prime}\right)^{2}+12 A B^{2} B^{\prime}-12 B^{3}=0
$$

Note: The equation for B can be linearized by a point transformation.
General solution for f_{3}

$$
f_{3}(t)=k_{4}\left(k_{1} t^{2}+k_{2} t+k_{3}\right)^{-5 / 2} \exp \left\{\frac{c_{1}}{2} \int^{t} \frac{d \rho}{k_{1} \rho^{2}+k_{2} \rho+k_{3}}\right\}, \quad k_{j} \in \mathcal{R}
$$

Theorem 4: Lie Symmetry Generator $Z=h_{2}(t) \frac{\partial}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial}{\partial x}$

Theorem 4a

$$
\begin{aligned}
& h_{2}(t)=f_{3}^{-2 / 5}\left\{c_{1} \int^{t} f_{3}^{2 / 5}(\rho) d \rho+c_{2}\right\}, \quad g_{2}(t)=-\frac{1}{5} \frac{\dot{f}_{3}}{f_{3}} h_{2}-2 c_{1} \\
& g_{1}(t)=k_{1} t+k_{2}, \quad k_{1}, k_{2} \in \mathcal{R}
\end{aligned}
$$

Condition on f_{3}

$$
F_{2} \equiv \frac{1}{625 f_{3}^{5}}\left\{-3564 \dot{f}_{3}^{4}+5940 f_{3} \dot{f}_{3}^{2} \ddot{f}_{3}-1075 f_{3}^{2} \ddot{\dot{f}}_{3}^{2}-1600 f_{3}^{2} \dot{f}_{3} f_{3}^{(3)}+250 f_{3}^{3} f_{3}^{(4)}\right\}=0
$$

Table 1 (continued)

Condition on f_{3} with the subsititions: $A(t)=\dot{f}_{3} f_{3}^{-1}$ and $B(A)=\dot{A}(t)$
$250 B^{2} B^{\prime \prime}+250 B\left(B^{\prime}\right)^{2}-600 A B B^{\prime}-325 B^{2}+490 A^{2} B-49 A^{4}=0$
Note: The equation for B cannot be linearized by a point transformation.

Theorem 4b

$h_{2}(t)=c_{2} f_{3}^{-2 / 5}, \quad g_{2}(t)=-\frac{c_{2}}{5} \dot{f}_{3} f_{3}^{-7 / 5}$
$g_{1}(t)=k_{1} t+k_{2}, \quad k_{1}, k_{2} \in \mathcal{R}$
Condition on f_{3}
$F_{1} \equiv \frac{1}{6250 f_{3}^{6}}\left\{49896 \dot{f}_{3}^{5}-103950 f_{3} \dot{f}_{3}^{3} \ddot{f}_{3}+39375 f_{3}^{2} \dot{f}_{3} \ddot{f}_{3}^{2}+29250 f_{3}^{2} \dot{f}_{3}^{2} f_{3}^{(3)}\right.$
$\left.-9375 f_{3}^{3} \ddot{f}_{3} f_{3}^{(3)}-5625 f_{3}^{3} \dot{f}_{3} f_{3}^{(4)}+625 f_{3}^{4} f_{3}^{(5)}\right\}=0$

Condition on f_{3} with the subsititions: $A(t)=\dot{f}_{3} f_{3}^{-1}$ and $B(A)=\dot{A}(t)$
$625 B^{3} B^{\prime \prime \prime}+2500 B^{2}\left(B^{\prime}-A\right) B^{\prime \prime}+625 B\left(B^{\prime}\right)^{3}-2500 B A\left(B^{\prime}\right)^{2}+125 B\left(29 A^{2}-25 B\right) B^{\prime}$

$$
+3750 B^{2} A-2450 B A^{3}+196 A^{5}=0
$$

Theorem 4c

$$
\begin{aligned}
& h_{2}(t)=-\frac{F_{2}}{F_{1}}, \quad g_{2}(t)=-\frac{1}{5} \frac{\dot{f_{3}}}{f_{3}} h_{2}-2 c_{1} \\
& g_{1}(t)=k_{1} t+k_{2}, \quad k_{1}, k_{2} \in \mathcal{R}
\end{aligned}
$$

Condition on f_{3}

$$
24948 \dot{f}_{3}^{6} \ddot{f}_{3}^{2}+\cdots 31 \text { terms } \cdots+500 f_{3}^{6} f_{3}^{(4)} f_{3}^{(6)}=0
$$

Table 2: $\ddot{x}+f_{3}(t) x^{n}=0$

Theorem 5: $n=-3$. Lie Symmetry Generator $Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}$

$$
\begin{aligned}
& h_{2}(t)=c_{1} t^{2}+c_{2} t+c_{3}, \quad g_{2}(t)=c_{1} t+\frac{1}{2} c_{2}, \quad f_{3}=\text { constant } \\
& Z_{1}=t^{2} \frac{\partial}{\partial t}+x t \frac{\partial}{\partial x}, \quad Z_{2}=t \frac{\partial}{\partial t}+\frac{1}{2} x \frac{\partial}{\partial x}, \quad Z_{3}=\frac{\partial}{\partial t} \\
& {\left[Z_{1}, Z_{2}\right]=-Z_{1}, \quad\left[Z_{1}, Z_{3}\right]=-2 Z_{2}, \quad\left[Z_{2}, Z_{3}\right]=-Z_{3}}
\end{aligned}
$$

Theorem 6: $n \in \mathcal{Q} \backslash\{-3,0,1,2\}$. Lie Symmetry Generators $Z=h_{2}(t) \frac{\partial}{\partial t}+g_{2}(t) x \frac{\partial}{\partial x}$

Theorem 6a

$h_{2}(t)=-\frac{c_{1}}{k_{1}}\left(k_{1} t+k_{2}\right)+c_{2}\left(k_{1} t+k_{2}\right)^{2}, \quad g_{2}(t)=c_{2} k_{1}\left(k_{1} t+k_{2}\right)-c_{1}\left(\frac{n+1}{n-1}\right)$
$Z_{1}=\left(k_{1} t+k_{2}\right)^{2} \frac{\partial}{\partial t}+k_{1}\left(k_{1} t+k_{2}\right) x \frac{\partial}{\partial x}, \quad Z_{2}=\frac{1}{k_{1}}\left(k_{1} t+k_{2}\right) \frac{\partial}{\partial t}+\left(\frac{n+1}{n-1}\right) x \frac{\partial}{\partial x}$
$\left[Z_{1}, Z_{2}\right]=-Z_{1}$
Condition on f_{3}
$F_{2} \equiv \frac{2}{(n+3)^{2} f_{3}^{2}}\left\{(n+4) \dot{f}_{3}^{2}-(n+3) f_{3} \ddot{f}_{3}\right\}=0$
General solution for f_{3}
$f_{3}(t)=\left(k_{1} t+k_{2}\right)^{-(n+3)}, \quad k_{1}, k_{2} \in \mathcal{R}$

Theorem 6b

$$
h_{2}(t)=c_{2} k_{3}^{-2 /(n+3)}\left\{-\frac{1}{n+3} t^{2}+k_{1} \frac{2}{n+3} t+k_{2}\right\}, \quad g_{2}(t)=-\frac{c_{2}}{n+3} k_{3}^{-2 /(n+3)}\left(t-k_{1}\right)
$$

Table 2 (continued)

Condition on f_{3}
$F_{1} \equiv-\frac{1}{(n+3)^{3} f_{3}^{3}}\left\{-2\left(n^{2}+9 n+20\right) \dot{f}_{3}^{3}+3\left(n^{2}+8 n+15\right) f_{3} \dot{f}_{3} \ddot{f}_{3}-(n+3)^{2} f_{3}^{2} f_{3}^{(3)}\right\}=0$
General solution for f_{3}
$f_{3}(t)=k_{3}\left\{-\frac{1}{n+3} t^{2}+k_{1} \frac{2}{n+3} t+k_{2}\right\}^{-(n+3) / 2}$

Theorem 6c:

$h_{2}(t)=k_{1} t^{2}+k_{2} t+k_{3}, \quad g_{2}=k_{1} t+\frac{1}{2}\left(k_{2}-c_{1}\right)$
Condition on f_{3}
$3(n+5) \dot{f}_{3}^{2} \ddot{f}_{3}^{2}-6(n+5) f_{3} \ddot{f}_{3}^{3}-4(n+4) \dot{f}_{3}^{3} f_{3}^{(3)}+(42+10 n) f_{3} \dot{f}_{3} \ddot{f}_{3} f_{3}^{(3)}$

$$
-3(n+3) f_{3}^{2}\left(f_{3}^{(3)}\right)^{2}-2(n+4) f_{3} \dot{f}_{3}^{2} f_{3}^{(4)}+2(n+3) f_{3}^{2} \ddot{f}_{3} f_{3}^{(4)}=0
$$

Condition on f_{3} with the subsititions: $A(t)=\dot{f}_{3} f_{3}^{-1}$ and $B(A)=\dot{A}(t)$
$2\left\{(n+3)\left(B^{3}\right)-A^{2} B^{2}\right\} B^{\prime \prime}-\left\{(n+3) B^{2}+2 A^{2} B\right\}\left(B^{\prime}\right)^{2}+12 A B^{2} B^{\prime}-12 B^{3}=0$
Note: The equation for B can be linearized by a point transformation.

General solution for f_{3}

$$
f_{3}(t)=k_{4}\left(k_{1} t^{2}+k_{2} t+k_{3}\right)^{-(n+3) / 2} \exp \left\{c_{1}\left(\frac{n-1}{2}\right) \int^{t} \frac{d \rho}{k_{1} \rho^{2}+k_{2} \rho+k_{3}}\right\}, \quad k_{j} \in \mathcal{R}
$$

4.3 Invertible point transformations by Lie point symmetries

One can now use the Lie point symmetry generators obtained above to construct time dependent first integrals of (1). We give the point transformation in general form and do an example to illustrate the procedure.

In Table 1 and Table 2 we make use of the substitution

$$
\frac{\dot{f_{3}}}{f_{3}}=A(t), \quad B(A)=\dot{A}(t),
$$

by which we are able to reduce the order of the differential conditions on f_{3} by two. It follows that

$$
\begin{aligned}
\frac{\ddot{f}_{3}}{f_{3}} & =B+A^{2}, \quad \frac{f^{(3)}}{f_{3}}=B^{\prime} B+3 B A+A^{3}, \\
\frac{f_{3}^{(4)}}{f_{3}} & =B^{\prime \prime} B^{2}+\left(B^{\prime}\right)^{2} B+4 B^{\prime} B A+3 B^{2}+6 B A^{2}+A^{4}, \\
\frac{f_{3}^{(5)}}{f_{3}} & =B^{\prime \prime \prime} B^{3}+4 B^{\prime \prime} B^{\prime} B^{2}+\left(B^{\prime}\right)^{3} B+5 B^{\prime \prime} B^{2} A+5\left(B^{\prime}\right)^{2} B A+10 B^{\prime} B^{2} \\
& +10 B^{\prime} B A^{2}+15 B^{2} A+10 B A^{3}+A^{5},
\end{aligned}
$$

where $B^{\prime} \equiv d B / d A$, etc.
Let us consider the transformation of (1) in an autonomous form by the use of the most general Lie point symmetry generator for the nonlinear equation (1), namely

$$
Z=h_{2}(t) \frac{\partial}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial}{\partial x}
$$

The defining equations for the point transformations

$$
X(T)=F(x, t), \quad T(x, t)=G(x, t)
$$

are

$$
\begin{aligned}
& h_{2}(t) \frac{\partial T}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial T}{\partial x}=1 \\
& h_{2}(t) \frac{\partial X}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial X}{\partial x}=0
\end{aligned}
$$

The general solution of this system is

$$
\begin{align*}
& X(T)=\varphi_{1}(\omega), \quad T(x, t)=\int^{t} \frac{1}{h_{2}(\rho)} d \rho+\varphi_{2}(\omega) \\
& \omega=x \exp \left\{-\int^{t} \frac{g_{2}(\rho)}{h_{2}(\rho)} d \rho\right\}-\int^{t} \frac{g_{1}(\rho)}{h_{2}(\rho)} \exp \left\{-\int^{\rho} \frac{g_{2}(\zeta)}{h_{2}(\zeta)} d \zeta\right\} d \rho \tag{63}
\end{align*}
$$

where φ_{1} and φ_{2} are arbitrary functions of ω and may be chosen in a convenient form.
To construct a point transformation which may transfrom (1) in a first-order ODE, one needs to solve the system

$$
\begin{aligned}
& h_{2}(t) \frac{\partial T}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial T}{\partial x}=0 \\
& h_{2}(t) \frac{\partial X}{\partial t}+\left\{g_{1}(t)+g_{2}(t) x\right\} \frac{\partial X}{\partial x}=1
\end{aligned}
$$

The general solution of this system is

$$
\begin{aligned}
& X(T)=\int^{t} \frac{1}{h_{2}(\rho)} d \rho+\psi_{1}(\omega), \quad T(x, t)=\psi_{2}(\omega) \\
& \omega=x \exp \left\{-\int^{t} \frac{g_{2}(\rho)}{h_{2}(\rho)} d \rho\right\}-\int^{t} \frac{g_{1}(\rho)}{h_{2}(\rho)} \exp \left\{-\int^{\rho} \frac{g_{2}(\zeta)}{h_{2}(\zeta)} d \zeta\right\} d \rho
\end{aligned}
$$

where ψ_{1} and ψ_{2} may be chosen arbitrary. It can be shown that this point transformation reduces (1) in an Abel equation of the first kind, i.e.,

$$
\frac{d Y}{d T}+\Gamma_{3}(T) Y^{3}+\Gamma_{2}(T) Y^{2}+\Gamma_{1}(T) Y+\Gamma_{0}(T)=0
$$

with $Y=d X / d T$. Since the known solutions of the Abel equation are restricted to special forms of the functions Γ, it is usually a useless exercise. However, if the equation admits a two-dimensional Lie point symmetry algebra, it is well known that the reduction may be performed such that the reduced equation (in this case, the Abel equation) admits a Lie point symmetry. In particular, if Z_{1} and Z_{2} are symmetry generators of the equation to be reduced, and

$$
\left[Z_{1}, Z_{2}\right]=\lambda Z_{1}
$$

then the generator Z_{1} should be used to perform the reduction. This will ensure that the symmetry generator Z_{2} is 'preserved' by the reduction, i.e., the reduced equation will admit the generator Z_{2} in transformed form. This is important to note, since the integrating factor μ of any first-order ODE of the form $\dot{x}=-M(x, t) / N(x, t)$, which admits the Lie point symmetry generator $Z=\xi \partial / \partial t+\eta \partial / \partial x$, is given by $\mu=(N \eta+M \xi)^{-1}$. Note also that it is not a simple task to find Lie point symmetry generators for a first order ODE. In particular, the determining equation of a Lie point symmetry generator for the ODE $\dot{x}=f(x, t)$ is

$$
-\xi \frac{\partial f}{\partial t}-\eta \frac{\partial f}{\partial x}+\frac{\partial \eta}{\partial t}+f \frac{\partial \eta}{\partial x}-f \frac{\partial \xi}{\partial t}-f^{2} \frac{\partial \xi}{\partial x}=0
$$

As an example, we transform

$$
\begin{equation*}
\ddot{x}+k_{3}\left(-\frac{1}{n+3} t^{2}+\frac{2 k_{1}}{n+3} t+k_{2}\right)^{-(n+3) / 2} x^{n}=0, \quad k_{1}, k_{2} \in \mathcal{R} \tag{64}
\end{equation*}
$$

for $n \in \mathcal{Q} \backslash\{-3,0,1\}$, in an autonomous form. This case corresponds to Theorem 6 b given in Table 2. Note that

$$
g_{2}=\frac{1}{2} \dot{h}_{2}, \quad h_{2}(t)=-\frac{1}{n+3} t^{2}+\frac{2 k_{1}}{n+3} t+k_{2} .
$$

The general form of the point transformation is given by (63). We let $\varphi_{1}=\omega$, $\varphi_{2}=0$. It follows that

$$
X(T)=h_{2}^{-1 / 2} x, \quad T(x, t)=\int^{t} \frac{d \rho}{h_{2}(\rho)}
$$

This transformation leads to the autonomous equation

$$
\frac{d^{2} X}{d T^{2}}-\left\{\left(\frac{k_{1}}{n+3}\right)^{2}+\frac{k_{2}}{n+3}\right\} X+c_{2}^{(n+3) / 2} X^{n}=0
$$

which has the first integral

$$
T\left(X, \frac{d X}{d T}\right)=\left(\frac{d X}{d T}\right)^{2}-\left\{\left(\frac{k_{1}}{n+3}\right)^{2}+\frac{k_{2}}{n+3}\right\} X^{2}+\left(\frac{2}{n+1}\right) c_{2}^{(n+3) / 2} X^{n+1}=0
$$

A first integral for (64) is then

$$
\begin{aligned}
I(t, x, \dot{x})= & \frac{1}{h_{2}}\left(-\frac{1}{2} \dot{h}_{2} x+h_{2} \dot{x}\right)^{2}-\frac{1}{h_{2}}\left\{\left(\frac{k_{1}}{n+3}\right)^{2}+\frac{k_{2}}{n+3}\right\} x^{2} \\
& +\frac{2}{n+1} c_{2}^{(n+3) / 2} h_{2}^{-(n+1) / 2} x^{n+1}
\end{aligned}
$$

5 Transforming in the second Painlevé transcendent

By using the Lie point symmetry generators classified in the previous section, we are able to construct point transformations by which (1) may be transformed in a second equation. However, this method does not allow for a transformation in an equation without a Lie point symmetry. This can easily be shown: Consider a second equation in the variables (X, T) with no symmetry. To construct a point transformation in this equation by a Lie point symmetry generator $Z=\xi \partial / \partial t+\eta \partial / \partial t$ of the first equation with variables (x, t), we need to solve the system

$$
\xi \frac{\partial X}{\partial t}+\eta \frac{\partial X}{\partial x}=0, \quad \xi \frac{\partial T}{\partial t}+\eta \frac{\partial T}{\partial x}=0
$$

which implies that the Jacobian is zero.
There is an important class of equations which do not admit Lie point symmetries, but are integrable. These are the six Painlevé transcendents, as discussed in the introduction. We consider the following problem (Euler et al 1991): Find the condition on f_{1}, f_{2}, and f_{3} for which (1), with $n=3$, i.e.,

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{3}=0
$$

may be point transformed in the second Painlevé transcendent

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}-T X-2 X^{3}-a=0, \quad a \in \mathcal{R} \tag{65}
\end{equation*}
$$

By the point transformation

$$
\begin{equation*}
X(T)=f(t) x, \quad T(x, t)=g(t) \tag{66}
\end{equation*}
$$

we obtain the following expressions:

$$
f_{1}(t)=2 \frac{\dot{f}}{f}-\frac{\ddot{g}}{\dot{g}}, \quad f_{2}(t)=\frac{\ddot{f}}{f}-\frac{\dot{f}}{f} \frac{\ddot{g}}{\dot{g}}-g \dot{g}^{2}, \quad f_{3}(t)=-2(f \dot{g})^{2}
$$

Inverting this system leads to
Theorem 7: Equation

$$
\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{3}=0
$$

may be point transformed in

$$
\frac{d^{2} X}{d T^{2}}-T X-2 X^{3}=0
$$

by the invertible point transformation

$$
X(T)=f(t) x, \quad T(x, t)=g(t)
$$

where

$$
\begin{aligned}
& f(t)=k f_{3}^{1 / 6} \exp \left\{\int^{t} \frac{1}{3} f_{1}(\rho) d \rho\right\} \\
& g(t)=\frac{k^{2}}{18 f_{3}^{8 / 3}}\left(-6 f_{3} \ddot{f}_{3}+7 \dot{f}_{3}^{2}-2 f_{1} f_{3} \dot{f}_{3}-12 \dot{f}_{1} f_{3}^{2}+36 f_{2} f_{3}^{2}-8 f_{1}^{2} f_{3}^{2}\right) \exp \left\{\frac{2}{3} \int^{t} f_{1}(\rho) d \rho\right\},
\end{aligned}
$$

under the following conditions:

$$
\begin{align*}
& 9 f_{3}^{(4)} f_{3}^{3}-54 f_{3}^{(3)} \dot{f}_{3} f_{3}^{2}+18 f_{3}^{(3)} f_{3}^{3} f_{1}-36 \ddot{f}_{3}^{2} f_{3}^{2}+192 \ddot{f}_{3} \dot{f}_{3}^{2} f_{3}-78 \ddot{f}_{3} \dot{f}_{3} f_{3}^{2} f_{1}+36 \ddot{f}_{3} f_{3}^{3} f_{2} \\
& \quad+3 \ddot{f}_{3} f_{3}^{3} f_{1}^{2}-112 \dot{f}_{3}^{4}+64 \dot{f}_{3}^{3} f_{3} f_{1}+6 \dot{f}_{3}^{2} \dot{f}_{1} f_{3}^{2}-72 \dot{f}_{3}^{2} f_{3}^{2} f_{2}+90 \dot{f}_{3} \dot{f}_{2} f_{3}^{3}-27 \dot{f}_{3} \ddot{f}_{1} f_{3}^{3} \tag{67}\\
& \quad-57 \dot{f}_{3} \dot{f}_{1} f_{3}^{3} f_{1}+72 \dot{f}_{3} f_{3}^{3} f_{2} f_{1}-14 \dot{f}_{3} f_{3}^{3} f_{1}^{3}-54 \ddot{f}_{2} f_{3}^{4}-90 \dot{f}_{2} f_{3}^{4} f_{1}+18 f_{1}^{(3)} f_{3}^{4} \\
& \quad+54 \ddot{f}_{1} f_{3}^{4} f_{1}+36 \dot{f}_{1}^{2} f_{3}^{4}-36 \dot{f}_{1} f_{3}^{4} f_{2}+60 \dot{f}_{1} f_{3}^{4} f_{1}^{2}-36 f_{3}^{4} f_{2} f_{1}^{2}+8 f_{3}^{4} f_{1}^{4}=0,
\end{align*}
$$

with

$$
\begin{equation*}
-6 f_{3} \ddot{f}_{3}+7 \dot{f}_{3}^{2}-2 f_{1} f_{3} \dot{f}_{3}-12 \dot{f}_{1} f_{3}^{2}+36 f_{2} f_{3}^{2}-8 f_{1}^{2} f_{3}^{2} \neq 0 \tag{68}
\end{equation*}
$$

Remark: The l.h.s. of (68) equal to zero is identical to the condition obtained in Section 2 by which (1) may be point transformed in $d^{2} X / d T^{2}+X^{3}=0$, and which linearizes (1) by a nonpoint transformation (with $n=3$).

It is easy to show that if f_{1}, f_{2} and f_{3} are such that the l.h.s. of (68) is equal to zero, then condition (67) is satisfied identically for those functional forms. In Euler et al [6], we showed that (1) passes the Painlevé test if and only if condition (67) is satisfied. (We refer to the book of Steeb and Euler [16] for more details on the Painlevé test of nonlinear evolution equations.) Thus, if conditions (67) and (68) are satisfied, equation (1) has the Painlevé property and is therefore integrable; this is true since there exists an invertible point transformation in the second Painlevé transcendent. Moreover, equation (1) with f_{1}, f_{2} and f_{3}, which make the l.h.s. of (68) equal to zero, also has the Painlevé property, since the Painlevé test is passed and the equation can invertibly be point transformed in the integrable equation $d^{2} X / d T^{2}+X^{3}=0$.

Let us finally consider the special case where $f_{1}=f_{2}=0$. By (67), we obtain the condition

$$
\begin{equation*}
9 A^{(3)}-18 \ddot{A} A+12 \dot{A} A^{2}-9 \dot{A}^{2}-A^{4}=0 \tag{69}
\end{equation*}
$$

where $A(t)=\dot{f}_{3} / f_{3}$. This equation admits three Lie point symmetry generators

$$
Z_{1}=-\frac{t^{2}}{6} \frac{\partial}{\partial t}+\left(\frac{1}{3} A t+1\right) \frac{\partial}{\partial A}, \quad Z_{2}=t \frac{\partial}{\partial t}-A \frac{\partial}{\partial A}, \quad Z_{3}=\frac{\partial}{\partial t}
$$

By using these symmetry properties, (69) may be transformed in the following Abel equation

$$
\frac{d U}{d T}=g_{1}(T) U+g_{2}(T) U^{2}+g_{3}(T) U^{3}
$$

where

$$
\begin{aligned}
& U(T)=\left(\frac{d X}{d T}\right)^{-1}, \quad T(u, A)=u \exp \{-2 X\}, \quad X(T)=\ln A, \quad u(A)=\frac{d A}{d t} \\
& g_{1}(T)=\frac{1}{T^{2}}\left(\frac{1}{9}-\frac{4}{3} T+5 T^{2}-6 T^{3}\right), \quad g_{2}(T)=\frac{1}{T}(2-7 T), \quad g_{3}(T)=-\frac{1}{T}
\end{aligned}
$$

6 Conclusion

We have seen that if condition (19) (with $n \notin\{-3,-1,0,1\}$) is satisfied, equation (1) has the following properties:
a) Equation (1) may be point transformed in

$$
\frac{d^{2} X}{d T^{2}}+X^{n}=0
$$

b) Equation (1) may be linearized in

$$
\frac{d^{2} X}{d T^{2}}+k_{2}=0, \quad k_{2} \in \mathcal{R} \backslash\{0\}
$$

by a nonpoint transformation.
c) Equation (1) admits a two-dimensional Lie point symmetry algebra.

By the Lie point symmetry classification, we have observed that (1) admits a Lie symmetry generator with $g_{1} \neq 0$ only in the case $n=2$. This is a very complicated case to solve in general. We have given the general conditions on f_{1}, f_{2} and f_{3} for the existence of Lie symmetries in this case as well as all other cases of n. Leach and Maharaj [10] calculated some special cases where the Lie point symmetries may be given explicitly.

For the case $n=3$, we have given the necessary and sufficient conditions on f_{1}, f_{2} and f_{3} by which (1) has the Painlevé property. This includes also condition (19) with $n=3$. A detailed Painlevé analysis of (1) will be the subject of a future paper.

References

[1] Duarte L.G.S., Duarte S.E.S. and Moreira I.C., One-dimensional equations with the maximum number of symmetry generators, J. Phys. A: Math. Gen., 1987, V.20, L701-L704.
[2] Duarte L.G.S., Euler N., Moreira I.C. and Steeb W.-H., Invertible point transformations, Painlevé analysis and anharmonic oscillators, J. Phys. A: Math. Gen., 1990, V.23, 1457-1467.
[3] Duarte L.G.S., Moreira I.C., Euler N. and Steeb W.-H., Invertible Point transformations, Lie Symmetries and the Painlevé test for the equation $\ddot{x}+f_{1}(t) \dot{x}+f_{2}(t) x+f_{3}(t) x^{n}=0$, Physica Scripta, 1991, V.43, 449-451.
[4] Duarte L.G.S., Moreira I.C. and Santos F.C., Linearization under non-point transformations, J. Phys. A: Math. Gen., 1994, V.27, L739-L743.
[5] Euler M., Euler N. and Köhler A., On the construction of approximate solutions for a multidimensional nonlinear heat equation, J. Phys. A: Math. Gen., 1994, V.27, 2083-2092.
[6] Euler N., Steeb W.-H. and Cyrus K., On exact solutions for damped anharmonoc oscillators, J. Phys. A: Math. Gen., 1989, V.22, L195-L199.
[7] Euler N., Steeb W.-H., Duarte L.G.S. and Moreira I.C., Invertible point transformations, Painlevé test, and the second Painlevé transcendent, Int. J. Theor. Phys, 1991, V.30, 1267-1271.
[8] Fushchych W.I., Shtelen W.M. and Serov N.I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht, 1993.
[9] Leach P.G.L., First integrals for the modified Emden equation $\ddot{q}+\alpha(t) \dot{q}+q^{n}=0$, J. Math. Phys, 1985, V.26, 2510-2514.
[10] Leach P.G.L. and Maharaj S.D., A first integral for a class of time-dependent anharmonic oscillators with multiple anharmonicities, J. Math. Phys., 1992, V.33, 2023-2030.
[11] Moreira I.C., Europhys. Lett, 1990, V.12, 391.
[12] Olver P.J., Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
[13] Sarlet W., Mahomed F.M. and Leach P.G.L., Symmetries of non-linear differential equations and linearization, J. Phys. A: Math. Gen., 1987, V.20, 277-292.
[14] Steeb W.-H., Invertible Point Transformations and Nonlinear Differential Equations, World Scientific, Singapore, 1993.
[15] Steeb W.-H., Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra, World Scientific, Singapore, 1996.
[16] Steeb W.-H. and Euler N., Nonlinear Evolution Equations and Painlevé Test, World Scientific, Singapore, 1988.
[17] Tresse M.A., Determination des invariants puctuels de l'equation differentielle ordinaire de second orde, Hirzel, Leipzig, 1896.

