On Classification of Subalgebras of the Poincaré Algebra

Leonid F. BARANNYK
Institute of Mathematics, Higher Pedagogical School, $22 b$ Arciszewskiego Street, 76-200, Stupsk, Poland

Abstract
The substantiation of the algorithm for classifying subalgebras of the Poincaré algebra $A P(1, n)$ up to $P(1, n)$-conjugacy is completed

1. Introduction. Subalgebras of the Poincaré algebra $A P(1,3)$ have been classified up to conjugacy with respect to the group of inner automorphisms, i.e., up to $P(1,3)$ conjugacy [1-6]. The classification of subalgebras of the algebra $A P(1,4)$ up to $P(1,4)$ conjugacy is done in [7-9]. Subalgebras of the algebra $A P(1, n)$ for an arbitrary n were investigated in [10-12]. In present article we proved a number of Propositions substantiating the procedure of classifying subalgebras of the algebra $A P(1, n)$ up to $P(1, n)$-conjugacy for an arbitrary $n \geq 2$.

We suppose that the Poincaré group $P(1, n)$ is realized as a multiplicative group of matrices of the form

$$
\Gamma=\left(\begin{array}{ll}
C & Y \tag{1}\\
0 & 1
\end{array}\right)
$$

where $C \in O(1, n)$ and Y is a real $(1+n)$-dimensional column. We consider the Poincaré algebra $A P(1, n)$ as the algebra of matrices

$$
Z=\left(\begin{array}{cc}
X & Y \tag{2}\\
0 & 0
\end{array}\right)
$$

where

$$
X=\left(\begin{array}{ccccc}
0 & \beta_{01} & \beta_{02} & \cdots & \beta_{0 n} \\
\beta_{01} & 0 & \beta_{12} & \cdots & \beta_{1 n} \\
\beta_{02} & -\beta_{12} & 0 & \cdots & \beta_{2 n} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\beta_{0 n} & -\beta_{1 n} & -\beta_{2 n} & \cdots & 0
\end{array}\right)
$$

Let $I_{\alpha \beta}$ be a square matrix of order $n+2$, having unity at the intersection of the α-th row and β-th column and zeros elsewhere $(\alpha, \beta=0,1, \ldots, n+1)$. The basis of the algebra $A P(1, n)$ consists of matrices

$$
\begin{aligned}
& P_{0}=I_{0, n+1}, \quad P_{a}=I_{a, n+1}, \quad J_{0 a}=-I_{0 a}-I_{a 0}, \\
& J_{a b}=-I_{a b}+I_{b a} \quad(a<b ; a, b=1, \ldots, n)
\end{aligned}
$$

These matrices are connected by the following commutation relations:

$$
\begin{aligned}
& {\left[J_{\alpha \beta}, J_{\gamma \delta}\right]=g_{\alpha \delta} J_{\beta \gamma}+g_{\beta \gamma} J_{\alpha \delta}-g_{\alpha \gamma} J_{\beta \delta}-g_{\beta \delta} J_{\alpha \gamma}} \\
& {\left[P_{\alpha}, J_{\beta \gamma}\right]=g_{\alpha \beta} P_{\gamma}-g_{\alpha \gamma} P_{\beta}, \quad\left[P_{\alpha}, P_{\beta}\right]=0}
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta=0,1, \ldots, n$ and $\left(g_{\alpha \beta}\right)=\operatorname{diag}[1,-1, \ldots,-1]$.
It is easy to see that $A P(1, n)=U \boxplus A O(1, n)$, where $U=\left\langle P_{0}, P_{1}, \ldots, P_{n}\right\rangle$ and $A O(1, n)=\left\langle J_{\alpha \beta}: \alpha, \beta=0,1 \ldots, n\right\rangle$. It is convenient to identify elements of the algebra $A O(1, n)$ with matrices X, and elements of the ideal U with real $(1+n)$-dimensional columns Y.

For an arbitrary matrix Γ of the form (1), the mapping $Z \rightarrow \Gamma Z \Gamma^{-1}$ is an automorphism of the algebra $A P(1, n)$. Denote this automorphism by φ_{Γ} and call it $P(1, n)-$ automorphism corresponding to Γ. If $\Gamma=\operatorname{diag}[C, 1]$, then we shall write φ_{C} instead of φ_{Γ}. The automorphism φ_{C} will be referred to as $O(1, n)$-automorphism of the algebra $A P(1, n)$, corresponding to the matrix C. We shall consider the ideal U as the Minkowski space $\mathbb{R}_{1, n}$ with the orthonormal basis $P_{0}, P_{1}, \ldots, P_{n}$. In this case, the restriction of the automorphism φ_{C} onto U is an isometry of this space, and each isometry of the space U can be obtained in such a manner. Sometimes we shall identify the isometry φ_{C} with the matrix C.

Subalgebras L_{1} and L_{2} of the algebra $A P(1, n)$ are called $P(1, n)$-conjugate, if $\varphi_{\Gamma}\left(L_{1}\right)=$ L_{2} for some matrix $\Gamma \in P(1, n)$. If $\varphi_{C}\left(L_{1}\right)=L_{2}$ for $C \in O(1, n)$, then L_{1} and L_{2} are named $O(1, n)$-conjugate.

We denote the subdirect sum of Lie algebras A_{1}, \ldots, A_{m} by the symbol $A_{1}+\ldots+A_{m}$. We shall denote by $\hat{\varepsilon}$ a projection of $A P(1, n)$ onto $A O(1, n)$, and by $\operatorname{Ad} L$ the group of inner automorphisms of the algebra L.

Definitions of other notions used in our article are given in [12].
2. Subalgebras of Euclidean algebras. A Euclidean algebra $A E(n)$ is a Lie algebra isomorphic to the algebra $Q \boxplus A O(n)$, where $Q=\left\langle P_{1}, \ldots, P_{n}\right\rangle$ and $A O(n)=\left\langle J_{a b}: a, b=\right.$ $1, \ldots, n\rangle$. An extended Euclidean algebra $A \tilde{E}(n)$ is a Lie algebra isomorphic to the algebra $A E(n) \boxplus\langle D\rangle$, where $D=-I_{11}-I_{22}-\ldots-I_{n n}$. It is easy to make sure that $\left[D, P_{a}\right]=-P_{a}$, $\left[D, J_{a b}\right]=0$ for all $a, b=1,2, \ldots, n$.

To simplify the presentation we shall sometimes assume that $A O(n)$ is the algebra of real skew-symmetric matrices of order n and Q is the Euclidean space of n-dimensional columns. Identify a matrix $X \in A O(n)$ with the operator of multiplication of columns of the space Q by X (from the left).

A subalgebra $L \neq 0$ of the algebra $A O(n)$ is called irreducible if the space Q has no nonzero L-invariant subspaces different from Q. In the opposite case, L is called the reducible subalgebra.

Let L be a reducible subalgebra of the algebra $A O(n)$. Then there is a matrix $C \in O(n)$ such that $C^{-1} L C$ consists of skew-symmetric matrices of the form $X=\operatorname{diag}\left[X_{1}, \ldots, X_{s}\right]$ or the form $X=\operatorname{diag}\left[X_{1}, \ldots, X_{s}, 0\right]$, where for every $j=1, \ldots, s$ the matrix X_{j} goes through some irreducible subalgebra L_{j} of the algebra $A O\left(m_{j}\right)$. In what follows, we suppose that $C^{-1} L C=L$. The mapping $\pi_{j}: L \rightarrow A O\left(m_{j}\right)$ defined by the equality $\pi_{j}(X)=X_{j}$, is a homomorphism of L onto L_{j}. The algebra L decomposes into the subdirect product of the algebras L_{1}, \ldots, L_{s}. To denote this we use the notation $L=\pi_{1}(L) \times \cdots \times \pi_{s}(L)$. The algebras $\pi_{1}(L), \ldots, \pi_{s}(L)$ are called irreducible parts of the algebra L.

Proposition 1. Let

$$
L=\pi_{1}(L) \times \cdots \times \pi_{s}(L), \quad L^{\prime}=\pi_{1}^{\prime}\left(L^{\prime}\right) \times \cdots \times \pi_{s^{\prime}}^{\prime}\left(L^{\prime}\right)
$$

be decompositions of subalgebras L and L^{\prime} of the algebra $A O(n)$ into subdirect products of irrreducible parts. The subalgebras L and L^{\prime} are $O(n)$-conjugate if and only if $s=s^{\prime}$ and there exists an isomorphism $f: L \rightarrow L^{\prime}$ that, up to the indexing of irreducible parts, $C_{j} \pi_{j}(X) C_{j}^{-1}=\pi_{j}^{\prime}(f(X))$ for all $X \in L$ and all $j=1, \ldots, s$, where C_{j} is an orthogonal matrix.

Proposition 1 follows from the well-known statements about irreducible subrepresentations of a representation of a Lie algebra by skew-symmetric matrices.

Denote by $O[r, s], r \leq s$ the subgroup of isometries from $O(n)$, that preserve the subspace $\left\langle P_{r}, \ldots, P_{s}\right\rangle$ and act identically on its orthogonal complement. If $r>s$, then we suppose that $O[r, s]$ consists of an identity isometry. For $r<s$, the Lie algebra $A O[r, s]$ of the group $O[r, s]$ is generated by matrices $J_{a b}$, where $a, b=r, r+1, \ldots, s$, and for $r \geq s$ we have $A O[r, s]=0$.

On the basis of results from [13], each nonzero subalgebra of the algebra $A E(n)$ is conjugate with respect to the group of $E(n)$-automorphisms to a subalgebra of the form

$$
\begin{equation*}
V \nexists\left(F_{1}+F_{2}+W\right), \tag{3}
\end{equation*}
$$

satisfying the following conditions:

1) $V=0, F_{1}=0$ or $V=\left\langle P_{1}, \ldots, P_{k}\right\rangle$ and F_{1} is a subalgebra of the algebra $A O(k)$, not conjugate to a subalgebra of the algebra $A O(k-1)$;
2) $F_{2}=0$ or F_{2} is a subalgebra of the algebra $A O[b+1, b+l], l \geq 2$, not conjugate to a subalgebra of the algebra $A O[b+1, b+l-1]$, where $b=0$ for $F_{1}=0$ and $b=k$ for $F_{1} \neq 0$;
3) $W=0$ or $W=\left\langle P_{d+1}, P_{d+2}, \ldots, P_{d+m}\right\rangle$, where $d=0$ for $F_{1}=F_{2}=0, d=k$ for $F_{1} \neq 0, F_{2}=0$ and $d=b+l$ for $F_{2} \neq 0$.

Let us stipulate that $k=0$ for $F_{1}=0, l=0$ for $F_{2}=0$ and $m=0$ for $W=0$. The vector (k, l, m) will be called the type of subalgebra (3).

Each subalgebra of the algebra $A \tilde{E}(n)$ with a nonzero projection onto $\langle D\rangle$ is conjugate with respect to the group of $E(n)$-automorphisms to a subalgebra of the form

$$
\begin{equation*}
(V \oplus W) \boxplus\left(F_{1}+F_{2}+\langle D\rangle\right), \tag{4}
\end{equation*}
$$

where V, W, F_{1}, F_{2} are the same as in (3). The type of the subalgebra $(V \oplus W) \boxplus\left(F_{1}+F_{2}\right)$ will be named the type of subalgebra (4).

Obviously, each subalgebra of the form (3) is not conjugate to subalgebras of the form (4).

Theorem 1. Let $L_{i}(i=1,2)$ be a nonzero subalgebra of the form (3) of the algebra $A E(n)$ and L_{i} have the type $\left(k_{i}, l_{i}, m_{i}\right)$. The subalgebras L_{1} and L_{2} are $E(n)$-conjugate if and only if $k_{1}=k_{2}=k, l_{1}=l_{2}=l, m_{1}=m_{2}=m$ and the subalgebras L_{1}, L_{2} are H-conjugate, where

$$
H=O[1, k] \times O[k+1, k+l] \times O[k+l+1, k+l+m] .
$$

Proof. Let $L_{i}=V_{i} \boxplus\left(F_{1 i}+F_{2 i}+W_{i}\right)$ and $\varphi\left(L_{1}\right)=L_{2}$ for the $E(n)$-automorphism $\varphi=\varphi_{\Gamma}$ corresponding to the matrix

$$
\Gamma=\left(\begin{array}{cc}
\Lambda & Y \\
0 & 1
\end{array}\right),
$$

where $\Lambda \in O(n)$ and Y is a real n-dimensional column. Then $\varphi_{\Lambda}\left(F_{11}+F_{21}\right)=F_{12}+F_{22}$, therefore, on the basis of Proposition 1, $k_{1}+l_{1}=k_{2}+l_{2}$. Since $\left[L_{1}, V_{1}\right]=V_{1}$, $\left[\varphi\left(L_{1}\right), \varphi\left(V_{1}\right)\right]=\varphi\left(V_{1}\right)$, whence $\varphi\left(V_{1}\right) \subset V_{2}$. Reasoning similarly, we obtain $\varphi^{-1}\left(V_{2}\right) \subset V_{1}$, therefore $\varphi\left(V_{1}\right)=V_{2}$. It follows that $k_{1}=k_{2}=k, l_{1}=l_{2}=l$. Since $\varphi_{\Lambda}\left(V_{1}\right)=V_{1}, \Lambda=$ $\operatorname{diag}\left[\Lambda_{1}, \Lambda_{1}^{\prime}\right]$, where $\Lambda_{1} \in O(k)$. Since $\varphi_{\Delta}\left(W_{1}\right)=W_{2}$ for $\Delta=\operatorname{diag}\left[E, \Lambda_{1}^{\prime}\right], m_{1}=m_{2}=m$ and $\Lambda=\operatorname{diag}\left[\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right]$, where $\Lambda_{2} \in O(l), \Lambda_{3} \in O(m)$. One can assume that Λ_{4} is the identity matrix and Y is the zero column. Hence, $\Lambda \in H$, which is what had to be proved.

The conjugacy criterion for subalgebras of the form (4) is formulated similarly.
3. On a normalizer of the space $\left\langle P_{0}+P_{n}\right\rangle$ in the algebra $A O(1, n)$.

Lemma 1. If $C \in O(1, n)$ and $C\left(P_{0}+P_{n}\right)=\lambda\left(P_{0}+P_{n}\right)$, then $\lambda \neq 0$ and

$$
C=\left(\begin{array}{ccc}
\frac{1+\lambda^{2}\left(1+\vec{v}^{2}\right)}{2 \lambda} & \lambda \vec{v} B & \frac{-1+\lambda^{2}\left(1-\vec{v}^{2}\right)}{2 \lambda} \tag{5}\\
{ }^{t} \vec{v} & B & -{ }^{t} \vec{v} \\
\frac{-1+\lambda^{2}\left(1+\vec{v}^{2}\right)}{2 \lambda} & \lambda \vec{v} B & \frac{1+\lambda^{2}\left(1-\vec{v}^{2}\right)}{2 \lambda}
\end{array}\right),
$$

where $B \in O(n-1), \vec{v}$ is an $(n-1)$-dimensional vector line, \vec{v}^{2} is the scalar square of the vector \vec{v} in the Euclidean space \mathbb{R}^{n-1} and ${ }^{t} \vec{v}$ is the vector-column obtained from \vec{v} as a result of transformation.

Proof. Let $C=\left(c_{\alpha \beta}\right)$, where $\alpha, \beta=0,1, \ldots, n$. Then

$$
\left\{\begin{array}{l}
c_{00}+c_{0 n}=\lambda \tag{6}\\
c_{10}+c_{1 n}=0 \\
\cdots \ldots \ldots \ldots \ldots \\
c_{n-1,0}+c_{n-1, n}=0 \\
c_{n 0}+c_{n n}=\lambda
\end{array}\right.
$$

Let $\alpha \neq \beta$ and $\alpha, \beta=1, \ldots, n-1$. Since rows of the matrix C form an orthonormal system in the Minkowski space $\mathbb{R}_{1, n}$, on the basis of (6) we have

$$
\begin{aligned}
-1 & =c_{\alpha 0}^{2}-c_{\alpha 1}^{2}-\cdots-c_{\alpha n}^{2}=-c_{\alpha 1}^{2}-\cdots-c_{\alpha, n-1}^{2} \\
0 & =c_{\alpha 0} c_{\beta 0}-c_{\alpha 1} c_{\beta 1}-\cdots-c_{\alpha n} c_{\beta n}=-c_{\alpha 1} c_{\beta 1}-\cdots-c_{\alpha, n-1} c_{\beta, n-1}
\end{aligned}
$$

It follows that

$$
C=\left(\begin{array}{ccc}
c_{00} & \vec{u} & \lambda-c_{00} \\
{ }^{t} \vec{v} & B & -{ }^{t} \vec{v} \\
c_{n 0} & \vec{\omega} & \lambda-c_{n 0}
\end{array}\right),
$$

where $B \in O(n-1)$. It is obvious that

$$
C=\left(\begin{array}{ccc}
1 & \overrightarrow{0} & 0 \\
{ }^{t} \overrightarrow{0} & B & { }^{t} \overrightarrow{0} \\
0 & \overrightarrow{0} & 1
\end{array}\right)\left(\begin{array}{ccc}
c_{00} & \vec{u} & \lambda-c_{00} \\
{ }^{t} \vec{v}_{1} & E_{n-1} & -{ }^{t} \vec{v}_{1} \\
c_{n 0} & \vec{\omega} & \lambda-c_{n 0}
\end{array}\right)
$$

where ${ }^{t} \vec{v}_{1}=B^{-1} . t \vec{v}$. Since when multiplying vectors by B^{-1}, scalar product is preserved, we have $\vec{v}^{2}=\vec{v}_{1}^{2}$. It remains to describe matrices of the form

$$
\hat{C}=\left(\begin{array}{ccc}
c_{00} & \vec{u} & \lambda-c_{00} \\
{ }^{t} \vec{v}_{1} & E_{n-1} & -{ }^{t} \vec{v}_{1} \\
c_{n 0} & \vec{\omega} & \lambda-c_{n 0}
\end{array}\right) .
$$

The matrix \hat{C} is pseudoorthogonal. From the condition $c_{00}^{2}-\vec{u}^{2}-\left(\lambda-c_{00}\right)^{2}=1$ we obtain

$$
c_{00}=\frac{1+\lambda^{2}+\vec{u}^{2}}{2 \lambda}, \quad \lambda-c_{00}=\frac{\lambda^{2}-1-\vec{u}^{2}}{2 \lambda}
$$

It follows from the equality $c_{n 0}^{2}-\vec{\omega}^{2}-\left(\lambda-c_{n 0}\right)^{2}=-1$ that

$$
c_{n 0}=\frac{-1+\lambda^{2}+\vec{\omega}^{2}}{2 \lambda}, \quad \lambda-c_{n 0}=\frac{\lambda^{2}+1-\vec{\omega}^{2}}{2 \lambda}
$$

Since rows of the matrix \hat{C} are pairwise orthogonal,

$$
c_{00} \vec{v}_{1}-\vec{u}+\left(\lambda-c_{00}\right) \vec{v}_{1}=\overrightarrow{0}, \quad c_{n 0} \vec{v}_{1}-\vec{\omega}+\left(\lambda-c_{n 0}\right) \vec{v}_{1}=\overrightarrow{0}
$$

whence $\vec{u}=\lambda \vec{v}_{1}, \vec{\omega}=\lambda \vec{v}_{1}$. In this case,

$$
\begin{array}{ll}
c_{00}=\frac{1+\lambda^{2}\left(1+\vec{v}_{1}^{2}\right)}{2 \lambda}, & \lambda-c_{00}=\frac{-1+\lambda^{2}\left(1-\vec{v}_{1}^{2}\right)}{2 \lambda} \\
c_{n 0}=\frac{-1+\lambda^{2}\left(1+\vec{v}_{1}^{2}\right)}{2 \lambda}, & \lambda-c_{n 0}=\frac{1+\lambda^{2}\left(1-\vec{v}_{1}^{2}\right)}{2 \lambda}
\end{array}
$$

The orthogonality condition for the first and last rows of the matrix \hat{C} imposes no additional restriction on the elements written above. The Lemma is proved.

Lemma 2. Let $C \in O(1, n)$ and is of the form (5), where $\lambda>0$. Then

$$
C=\operatorname{diag}[1, B, 1] \exp \left[-\ln \lambda \cdot J_{0 n}\right] \cdot \exp \left(-\beta_{1} G_{1}-\cdots-\beta_{n-1} G_{n-1}\right)
$$

where $G_{a}=J_{0 a}-J_{a n}(a=1, \ldots, n-1),{ }^{t}\left(\beta_{1}, \ldots, \beta_{n-1}\right)=B^{-1} .{ }^{t} \vec{v}$.
The set H of matrices of the form (5) with the condition $\lambda>0$ forms a group with respect to ordinary multiplication. The mapping

$$
C \rightarrow\left(\begin{array}{cc}
\lambda B & \lambda \cdot t \vec{v} \\
0 & 1
\end{array}\right)
$$

is an isomorphism of the group H onto the extended Euclidean group $\tilde{E}(n-1)$. In what follows, we shall imply the group H under the group $\tilde{E}(n-1)$. On the basis of Lemma 2 , the Lie algebra $A H$ of the group H is generated by matrices $J_{a b}, G_{a}, J_{0 n}(a<b ; a, b=$ $1, \ldots, n-1)$. We have $A H=A \tilde{E}(n-1)=\left\langle G_{1}, \ldots, G_{n-1}\right\rangle \boxplus\left(A O(n-1) \oplus\left\langle J_{0 n}\right\rangle\right)$. The matrix $J_{0 n}$ generates dilations. The algebra $A \tilde{E}(n-1)$ is the normalizer of the space $\left\langle P_{0}+P_{n}\right\rangle$ in the algebra $A O(1, n)$.

Lemma 3. If $C \in O(1, n)$ and $\pm C \notin \tilde{E}(n-1)$, then $C= \pm A_{1} C_{1} A_{2}$, where $A_{1}, A_{2} \in$ $\tilde{E}(n-1)$ and $C_{1}=\operatorname{diag}[1, \ldots, 1,-1]$.

Proof. For some matrix $\Lambda=\operatorname{diag}\left[1, \Lambda^{\prime}, 1\right]$, where $\Lambda^{\prime} \in O(n-1)$, we have $\Lambda C\left(P_{0}+P_{n}\right)=$ $\alpha P_{0}+\beta P_{1}+\gamma P_{n}$ with $\alpha^{2}-\beta^{2}-\gamma^{2}=0$. If $\beta \neq 0$, then $\alpha^{2}-\gamma^{2} \neq 0$, therefore $\alpha-\gamma \neq 0$. Let $\theta=\beta(\alpha-\gamma)^{-1}$. Then

$$
\exp \left(\theta G_{1}\right)\left(\alpha P_{0}+\beta P_{1}+\gamma P_{n}\right)=\frac{\alpha-\gamma}{2}\left(P_{0}-P_{n}\right) .
$$

Hence, there is a matrix $\Gamma \in \tilde{E}(n-1)$ such that $\Gamma C\left(P_{0}+P_{n}\right)=\lambda\left(P_{0}-P_{n}\right)$. Then $\left(C_{1} \Gamma C\right)\left(P_{0}+P_{n}\right)=\lambda\left(P_{0}+P_{n}\right)$. If $\lambda>0$, then on the basis of Lemmas 1 and 2 we conclude that $C_{1} \Gamma C \in \tilde{E}(n-1)$. If $\lambda<0$, then $-C_{1} \Gamma C \in \tilde{E}(n-1)$. The Lemma is proved.

Proposition 2. Let L_{1} and L_{2} be subalgebras of the algebra $A \tilde{E}(n-1), L_{1}$ not being conjugate with respect to the group of inner automorphisms of the algebra $A \tilde{E}(n-1)$ to the subalgebra of $A O(n-1) \oplus\left\langle J_{0 n}\right\rangle$. The subalgebras L_{1} and L_{2} are $O(1, n)$-conjugate if and only if they are $\tilde{E}(n-1)$-conjugate.

Proof. Let subalgebras L_{1} and L_{2} be $O(1, n)$-conjugate, but not be $\tilde{E}(n-1)$-conjugate. Then $\varphi_{\Lambda}\left(L_{1}\right)=L_{2}$, where $\Lambda \in O(1, n)$ and $\pm \Lambda \notin \tilde{E}(n-1)$. By virtue of Lemma 3, we have $\Lambda= \pm A_{1} C_{1} A_{2}$, therefore $C_{1}\left(A_{2} L_{1} A_{2}^{-1}\right) C_{1}=A_{1}^{-1} L_{2} A_{1}$. But $C_{1} G_{a} C_{1}=C_{1}\left(J_{0 a}-J_{a n}\right) C_{1}=$ $J_{0 a}+J_{a n} \notin A \tilde{E}(n-1)$. The contradiction obtained proves that the Proposition is valid.

Proposition 3. Let L_{1} and L_{2} be subalgebras of the algebra $K=A O(n-1) \oplus\left\langle J_{0 n}\right\rangle$ with nonzero projections onto $\left\langle J_{0 n}\right\rangle$. They are $O(1, n)$-conjugate if and only if there exists an $O(n-1)$-automorphism φ of the algebra K, such that $\varphi\left(L_{1}\right)=L_{2}$ or $\varphi\left(L_{1}\right)=C_{1} L_{2} C_{1}$, where $C_{1}=\operatorname{diag}[1, \ldots, 1,-1]$.

Proof. Let $\varphi_{\Lambda}\left(L_{1}\right)=L_{2}$, where $\Lambda \in O(1, n)$. If $\pm \Lambda \in \tilde{E}(n-1)$ and $\pm \Lambda \notin \tilde{O}(n-1)$, then in view of Lemma 2, the projection of $\varphi_{\Lambda}\left(L_{1}\right)$ onto $\left\langle G_{1}, \ldots, G_{n-1}\right\rangle$ is nonzero, therefore the projection of the algebra L_{2} onto $\left\langle G_{1}, \ldots, G_{n-1}\right\rangle$ differs from zero, contrary to the hypothesis of the Proposition. Hence, if $\pm \Lambda \in \tilde{E}(n-1)$, then the subalgebras L_{1}, L_{2} are conjugate with respect to the group of $O(n-1)$-automorphisms. If $\pm \Lambda \notin \tilde{E}(n-1)$, then, reasoning similarly, we get $\Lambda= \pm A_{1} C_{1} A_{2}$, where $A_{1}, A_{2} \in \tilde{O}(n-1)$. Therefore $\Lambda= \pm C_{1} A$, where $A \in \tilde{O}(n-1)$. It follows from this that $\varphi\left(L_{1}\right)=C_{1} L_{2} C_{1}$ for some $O(n-1)$-automorphism φ. The Proposition is proved.
4. Subalgebras of the algebra $A G_{1}(n-1) \boxplus\left\langle J_{0 n}\right\rangle$. Let K be a subalgebra of the algebra $A P(1, n)$, such that its projection onto $A O(1, n)$ possesses an invariant isotropic subspace in the $\mathbb{R}_{1, n}$. Up to isometries, one can assume that this subspace is $\left\langle P_{0}+P_{n}\right\rangle$. Since the normalizer of $\left\langle P_{0}+P_{n}\right\rangle$ in $A O(1, n)$ coincides with $A \tilde{E}(n-1)$, the subalgebra K is conjugate to a subalgebra of the algebra $\mathfrak{A}=A G_{1}(n-1) \boxplus\left\langle J_{0 n}\right\rangle$, where $A G_{1}(n-1)$ is the classical Galilei algebra [14] with the basis $M, T, P_{a}, G_{a}, J_{a b}(a, b=1, \ldots, n-1)$. In this case, $M=P_{0}+P_{n}, T=\frac{1}{2}\left(P_{0}-P_{n}\right)$. Denote by N the group of automorphisms of the algebra \mathfrak{A}, generated by inner automorphisms of this algebra and the $O(1, n)$ automorphism corresponding to the matrix $\operatorname{diag}[1,-1,1, \ldots, 1] \in O(1, n)$.

Theorem 2. Let L_{1} and L_{2} be subalgebras of the algebra \mathfrak{A}, L_{1} not being conjugate with respect to $\operatorname{Ad} \mathfrak{A}$ to a subalgebra having a zero projection onto $\left\langle G_{1}, \ldots, G_{n-1}\right\rangle$. If $\varphi_{\Lambda}\left(L_{1}\right)=$ L_{2} for $\Lambda \in P(1, n)$, then there is an automorphism $\psi \in N$ such that $\psi\left(L_{1}\right)=L_{2}$ or $\psi\left(L_{1}\right)=\varphi_{\Gamma}\left(L_{2}\right)$, where $\Gamma=\operatorname{diag}[-1,1, \ldots, 1,-1] \in O(1, n)$.

Proof. Since N contains inner automorphisms corresponding to elements of the form

$$
\begin{equation*}
\exp \left(\sum_{\gamma=0}^{n} a_{\gamma} P_{\gamma}\right) \tag{7}
\end{equation*}
$$

and $P(1, n)$ is a semidirect product of the group of matrices of the form (7) and the group $O(1, n)$, one can assume that $\Lambda \in O(1, n)$. On the basis of Proposition $2, \pm \Lambda \in \tilde{E}(n-1)$. The Theorem is proved.

Theorem 3. Let \mathfrak{Q} be a Lie algebra with the basis $P_{0}, P_{a}, P_{n}, J_{a b}, J_{0 n}(a, b=1, \ldots, n-1)$ and L_{1}, L_{2} be subalgebras of the algebra \mathfrak{Q}, at least one of them has a nonzero projection onto $\left\langle J_{0 n}\right\rangle$. Then the subalgebras L_{1}, L_{2} are $P(1, n)$-conjugate if and only if there exists an automorphism $\psi \in \operatorname{Ad} \mathfrak{Q}$ such that $\psi\left(L_{1}\right)=L_{2}$ or $\psi\left(L_{1}\right)=\varphi_{C}\left(L_{2}\right)$, where C is one of the matrices

$$
C_{1}=\operatorname{diag}[1, \ldots, 1,-1], \quad C_{2}=\operatorname{diag}[1,-1,1 \ldots, 1], \quad C_{3}=\operatorname{diag}[1,-1,1, \ldots, 1,-1]
$$

of order $n+1$.
Proof. Let a projection of L_{1} onto $\left\langle J_{0 n}\right\rangle$ differ from zero and $\varphi_{\Lambda}\left(L_{1}\right)=L_{2}$ for $\Lambda \in$ $P(1, n)$. As in the proof of Theorem 2, one can assume that $\Lambda \in O(1, n)$. If $\pm \Lambda \in \tilde{E}(n-1)$, then $\pm \Lambda \in \tilde{O}(n-1)$, therefore φ_{Λ} differs from an inner automorphism of the algebra \mathfrak{Q} by the mupltiplier φ_{C}, where C is one of the matrices $C_{2}, C_{4}, C_{2} C_{4}$. In this case, $C_{4}=\operatorname{diag}[-1,1, \ldots, 1,-1]$. Let $\pm \Lambda \notin \tilde{E}(n-1)$. As in the proof of Proposition 3, we obtain $\Lambda= \pm C_{1} A$, where $A \in \tilde{O}(n-1)$. This implies $\varphi_{C}\left(\psi\left(L_{1}\right)\right)=L_{2}$, where $\psi \in \operatorname{Ad} \mathfrak{Q}$ and C is one of the matrices $C_{j}, C_{j} C_{4}(j=1,3)$.

Employing Proposition I.2.2 [12], it is not easy to prove that $L_{1}=K \boxplus\left\langle X+J_{0 n}+Y\right\rangle$, where $Y \in U, \hat{\varepsilon}(K) \oplus\langle X\rangle$ is a subalgebra of the algebra $A O(n-1)$ and K contains its projection onto $\left\langle P_{0}, P_{n}\right\rangle$. Therefore, the employment of automorphisms corresponding to matrices $\operatorname{diag}[\alpha, 1, \ldots, 1, \beta]$, where $\alpha, \beta \in\{1,-1\}$, is equivalent to application of $\varphi_{C_{1}}$ and the inner automorphism corresponding to the element $\exp \left(\beta_{0} P_{0}+\beta_{n} P_{n}\right)$. Theorem 3 is proved.

Denote by $O^{\prime}(1, n-m)$ the subgroup of all isometries from $O(1, n)$, that act identically on the subspace $\left\langle P_{1}, \ldots, P_{m}\right\rangle$.

Proposition 4. Let $2 \leq m_{i} \leq n-1, F_{i}$ be a subalgebra of the algebra $A O\left(m_{i}\right)$, not conjugate to subalgebras of the algebra $A O\left(m_{i}-1\right)$, and L_{i} be a subalgebra of the algebra $\left\langle P_{0}, P_{1}, \ldots, P_{n}\right\rangle \boxplus F_{i}$ such that $\hat{\varepsilon}\left(L_{i}\right)=F_{i}(i=1,2)$. The subalgebras L_{1} and L_{2} are $P(1, n)$-conjugate if and only if $m_{1}=m_{2}=m$ and L_{1} is conjugate to L_{2} with respect to the group of H-automorphisms, where $H=E(m) \times O^{\prime}(1, n-m)$.

Proposition 5. Each subalgebra of the algebra \mathfrak{A}, having a nonzero projection onto $\left\langle J_{0 n}\right\rangle$, is conjugate with respect to $\operatorname{Ad} \mathfrak{A}$ to a subalgebra of the algebra \mathfrak{A}, that decomposes as a vector space into the sum of its projections onto the spaces $\langle M\rangle,\langle T\rangle,\left\langle G_{1}, \ldots, G_{n-1}\right\rangle$ and $\left\langle P_{1}, \ldots, P_{n-1}\right\rangle \boxplus\left(A O(n-1) \oplus\left\langle J_{0 n}\right\rangle\right)$.

Proposition 5 follows from Theorem IV.3.2 [12] and Proposition IV.3.2 [12].
5. Subalgebras of the algebra $A P(1, n)$, not conjugate to subalgebras of the algebra $A G_{1}(n-1) \boxplus\left\langle J_{0 n}\right\rangle$. Let K be a subalgebra of the algebra $A P(1, n)$. The subalgebra K is $P(1, n)$-conjugate to none of subalgebras of the algebra $A G_{1}(n-1) \boxplus\left\langle J_{0 n}\right\rangle$ if and only if $\hat{\varepsilon}(K)$ has no invariant isotropic subspaces in the space U. This will be if and only if, up to $O(1, n)$-conjugacy, $\hat{\varepsilon}(K)$ is a subalgebra of the algebra $A O(n)$, conjugate to none of subalgebras of the algebra $A O(n-1)$, or $\hat{\varepsilon}(K)=A O(1, k) \oplus F$, where $k \geq 2$ and $F \subset A O[k+1, n]$.

Proposition 6. Let B be a subalgebra of the algebra $A O(n)$, not conjugate to subalgebras of the algebra $A O(n-1)$. If L is a subalgebra of the algebra $A P(1, n)$ and $\hat{\varepsilon}(L)=B$, then L is conjugate with respect to the group of $P(1, n)$-automorphisms to the algebra $W \boxplus C$, where $W \subset\left\langle P_{1}, \ldots, P_{n}\right\rangle$ and C is a subalgebra of the algebra $B \oplus\left\langle P_{0}\right\rangle$. Two subalgebras $W_{1} \boxplus C_{1}$ and $W_{2} \boxplus C_{2}$ of the type under consideration are $P(1, n)$-conjugate if and only if they are conjugate with respect to the group of $O(1) \times O(n)$-automorphisms.

Proposition 7. Let $B=A O(1, k) \oplus C$, where $k \geq 2$ and $C \subset A O[k+1, n]$. If L is a subalgebra of the algebra $A P(1, n)$ and $\hat{\varepsilon}(L)=B$, then L is $P(1, n)$-conjugate to $L_{1} \oplus L_{2}$, where $L_{1}=A O(1, k)$ or $L_{1}=A P(1, k)$ and L_{2} is a subalgebra of the Euclidean algebra $A E[k+1, n]$ with the basis $P_{a}, J_{a b}(a, b=k+1, \ldots, n)$. Two algebras $L_{1} \oplus L_{2}$ and $L_{1}^{\prime} \oplus L_{2}^{\prime}$ of the type under consideration are $P(1, n)$-conjugate if and only if $k=k^{\prime}, L_{1}=L_{1}^{\prime}$ and L_{2} is conjugate to L_{2}^{\prime} with respect to the group of $E[k+1, n]$-automorphisms.

The proofs of Propositions 6 and 7 are similar to one of Theorem 1.

References

[1] Belko I.V. and Fedenko A.S., Subgroups of the Lorentz group, Dokl. AN BSSR, 1970, V.14, N 5, 393-395 (in Russian).
[2] Belko I.V., Subgroups of the Lorentz-Poincaré group, Izvestiya AN BSSR, 1971, N 1, 5-13 (in Russian).
[3] Lassner W., Realizations of the Poincaré group on homogeneous spaces, Acta phys. slov., 1973, V.23, N 4, 193-202.
[4] Bacry H., Combe Ph. and Sorba P., Connected subgroups of the Poincaré group. I, Rep. Math. Phys., 1974, V.5, N 2, 145-186.
[5] Bacry H., Combe Ph. and Sorba P., Connected subgroups of the Poincaré group. II, Rep. Math. Phys., 1974, V.5, N 3, 361-392.
[6] Patera J., Winternitz P. and Zassenhaus H., Continuous subgroups of the fundamental groups of physics. I. General method and the Poincaré group, J. Math. Phys., 1975, V.16, N 8, 1597-1624.
[7] Fedorchuk V.M., Splitting subalgebras of the Lie algebra of the generalized Poincaré group $P(1,4)$, Ukrain. Mat. Zh., 1979, V.31, N 6, 717-722 (in Russian).
[8] Fedorchuk V.M., Nonsplitting Lie subalgebras of the generalized Poincaré group $P(1,4)$, Ukrain. Mat. Zh., 1981, V.33, N 5, 696-700 (in Russian).
[9] Fushchych W.I., Barannyk A.F., Barannyk L.F. and Fedorchuk V.M., Continuous subgroups of the Poincaré group $P(1,4)$, J. Phys. A: Math. Gen., 1985, V.18, N 5, 2893-2899.
[10] Barannyk L.F., Barannyk A.F. and Fushchych W.I., On the continuous subgroups of the generalized Poincaré group $P(1, n)$, In: Group theoretical methods in physics: Proceedings of the third seminar, Yurmala, 1985, Moscow, Nauka, 1986, V.2, 169-176 (in Russian).
[11] Barannyk L.F. and Fushchych W.I., On subalgebras of the Lie algebra of the extended Poincaré group $\tilde{P}(1, n)$, J. Math. Phys., 1987, V.28, N 7, 1445-1458.
[12] Fushchych W.I., Barannyk L.F. and Barannyk A.F., Subgroup analysis of the Galilei, Poincaré groups and reduction of nonlinear equations, Kiev, Naukova Dumka, 1991 (in Russian).
[13] Fushchych W.I., Barannyk A.F. and Barannyk L.F., Continuous subgroups of the generalized Euclidean group, Ukrain. Mat. Zh., 1986, V.38, N 1, 67-72 (in Russian).
[14] Barannyk L., On the classification of subalgebras of the Galilei algebras, J. Nonlin. Math. Phys., 1995, V.2, N 3-4, 263-268.

