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Leonid F. BARANNYK

Institute of Mathematics, Higher Pedagogical School,
22b Arciszewskiego Street, 76–200, S lupsk, Poland

Abstract

The substantiation of the algorithm for classifying subalgebras of the Poincaré algebra
AP (1, n) up to P (1, n)-conjugacy is completed

1. Introduction. Subalgebras of the Poincaré algebra AP (1, 3) have been classified
up to conjugacy with respect to the group of inner automorphisms, i.e., up to P (1, 3)-
conjugacy [1–6]. The classification of subalgebras of the algebra AP (1, 4) up to P (1, 4)-
conjugacy is done in [7–9]. Subalgebras of the algebra AP (1, n) for an arbitrary n were in-
vestigated in [10–12]. In present article we proved a number of Propositions substantiating
the procedure of classifying subalgebras of the algebra AP (1, n) up to P (1, n)-conjugacy
for an arbitrary n ≥ 2.

We suppose that the Poincaré group P (1, n) is realized as a multiplicative group of
matrices of the form

Γ =
(
C Y
0 1

)
, (1)

where C ∈ O(1, n) and Y is a real (1 + n)-dimensional column. We consider the Poincaré
algebra AP (1, n) as the algebra of matrices

Z =
(
X Y
0 0

)
, (2)

where

X =


0 β01 β02 · · · β0n

β01 0 β12 · · · β1n

β02 −β12 0 · · · β2n

· · · · · · ·
β0n −β1n −β2n · · · 0

 .
Let Iαβ be a square matrix of order n + 2, having unity at the intersection of the α-th
row and β-th column and zeros elsewhere (α, β = 0, 1, . . . , n+1). The basis of the algebra
AP (1, n) consists of matrices

P0 = I0,n+1, Pa = Ia,n+1, J0a = −I0a − Ia0,

Jab = −Iab + Iba (a < b; a, b = 1, . . . , n).
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These matrices are connected by the following commutation relations:

[Jαβ , Jγδ] = gαδJβγ + gβγJαδ − gαγJβδ − gβδJαγ ,

[Pα, Jβγ ] = gαβPγ − gαγPβ , [Pα, Pβ] = 0,

where α, β, γ, δ = 0, 1, . . . , n and (gαβ) = diag[1,−1, . . . ,−1].
It is easy to see that AP (1, n) = U +⊃AO(1, n), where U = 〈P0, P1, . . . , Pn〉 and

AO(1, n) = 〈Jαβ : α, β = 0, 1 . . . , n〉. It is convenient to identify elements of the algebra
AO(1, n) with matrices X, and elements of the ideal U with real (1 + n)-dimensional
columns Y .

For an arbitrary matrix Γ of the form (1), the mapping Z → ΓZΓ−1 is an automor-
phism of the algebra AP (1, n). Denote this automorphism by ϕΓ and call it P (1, n)-
automorphism corresponding to Γ. If Γ = diag[C, 1], then we shall write ϕC instead of
ϕΓ . The automorphism ϕC will be referred to as O(1, n)-automorphism of the algebra
AP (1, n), corresponding to the matrix C. We shall consider the ideal U as the Minkowski
space R1,n with the orthonormal basis P0, P1, . . . , Pn. In this case, the restriction of the
automorphism ϕC onto U is an isometry of this space, and each isometry of the space U
can be obtained in such a manner. Sometimes we shall identify the isometry ϕC with the
matrix C.

Subalgebras L1 and L2 of the algebra AP (1, n) are called P (1, n)-conjugate, if ϕΓ(L1) =
L2 for some matrix Γ ∈ P (1, n). If ϕC (L1) = L2 for C ∈ O(1, n), then L1 and L2 are
named O(1,n)-conjugate.

We denote the subdirect sum of Lie algebras A1, . . . , Am by the symbol A1 +. · · · +. Am.
We shall denote by ε̂ a projection of AP (1, n) onto AO(1, n), and by AdL the group of
inner automorphisms of the algebra L.

Definitions of other notions used in our article are given in [12].

2. Subalgebras of Euclidean algebras. A Euclidean algebra AE(n) is a Lie algebra
isomorphic to the algebra Q+⊃AO(n), where Q = 〈P1, . . . , Pn〉 and AO(n) = 〈Jab : a, b =
1, . . . , n〉. An extended Euclidean algebra AẼ(n) is a Lie algebra isomorphic to the algebra
AE(n)+⊃〈D〉, where D = −I11−I22− . . .−Inn. It is easy to make sure that [D,Pa] = −Pa,
[D,Jab] = 0 for all a, b = 1, 2, . . . , n.

To simplify the presentation we shall sometimes assume that AO(n) is the algebra of
real skew-symmetric matrices of order n and Q is the Euclidean space of n-dimensional
columns. Identify a matrix X ∈ AO(n) with the operator of multiplication of columns of
the space Q by X (from the left).

A subalgebra L 6= 0 of the algebra AO(n) is called irreducible if the space Q has no
nonzero L-invariant subspaces different from Q. In the opposite case, L is called the
reducible subalgebra.

Let L be a reducible subalgebra of the algebra AO(n). Then there is a matrix C ∈ O(n)
such that C−1LC consists of skew-symmetric matrices of the formX = diag[X1, . . . , Xs] or
the form X = diag[X1, . . . , Xs, 0], where for every j = 1, . . . , s the matrix Xj goes through
some irreducible subalgebra Lj of the algebra AO(mj). In what follows, we suppose that
C−1LC = L. The mapping πj : L → AO(mj) defined by the equality πj(X) = Xj , is a
homomorphism of L onto Lj . The algebra L decomposes into the subdirect product of
the algebras L1, . . . , Ls. To denote this we use the notation L = π1(L)×. · · · ×. πs(L). The

algebras π1(L), . . . , πs(L) are called irreducible parts of the algebra L.
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Proposition 1. Let

L = π1(L)×. · · · ×. πs(L), L′ = π′1(L
′)×. · · · ×. π′s′(L′)

be decompositions of subalgebras L and L′ of the algebra AO(n) into subdirect products
of irrreducible parts. The subalgebras L and L′ are O(n)-conjugate if and only if s = s′

and there exists an isomorphism f : L → L′ that, up to the indexing of irreducible parts,
Cjπj(X)C−1

j = π′j(f(X)) for all X ∈ L and all j = 1, . . . , s, where Cj is an orthogonal
matrix.

Proposition 1 follows from the well-known statements about irreducible subrepresenta-
tions of a representation of a Lie algebra by skew-symmetric matrices.

Denote by O[r, s], r ≤ s the subgroup of isometries from O(n), that preserve the
subspace 〈Pr, . . . , Ps〉 and act identically on its orthogonal complement. If r > s, then we
suppose that O[r, s] consists of an identity isometry. For r < s, the Lie algebra AO[r, s]
of the group O[r, s] is generated by matrices Jab, where a, b = r, r+ 1, . . . , s, and for r ≥ s
we have AO[r, s] = 0.

On the basis of results from [13], each nonzero subalgebra of the algebra AE(n) is
conjugate with respect to the group of E(n)-automorphisms to a subalgebra of the form

V +⊃(F1 +. F2 +. W ), (3)

satisfying the following conditions:
1) V = 0, F1 = 0 or V = 〈P1, . . . , Pk〉 and F1 is a subalgebra of the algebra AO(k), not

conjugate to a subalgebra of the algebra AO(k − 1);
2) F2 = 0 or F2 is a subalgebra of the algebra AO[b+1, b+ l], l ≥ 2, not conjugate to a

subalgebra of the algebra AO[b+1, b+ l−1], where b = 0 for F1 = 0 and b = k for F1 6= 0;
3) W = 0 or W = 〈Pd+1, Pd+2, . . . , Pd+m〉, where d = 0 for F1 = F2 = 0, d = k for

F1 6= 0, F2 = 0 and d = b+ l for F2 6= 0.
Let us stipulate that k = 0 for F1 = 0, l = 0 for F2 = 0 and m = 0 for W = 0. The

vector (k, l,m) will be called the type of subalgebra (3).
Each subalgebra of the algebra AẼ(n) with a nonzero projection onto 〈D〉 is conjugate

with respect to the group of E(n)-automorphisms to a subalgebra of the form

(V ⊕W )+⊃(F1 +. F2 +. 〈D〉), (4)

where V , W , F1, F2 are the same as in (3). The type of the subalgebra (V ⊕W )+⊃(F1 +. F2)
will be named the type of subalgebra (4).

Obviously, each subalgebra of the form (3) is not conjugate to subalgebras of the
form (4).

Theorem 1. Let Li (i = 1, 2) be a nonzero subalgebra of the form (3) of the algebra
AE(n) and Li have the type (ki, li,mi). The subalgebras L1 and L2 are E(n)-conjugate
if and only if k1 = k2 = k, l1 = l2 = l, m1 = m2 = m and the subalgebras L1, L2 are
H-conjugate, where

H = O[1, k]×O[k + 1, k + l]×O[k + l + 1, k + l +m].
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Proof. Let Li = Vi +⊃(F1i +. F2i +. Wi) and ϕ(L1) = L2 for the E(n)-automorphism
ϕ = ϕΓ corresponding to the matrix

Γ =
(

Λ Y
0 1

)
,

where Λ ∈ O(n) and Y is a real n-dimensional column. Then ϕΛ(F11 +. F21) = F12 +. F22,
therefore, on the basis of Proposition 1, k1 + l1 = k2 + l2. Since [L1, V1] = V1,
[ϕ(L1), ϕ(V1)] = ϕ(V1), whence ϕ(V1) ⊂ V2. Reasoning similarly, we obtain ϕ−1(V2) ⊂ V1,
therefore ϕ(V1) = V2. It follows that k1 = k2 = k, l1 = l2 = l. Since ϕΛ(V1) = V1, Λ =
diag[Λ1,Λ′

1], where Λ1 ∈ O(k). Since ϕ∆(W1) = W2 for ∆ = diag[E,Λ′
1], m1 = m2 = m

and Λ = diag[Λ1,Λ2,Λ3,Λ4], where Λ2 ∈ O(l), Λ3 ∈ O(m). One can assume that Λ4 is
the identity matrix and Y is the zero column. Hence, Λ ∈ H, which is what had to be
proved.

The conjugacy criterion for subalgebras of the form (4) is formulated similarly.

3. On a normalizer of the space 〈P0 + Pn〉 in the algebra AO(1, n).

Lemma 1. If C ∈ O(1, n) and C(P0 + Pn) = λ(P0 + Pn), then λ 6= 0 and

C =


1 + λ2(1 + ~v 2)

2λ
λ~vB

−1 + λ2(1− ~v 2)
2λ

t~v B −t~v

−1 + λ2(1 + ~v 2)
2λ

λ~vB
1 + λ2(1− ~v 2)

2λ

 , (5)

where B ∈ O(n − 1), ~v is an (n − 1)-dimensional vector line, ~v 2 is the scalar square of
the vector ~v in the Euclidean space Rn−1 and t~v is the vector-column obtained from ~v as
a result of transformation.

Proof. Let C = (cαβ), where α, β = 0, 1, . . . , n. Then

c00 + c0n = λ,

c10 + c1n = 0,
· · · · · · · · · · · · · · · · ·
cn−1,0 + cn−1,n = 0,

cn0 + cnn = λ.

(6)

Let α 6= β and α, β = 1, . . . , n − 1. Since rows of the matrix C form an orthonormal
system in the Minkowski space R1,n, on the basis of (6) we have

−1 = c2α0 − c2α1 − · · · − c2αn = −c2α1 − · · · − c2α,n−1,

0 = cα0cβ0 − cα1cβ1 − · · · − cαncβn = −cα1cβ1 − · · · − cα,n−1cβ,n−1.

It follows that

C =

 c00 ~u λ− c00
t~v B −t~v

cn0 ~ω λ− cn0

 ,
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where B ∈ O(n− 1). It is obvious that

C =

 1 ~0 0
t~0 B t~0
0 ~0 1


 c00 ~u λ− c00

t~v1 En−1 −t~v1

cn0 ~ω λ− cn0

 ,
where t~v1 = B−1 ·t~v. Since when multiplying vectors by B−1, scalar product is preserved,
we have ~v 2 = ~v 2

1. It remains to describe matrices of the form

Ĉ =

 c00 ~u λ− c00
t~v1 En−1 −t~v1

cn0 ~ω λ− cn0

 .
The matrix Ĉ is pseudoorthogonal. From the condition c200 − ~u2 − (λ − c00)2 = 1 we

obtain

c00 =
1 + λ2 + ~u2

2λ
, λ− c00 =

λ2 − 1− ~u2

2λ
.

It follows from the equality c2n0 − ~ω 2 − (λ− cn0)2 = −1 that

cn0 =
−1 + λ2 + ~ω 2

2λ
, λ− cn0 =

λ2 + 1− ~ω 2

2λ
.

Since rows of the matrix Ĉ are pairwise orthogonal,

c00~v1 − ~u+ (λ− c00)~v1 = ~0, cn0~v1 − ~ω + (λ− cn0)~v1 = ~0,

whence ~u = λ~v1, ~ω = λ~v1. In this case,

c00 =
1 + λ2(1 + ~v 2

1)
2λ

, λ− c00 =
−1 + λ2(1− ~v 2

1)
2λ

,

cn0 =
−1 + λ2(1 + ~v 2

1)
2λ

, λ− cn0 =
1 + λ2(1− ~v 2

1)
2λ

.

The orthogonality condition for the first and last rows of the matrix Ĉ imposes no addi-
tional restriction on the elements written above. The Lemma is proved.

Lemma 2. Let C ∈ O(1, n) and is of the form (5), where λ > 0. Then

C = diag[1, B, 1] exp[− lnλ·J0n] · exp(−β1G1 − · · · − βn−1Gn−1),

where Ga = J0a − Jan (a = 1, . . . , n− 1), t(β1, . . . , βn−1) = B−1 ·t~v.

The set H of matrices of the form (5) with the condition λ > 0 forms a group with
respect to ordinary multiplication. The mapping

C →
(
λB λ·t~v
0 1

)
is an isomorphism of the group H onto the extended Euclidean group Ẽ(n− 1). In what
follows, we shall imply the group H under the group Ẽ(n− 1). On the basis of Lemma 2,
the Lie algebra AH of the group H is generated by matrices Jab, Ga, J0n (a < b; a, b =
1, . . . , n − 1). We have AH = AẼ(n − 1) = 〈G1, . . . , Gn−1〉+⊃(AO(n − 1) ⊕ 〈J0n〉). The
matrix J0n generates dilations. The algebra AẼ(n − 1) is the normalizer of the space
〈P0 + Pn〉 in the algebra AO(1, n).



414 L.F. BARANNYK

Lemma 3. If C ∈ O(1, n) and ±C 6∈ Ẽ(n − 1), then C = ±A1C1A2, where A1, A2 ∈
Ẽ(n− 1) and C1 = diag[1, . . . , 1,−1].

Proof. For some matrix Λ = diag[1,Λ′, 1], where Λ′ ∈ O(n−1), we have ΛC(P0+Pn) =
αP0 + βP1 + γPn with α2 − β2 − γ2 = 0. If β 6= 0, then α2 − γ2 6= 0, therefore α− γ 6= 0.
Let θ = β(α− γ)−1. Then

exp(θG1)(αP0 + βP1 + γPn) =
α− γ

2
(P0 − Pn).

Hence, there is a matrix Γ ∈ Ẽ(n − 1) such that ΓC(P0 + Pn) = λ(P0 − Pn). Then
(C1ΓC)(P0 + Pn) = λ(P0 + Pn). If λ > 0, then on the basis of Lemmas 1 and 2 we
conclude that C1ΓC ∈ Ẽ(n − 1). If λ < 0, then −C1ΓC ∈ Ẽ(n − 1). The Lemma is
proved.

Proposition 2. Let L1 and L2 be subalgebras of the algebra AẼ(n − 1), L1 not being
conjugate with respect to the group of inner automorphisms of the algebra AẼ(n − 1) to
the subalgebra of AO(n− 1)⊕ 〈J0n〉. The subalgebras L1 and L2 are O(1, n)-conjugate if
and only if they are Ẽ(n− 1)-conjugate.

Proof. Let subalgebras L1 and L2 be O(1, n)-conjugate, but not be Ẽ(n−1)-conjugate.
Then ϕΛ(L1) = L2, where Λ ∈ O(1, n) and ±Λ 6∈ Ẽ(n−1). By virtue of Lemma 3, we have
Λ = ±A1C1A2, therefore C1(A2L1A

−1
2 )C1 = A−1

1 L2A1. But C1GaC1 = C1(J0a−Jan)C1 =
J0a + Jan 6∈ AẼ(n− 1). The contradiction obtained proves that the Proposition is valid.

Proposition 3. Let L1 and L2 be subalgebras of the algebra K = AO(n− 1)⊕ 〈J0n〉 with
nonzero projections onto 〈J0n〉. They are O(1, n)-conjugate if and only if there exists an
O(n − 1)-automorphism ϕ of the algebra K, such that ϕ(L1) = L2 or ϕ(L1) = C1L2C1,
where C1 = diag[1, . . . , 1,−1].

Proof. Let ϕΛ(L1) = L2, where Λ ∈ O(1, n). If ±Λ ∈ Ẽ(n−1) and±Λ 6∈ Õ(n−1), then
in view of Lemma 2, the projection of ϕΛ(L1) onto 〈G1, . . . , Gn−1〉 is nonzero, therefore
the projection of the algebra L2 onto 〈G1, . . . , Gn−1〉 differs from zero, contrary to the
hypothesis of the Proposition. Hence, if ±Λ ∈ Ẽ(n − 1), then the subalgebras L1, L2

are conjugate with respect to the group of O(n − 1)-automorphisms. If ±Λ 6∈ Ẽ(n − 1),
then, reasoning similarly, we get Λ = ±A1C1A2, where A1, A2 ∈ Õ(n − 1). Therefore
Λ = ±C1A, where A ∈ Õ(n − 1). It follows from this that ϕ(L1) = C1L2C1 for some
O(n− 1)-automorphism ϕ. The Proposition is proved.

4. Subalgebras of the algebra AG1(n − 1)+⊃〈J0n〉. Let K be a subalgebra of the
algebra AP (1, n), such that its projection onto AO(1, n) possesses an invariant isotropic
subspace in the R1,n. Up to isometries, one can assume that this subspace is 〈P0 + Pn〉.
Since the normalizer of 〈P0 + Pn〉 in AO(1, n) coincides with AẼ(n − 1), the subalgebra
K is conjugate to a subalgebra of the algebra A = AG1(n− 1)+⊃〈J0n〉, where AG1(n− 1)
is the classical Galilei algebra [14] with the basis M , T , Pa, Ga, Jab (a, b = 1, . . . , n− 1).

In this case, M = P0 + Pn, T =
1
2
(P0 − Pn). Denote by N the group of automorphisms

of the algebra A, generated by inner automorphisms of this algebra and the O(1, n)-
automorphism corresponding to the matrix diag[1,−1, 1, . . . , 1] ∈ O(1, n).
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Theorem 2. Let L1 and L2 be subalgebras of the algebra A, L1 not being conjugate with
respect to AdA to a subalgebra having a zero projection onto 〈G1, . . . , Gn−1〉. If ϕΛ(L1) =
L2 for Λ ∈ P (1, n), then there is an automorphism ψ ∈ N such that ψ(L1) = L2 or
ψ(L1) = ϕΓ(L2), where Γ = diag[−1, 1, . . . , 1,−1] ∈ O(1, n).

Proof. Since N contains inner automorphisms corresponding to elements of the form

exp

 n∑
γ=0

aγPγ

 , (7)

and P (1, n) is a semidirect product of the group of matrices of the form (7) and the group
O(1, n), one can assume that Λ ∈ O(1, n). On the basis of Proposition 2, ±Λ ∈ Ẽ(n− 1).
The Theorem is proved.

Theorem 3. Let Q be a Lie algebra with the basis P0, Pa, Pn, Jab, J0n (a, b = 1, . . . , n−1)
and L1, L2 be subalgebras of the algebra Q, at least one of them has a nonzero projection
onto 〈J0n〉. Then the subalgebras L1, L2 are P (1, n)-conjugate if and only if there exists
an automorphism ψ ∈ AdQ such that ψ(L1) = L2 or ψ(L1) = ϕC (L2), where C is one of
the matrices

C1 = diag[1, . . . , 1,−1], C2 = diag[1,−1, 1 . . . , 1], C3 = diag[1,−1, 1, . . . , 1,−1]

of order n+ 1.

Proof. Let a projection of L1 onto 〈J0n〉 differ from zero and ϕΛ(L1) = L2 for Λ ∈
P (1, n). As in the proof of Theorem 2, one can assume that Λ ∈ O(1, n). If ±Λ ∈ Ẽ(n−1),
then ±Λ ∈ Õ(n − 1), therefore ϕΛ differs from an inner automorphism of the algebra
Q by the mupltiplier ϕC , where C is one of the matrices C2, C4, C2C4. In this case,
C4 = diag[−1, 1, . . . , 1,−1]. Let ±Λ 6∈ Ẽ(n − 1). As in the proof of Proposition 3, we
obtain Λ = ±C1A, where A ∈ Õ(n − 1). This implies ϕC (ψ(L1)) = L2, where ψ ∈ AdQ
and C is one of the matrices Cj , CjC4 (j = 1, 3).

Employing Proposition I.2.2 [12], it is not easy to prove that L1 = K+⊃〈X + J0n + Y 〉,
where Y ∈ U , ε̂(K) ⊕ 〈X〉 is a subalgebra of the algebra AO(n − 1) and K contains its
projection onto 〈P0, Pn〉. Therefore, the employment of automorphisms corresponding to
matrices diag[α, 1, . . . , 1, β], where α, β ∈ {1,−1}, is equivalent to application of ϕC1

and
the inner automorphism corresponding to the element exp(β0P0 + βnPn). Theorem 3 is
proved.

Denote by O′(1, n−m) the subgroup of all isometries from O(1, n), that act identically
on the subspace 〈P1, . . . , Pm〉.

Proposition 4. Let 2 ≤ mi ≤ n − 1, Fi be a subalgebra of the algebra AO(mi), not
conjugate to subalgebras of the algebra AO(mi − 1), and Li be a subalgebra of the algebra
〈P0, P1, . . . , Pn〉+⊃Fi such that ε̂(Li) = Fi (i = 1, 2). The subalgebras L1 and L2 are
P (1, n)-conjugate if and only if m1 = m2 = m and L1 is conjugate to L2 with respect to
the group of H-automorphisms, where H = E(m)×O′(1, n−m).

Proposition 5. Each subalgebra of the algebra A, having a nonzero projection onto 〈J0n〉,
is conjugate with respect to AdA to a subalgebra of the algebra A, that decomposes as a
vector space into the sum of its projections onto the spaces 〈M〉, 〈T 〉, 〈G1, . . . , Gn−1〉 and
〈P1, . . . , Pn−1〉+⊃(AO(n− 1)⊕ 〈J0n〉).
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Proposition 5 follows from Theorem IV.3.2 [12] and Proposition IV.3.2 [12].

5. Subalgebras of the algebra AP (1, n), not conjugate to subalgebras of
the algebra AG1(n − 1)+⊃〈J0n〉. Let K be a subalgebra of the algebra AP (1, n). The
subalgebra K is P (1, n)-conjugate to none of subalgebras of the algebra AG1(n−1)+⊃〈J0n〉
if and only if ε̂(K) has no invariant isotropic subspaces in the space U . This will be if and
only if, up to O(1, n)-conjugacy, ε̂(K) is a subalgebra of the algebra AO(n), conjugate to
none of subalgebras of the algebra AO(n− 1), or ε̂(K) = AO(1, k)⊕ F , where k ≥ 2 and
F ⊂ AO[k + 1, n].

Proposition 6. Let B be a subalgebra of the algebra AO(n), not conjugate to subalgebras
of the algebra AO(n− 1). If L is a subalgebra of the algebra AP (1, n) and ε̂(L) = B, then
L is conjugate with respect to the group of P (1, n)-automorphisms to the algebra W +⊃C,
where W ⊂ 〈P1, . . . , Pn〉 and C is a subalgebra of the algebra B ⊕ 〈P0〉. Two subalgebras
W1 +⊃C1 and W2 +⊃C2 of the type under consideration are P (1, n)-conjugate if and only if
they are conjugate with respect to the group of O(1)×O(n)-automorphisms.

Proposition 7. Let B = AO(1, k) ⊕ C, where k ≥ 2 and C ⊂ AO[k + 1, n]. If L is a
subalgebra of the algebra AP (1, n) and ε̂(L) = B, then L is P (1, n)-conjugate to L1 ⊕ L2,
where L1 = AO(1, k) or L1 = AP (1, k) and L2 is a subalgebra of the Euclidean algebra
AE[k+1, n] with the basis Pa, Jab (a, b = k+1, . . . , n). Two algebras L1⊕L2 and L′

1⊕L′
2

of the type under consideration are P (1, n)-conjugate if and only if k = k′, L1 = L′
1 and

L2 is conjugate to L′
2 with respect to the group of E[k + 1, n]-automorphisms.

The proofs of Propositions 6 and 7 are similar to one of Theorem 1.
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group P̃ (1, n), J. Math. Phys., 1987, V.28, N 7, 1445–1458.

[12] Fushchych W.I., Barannyk L.F. and Barannyk A.F., Subgroup analysis of the Galilei, Poincaré groups
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