On Subalgebras of the Conformal Algebra $A C(2,2)$

A.F. BARANNYK
Department of Mathematics, Pedagogical University, 2 Ostrogradsky Street, 314003, Poltava, Ukraine

Abstract

Subalgebras of the Lie algebra $A C(2,2)$ of the group $C(2,2)$, which is the group of conformal transformations of the pseudo-Euclidean space $R_{2,2}$, are studied. All subalgebras of the algebra $A C(2,2)$ are splitted into three classes, each of those is characterized by the isotropic rank 0,1 , or 3 . We present the complete classification of the class 0 subalgebras and also of the class 3 subalgebras which satisfy an additional condition. The results obtained are applied to the reduction problem for the d'Alembert equation $\square u+\lambda u^{3}=0$ in the space $R_{2,2}$.

1. Introduction. A number of equations of the theoretical and mathematical physics are invariant with respect to the group $C(2,2)$ of conformal transformations of the pseudoEuclidean space $R_{2,2}[1]$. Therefore subalgebras of the Lie algebra $A C(2,2)$ of the group $C(2,2)$ may be used search for invariant and partially invariant solutions of such equations. It is well-known (see, e.g., [2]) that the problem of subalgebra classification of the algebra $A C(2,2)$ up to $C(2,2)$-conjugacy is equivalent to the problem of classification of subalgebras for the algebra $A O(3,3)$ up to $O(3,3)$-conjugacy. The present paper is devoted to solution of the last problem. Following [3], we split all subalgebra of this algebra into three classes, characterizing each of them by the isotropic rank. In Paragraph 3, we adduce the classification of the class 0 subalgebras for the algebra $A O(3,3)$. In Paragraph 4 , the problem of classification of the class 3 subalgebras for the algebra $A O(3,3)$ is reduced to the problem of classification of subalgebras for the algebra $\operatorname{AIGL}(3, R)$, which is the Lie algebra for the group $I G L(3, R)$, the group of nonuniform transformations of the three-dimensional real space. We have carried out the complete classification up to $O(3,3)$-conjugacy of the class 3 subalgebras L of the algebra $A O(3,3)$ which do not possess a one-dimensional completely isotropic subspace, invariant with respect to L. In Paragraph 5, we consider the conformal algebra $A C(2,2)$, which is the maximal invariance algebra of the d'Alembert equation $\square u+\lambda u^{3}=0$ in the space $R_{2,2}$. We give the complete description of the rank 3 and 4 subalgebras of the algebra $A C(2,2)$ which are not conjugated to subalgebras of the algebra $A_{(1)}$, defined as the normalizer in $A O(3,3)$ of the one-dimensional completely isotropic subspace. We have found invariants of these maximal subalgebras and carried out the reduction of the equation for each of these subalgebras. In solution of the above-mentioned problems, we used some general principles of classification of subalgebras for an arbitrary Lie algebra, adduced in [4].
2. Pseudoorthogonal algebra $A O(3,3)$. Let R be the field of real numbers, $V=R_{3,3}$ be the pseudo-Euclidean space of the signature $(3,3),\left\{Q_{1}, \ldots, Q_{6}\right\}$ is the orthonormal basis of the space V. We call a group, which preserves the form $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}-$ $x_{5} y_{5}-x_{6} y_{6}$, a pseudoorthogonal form of the space $O(3,3)$. If a matrix f is equal to S in basis $\left\{Q_{1}, \ldots, Q_{6}\right\}$ of the space V, then only in the case where $S^{T} J_{3,3} S=J_{3,3}$,

$$
J_{3,3}=\left(\begin{array}{cc}
E_{3} & 0 \\
0 & -E_{3}
\end{array}\right)
$$

E_{3} is the unit matrix of order $3, S^{T}$ is the transposed matrix S. Thus, we can define the group $O(3,3)$ as the group of all square matrices Δ of order 6 over the field of real numbers R, satisfying the matrix equation $\Delta^{T} J_{3,3} \Delta=J_{3,3}$. Hence, the Lie algebra $A O(3,3)$ of the group $O(3,3)$ is composed of all real matrices X which satisfy the relation $X J_{3,3}+J_{3,3} X^{T}=$ 0 . Let $E_{i k}$ be the matrix of order 6 which has 1 at the crossing of the i-th line and k-th column, and zeros at all other places $(i, k=1, \ldots, 6)$. A basis of the algebra $A O(3,3)$ is formed by the matrices $J_{a b}=E_{a b}-E_{b a}(a<b ; a, b=1,2,3), J_{a i}=-E_{a i}-E_{i a}(a=$ $1,2,3 ; i=4,5,6), J_{c d}=-E_{c d}+E_{c d}(c<d ; c, d=4,5,6)$.

Every internal automorphism $\Delta \rightarrow C \Delta C^{-1}$ of the group $O(3,3)$ induces an automorphism $\varphi_{c}: X \rightarrow C X C^{-1}$ of the Lie algebra $A O(3,3)$. We shall call this automorphism an $O(3,3)$ automorphism of the algebra $A O(3,3)$, corresponding to the matrix C. We shall call subalgebras L_{1} and $L_{2} O(3,3)$-conjugated, if $C L_{1} C^{-1}=L_{2}$.

A subalgebra $L \subset A O(3,3)$ is called a class 0 subalgebra, if V does not contain a totally isotropic subspace invariant with respect to L. We shall say that a subalgebra $L \subset A O(3,3)$ belongs to the class $r>0$ or has an isotropic rank r, if the rank of the maximal totally isotropic subspace, invariant with respect to L, is equal to r. It is evident that every subalgebra L of the algebra $A O(3,3)$ has the isotropic rank 0,1 , or 3 .

Let $L \subset A O(3,3)$ be an arbitrary subalgebra for which there exists a totally isotropic subspace $V_{(1)}$ of rank 1 , invariant with respect to L. We can assume according to the Witt theorem that $V_{(1)}=\left\langle Q_{1}+Q_{6}\right\rangle$. The maximal subalgebra, which leaves $V_{(1)}$ invariant, coincides with the algebra $A_{(1)}=\left\langle G_{2}, G_{3}, G_{4}, G_{5}\right\rangle \oplus\left(\left\langle J_{16}\right\rangle \oplus\left\langle J_{23}, J_{24}, J_{25}, J_{34}, J_{35}, J_{45}\right\rangle\right)$, where $G_{a}=J_{1 a}-J_{a 6}(a=2,3,4,5)$. The subalgebra $\left\langle J_{23}, J_{24}, J_{25}, J_{34}, J_{35}, J_{45}\right\rangle$ is the Lie algebra of the pseudoorthogonal group $O(2,2)$, and the subalgebra $\left\langle G_{2}, G_{3}, G_{4}, G_{5}\right\rangle \nexists$ $\left\langle J_{23}, J_{24}, J_{25}, J_{34}, J_{35}, J_{45}\right\rangle$ is the Lie algebra of the Poincaré group $P(2,2)$. Taking into account that the element J_{16} plays the role of dilation, we get that $A_{(1)}$ is the Lie algebra of the extended Poincaré group $\tilde{P}(2,2)$, and $A_{(1)}=A \tilde{P}(2,2)$. As the problem of description of subalgebras of the algebra $A \tilde{P}(2,2)$ is solved in [5], it is sufficient to consider only those subalgebras of the algebra $A O(3,3)$ which are not conjugated to subalgebras of the algebra $A_{(1)}$. These subalgebras are all subalgebras of class 0 of the algebra $A O(3,3)$ and subalgebras L of class 3 , which do not have a one-dimensional totally isotropic subspace, invariant with respect to L. Now we shall go to description of such subalgebras.

Subalgebras of class $\mathbf{3}$ of the algebra $A O(3,3)$. In this paragraph, we shall study subalgebras of class 0 of the algebra $A O(3,3)$ up to $O(3,3)$-conjugacy. Let L be one of such subalgebras. Then the space V is decomposed into the direct orthogonal sum of irreducible L-spaces V_{1}, \ldots, V_{3}, of those is non-degenerate. If (p_{i}, q_{i}) is the signature of the space V_{i}, then by virtue of the Witt theorem we can assume that V_{i} has a basis

$$
\begin{equation*}
Q_{j_{1}}, \ldots, Q_{j_{p_{i}}}, Q_{j_{p_{i}+1}}, \ldots, Q_{j_{p_{i}+q_{i}}} \tag{1}
\end{equation*}
$$

Here $j_{i}<\ldots<j_{p_{i}} \leq 3,3<j_{p_{i}+1}<\ldots<j_{p_{i}+q_{i}} \leq 6$. If $J \in L$, we can consider $a d J$ as a linear transformation \hat{J}_{i} of the space V_{i}. The matrix $\pi_{i}(J)$ of the transformation \hat{J}_{i} in basis (1) of the space V_{i} is contained in $A O\left(p_{i}, q_{i}\right)$. The transformation $\pi_{i}: L \rightarrow A O\left(p_{i}, q_{i}\right)$ is a homomorphism, and $\pi_{i}(L)$ is an irreducible subalgebra of the algebra $A O\left(p_{i}, q_{i}\right)$. As the mapping $J \rightarrow\left(\pi_{1}(J), \ldots, \pi_{s}(J)\right)$ is an isomorphism of L into the algebra $\pi_{1}(L) \times \cdots \times \pi_{s}(L)$, we shall say that L is decomposed with respect to the basis $\left\{Q_{1}, \ldots, Q_{6}\right\}$ into the subdirect product of algebras $\pi_{1}(L), \ldots, \pi_{s}(L)$ and write this in the following way:

$$
L=\pi_{1}(L) \times \cdots \times \pi_{s}(L) .
$$

Let $L^{\prime} \subset A O(3,3)$ be the maximal subalgebra having the mentioned decomposition $V=$ $V_{1} \oplus \cdots \oplus V_{s}$ of the space V into the direct sum of L^{\prime}-subspaces V_{1}, \ldots, V_{s}. Then L^{\prime} is decomposed into the direct product of the algebras $\pi_{1}(L), \ldots, \pi_{s}(L)$. Let us put $L_{i}=$ $\left\{J \in L^{\prime} \mid \pi_{j}(J)=0\right.$ for every $\left.j \neq i\right\}$. It is easy to see that L_{i} is a subalgebra of the algebra L^{\prime} and we have the decomposition $L=L_{1}+\cdots+L_{s}$ of the algebra L into the subdirect sum of the algebras L_{1}, \ldots, L_{s}. Let us adopt a convention of considering L_{i} the same as $\pi_{i}(L)$. In this sense, we shall say that L_{i} is an irreducible subalgebra of the algebra $A O\left(p_{i}, q_{i}\right)$. Thus, a class 0 subalgebra L of the algebra $A O(3,3)$ is either irreducible or can be decomposed into a subdirect sum of irreducible algebras.

Theorem 1 The algebra $A O(3,3)$ contains up to $O(3,3)$-conjugacy only one proper irreducible subalgebra which is conjugated to the algebra $\left\langle J_{12}-J_{45}, J_{13}-J_{46}, J_{23}-J_{56}, J_{15}-\right.$ $\left.J_{24}, J_{26}-J_{35}, J_{16}-J_{34}\right\rangle$.

The proof of Theorem 1 is adduced in [6].
Let us find all maximal class 0 subalgebras of the algebra $A O(3,3)$, using the type of decomposition of the space V into a direct orthogonal sum of irreducible subspaces. Let, e.g., L is a maximal class 0 subalgebra of the algebra $A O(3,3)$ and $V=V_{1} \oplus V_{2}$ is a direct orthogonal sum of two L-irreducible subspaces $V_{1}=\left\langle Q_{1}, Q_{2}, Q_{4}\right\rangle$ and $V_{2}=\left\langle Q_{3}, Q_{5}, Q_{6}\right\rangle$. We shall say that the decomposition of the space V is of the type $(++-)(+--)$. It is evident that the subalgebra L coincides with the algebra $\left\langle J_{12}, J_{14}, J_{24}\right\rangle \oplus\left\langle J_{35}, J_{36}, J_{56}\right\rangle$. All maximal class 0 subalgebras of the algebra $A O(3,3)$ are adduced in Table 1.

Now it is not difficult to get a description of all class 0 subalgebras of the algebra $A O(3,3)$ up to $O(3,3)$-conjugacy. Let, e.g., a decomposition of the space V is of the type $(+++)(---)$. A subalgebra L, for which such a decomposition of the space V exists, is either the direct sum $\left\langle J_{12}, J_{13}, J_{23}\right\rangle \oplus\left\langle J_{45}, J_{46}, J_{56}\right\rangle$ or can be decomposed into a subdirect sum $L_{1}+L_{2}$ of two irreducible subalgebras L_{1} and L_{2}. Thus, $L_{1}=$ $\left\langle J_{12}, J_{13}, J_{23}\right\rangle, L_{2}=\left\langle J_{45}, J_{46}, J_{56}\right\rangle$. It is easy to verify that, up to $O(3,3)$-conjugacy, the subalgebra $L_{1}+L_{2}$ is conjugated to the algebra $L^{\prime}=\left\langle J_{12}+J_{45}, J_{13}-J_{46}, J_{23}+J_{56}\right\rangle$. However, the isotropic rank of the algebra L^{\prime} is equal to 3 as V contains a three-dimensional totally isotropic subspace $\left\langle Q_{1}+Q_{4}, Q_{2}-Q_{5}, Q_{3}+Q_{6}\right\rangle$ invariant with respect to L^{\prime}. This fact proves that if a decomposition of the space V is of the type $(+++)(---)$, then there is the only subalgebra (up to $O(3,3)$-conjugacy) corresponding to this decomposition: $\left\langle J_{12}, J_{13}, J_{23}\right\rangle \oplus\left\langle J_{45}, J_{46}, J_{56}\right\rangle$. Other cases are considered similarly. Finally, we come to the following result.

Statement 1 Let L be a class 0 subalgebra of the algebra $A O(3,3)$ which is not maximal. Then L is $O(3,3)$-conjugated to one of the following algebras:

1) $\quad F_{1}=\left\langle J_{12}-J_{45}, J_{13}-J_{46}, J_{23}-J_{56}, J_{15}-J_{24}, J_{26}-J_{35}, J_{16}-J_{34}\right\rangle$;
2) $\quad F_{2}=\left\langle-2 J_{12}+J_{45}, J_{14}+J_{25}+\sqrt{3} J_{35},-J_{15}+J_{24}-\sqrt{3} J_{34}\right\rangle$;
3) $\quad F_{3}=\left\langle-2 J_{56}+J_{23}, J_{36}+J_{25}+\sqrt{3} J_{24},-J_{26}+J_{35}-\sqrt{3} J_{34}\right\rangle$.

Table 1. Maximal class 0 subalgebras of the algebra $A O(3,3)$

No	Type of decomposition of the space V	Maximal class 0 subalgebras
1	$(+++---)$	$A O(3,3)$
2	$(+++--)(-)$	$A O(3,2)=\left\langle J_{a b} \mid a, b=1, \ldots, 5\right\rangle$
3	$(+)(++---)$	$A O(2,3)=\left\langle J_{a b} \mid a, b=2, \ldots, 6\right\rangle$
4	$(++)(+---)$	$\left\langle J_{12}\right\rangle \oplus\left\langle J_{a b} \mid a, b=3, \ldots, 6\right\rangle$
5	$(+++-)(--)$	$\left\langle J_{a b} a, b=1, \ldots, 4\right\rangle \oplus\left\langle J_{56}\right\rangle$
6	$(+++)(---)$	$\left\langle J_{12}, J_{13}, J_{23}\right\rangle \oplus\left\langle J_{45}, J_{46}, J_{56}\right\rangle$
7	$(++-)(+--)$	$\left\langle J_{12}, J_{14}, J_{24}\right\rangle \oplus\left\langle J_{35}, J_{36}, J_{56}\right\rangle$
8	$(+)(+)(+---)$	$A O(1,3)=\left\langle J_{a b} \mid a, b=3, \ldots 6\right\rangle$
9	$(+++-)(-)(-)$	$A O(3,1)=\left\langle J_{a b} a, b=1, \ldots, 4\right\rangle$
10	$(+)(++)(---)$	$\left\langle J_{23}\right\rangle \oplus\left\langle J_{45}, J_{46}, J_{56}\right\rangle$
11	$(+)(++-)(--)$	$\left\langle J_{23}, J_{24}, J_{34}\right\rangle \oplus\left\langle J_{56}\right\rangle$
12	$(++)(+--)(-)$	$\left\langle J_{12}\right\rangle \oplus\left\langle J_{34}, J_{35}, J_{45}\right\rangle$
13	$(+++)(--)(-)$	$\left\langle J_{12}, J_{13}, J_{23}\right\rangle \oplus\left\langle J_{45}\right.$
14	$(+)(+)(+)(---)$	$A O(3)=\left\langle J_{45}, J_{46}, J_{56}\right\rangle$
15	$(-)(-)(-)(+++)$	$A O(3)=\left\langle J_{12}, J_{13}, J_{23}\right\rangle$

Class 3 subalgebras of the algebra $A O(3,3)$. In the present paragraph, the problem of classification of class 3 subalgebras $L \subset A O(3,3)$ is reduced to the problem of classification of subalgebras of the algebra $\operatorname{AIG}(3, R)$, which is the Lie algebra of the group of nonuniform real transformations of the three-dimensional real space.

Let $L \subset A O(3,3)$ be an arbitrary class 3 subalgebra. By virtue of the Witt theorem, we can assume that L leaves a subspace $V_{(3)}=\left\langle Q_{1}+Q_{4}, Q_{2}+q_{5}, Q_{3}+Q_{6}\right\rangle$ invariant. All such subalgebras are contained in the maximal class 3 subalgebra $A_{(3)}$ which is a normalizer in $A O(3,3)$ of the totally isotropic space $V_{(3)}$. According to [3], every element J of the algebra $A_{(3)}$ can be uniquely represented in the form

$$
J=\left(\begin{array}{ll}
J_{1} & -J_{1} \tag{2}\\
J_{1} & -J_{1}
\end{array}\right)+\left(\begin{array}{cc}
0 & J_{2} \\
J_{2} & J_{2}-J_{2}^{T}
\end{array}\right)
$$

where $J_{1} \in A O(3), J_{2} \in A G L(3, R)$. That can be written symbolically in the following way: $J=\left(J_{1} ; J_{2}\right)$. According to decomposition (3), we can assert that the algebra $A_{(3)}$, considered as a vector space, can be decomposed into a Cartesian product $A O(3) \times A G L(3, R)$
of the spaces $A O(3)$ and $A G L(3, R)$. Hence it follows that a basis of the algebra $A_{(3)}$ is formed by the matrices $K_{12}=J_{12}-J_{45}, K_{13}=J_{13}-J_{46}, K_{23}=J_{23}-J_{56}, \mathbb{D}_{1}=J_{14}-J_{25}$, $\mathbb{D}_{2}=J_{14}-J_{36}, L_{12}=J_{15}+J_{24}, L_{13}=J_{16}+J_{34}, L_{23}=J_{26}+J_{35}, S=-\frac{1}{2}\left(J_{14}+J_{25}+J_{36}\right)$, $T_{1}=\frac{1}{2}\left(J_{23}+J_{26}-J_{35}+J_{56}\right), T_{2}=\frac{1}{2}\left(-J_{13}-J_{16}+J_{34}-J_{46}\right), T_{3}=\frac{1}{2}\left(J_{12}+J_{15}-J_{24}+J_{45}\right)$. The matrix algebra $\left(J_{1} ; 0\right)$, where J_{1} runs over $A O(3)$, forms a commutative ideal V_{1} of the algebra $A_{(3)}$, the quotient algebra $A_{(3)} / V_{1}$ of which is isomorphic to the algebra $\operatorname{AIGL}(3, R)$. It not difficult to verify that $A_{(3)}$ is isomorphic to the algebra $\operatorname{AIGL}(3, R)$ (see $[7]$). Further we shall consider the following basis of the algebra $A_{(3)}$:

$$
\begin{aligned}
& A_{1}=-\mathbb{D}_{1}, A_{2}=\frac{1}{2}\left(K_{12}-L_{12}\right), A_{3}=\frac{1}{2}\left(K_{12}+L_{12}\right), \\
& \mathbb{D}=-\frac{1}{3} \mathbb{D}_{1}+\frac{2}{3} \mathbb{D}_{2}+\frac{2}{3} S, S, P_{1}=\frac{1}{2}\left(K_{13}+L_{13}\right), \\
& P_{2}=\frac{1}{2}\left(K_{23}+L_{23}\right), K_{13}, A_{2}^{\prime}=\frac{1}{2}\left(K_{23}-L_{23}\right), T_{1}, T_{2}, T_{3} .
\end{aligned}
$$

For basis elements of the algebra $A_{(3)}$, we use the same notations as for the algebra $\operatorname{AIGL}(3, R)$ in $[7]$. Hence we designate the subalgebra $\left\langle A_{1}, A_{2}, A_{3}, \mathbb{D}, P_{1}, P_{2}, K_{13}, A_{2}\right\rangle$, which is isomorphic to the algebra $\operatorname{ASL}(3, R)$, as $\operatorname{ASL}(3, R)$. Similarly $\operatorname{ASL}(3, R) \oplus\langle S\rangle=$ $A G L(3, R)$ and $A_{(3)}=\operatorname{AIGL}(3, R)$. This allows us to use automatically the classification of subalgebras of the algebra $\operatorname{AIGL}(3, R)$ adduced in [7].

Let F be some subalgebra of the algebra $\operatorname{AGL}(3, R)$. The subalgebra F is called irreducible, and the space $W=\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ is called F-irreducible if W contains only nontrivial subspaces invariant with respect to F. The subalgebra F is called fully reducible if, for each F-invariant subspace $W_{1} \subset W$, there exists such an F-invariant subspace $W_{2} \subset W$ that $W=W_{1} \oplus W_{2}$.

Let us consider the following sequences of subspaces:

$$
\begin{align*}
& 0 \subset\left\langle T_{1}, T_{2}\right\rangle \subset\left\langle T_{1}, T_{2}, T_{3}\right\rangle, \tag{3}\\
& 0 \subset\left\langle T_{1}\right\rangle \subset\left\langle T_{1}, T_{2}, T_{3}\right\rangle \tag{4}\\
& 0 \subset\left\langle T_{1}\right\rangle \subset\left\langle T_{1}, T_{2}\right\rangle \subset\left\langle T_{1}, T_{2}, T_{3}\right\rangle . \tag{5}
\end{align*}
$$

We shall say a subalgebra $F \subset A G L(3, R)$, which is not fully reducible, belongs to the class \mathfrak{M}_{1} (correspondingly to \mathfrak{M}_{2} and \mathfrak{M}_{3}), if series (4) (correspondingly (5) and (6)) is a composition series of the F-module of W. If L is an arbitrary subalgebra of the algebra $A_{(3)}$ and L_{1} is its projection on $\operatorname{AGL}(3, R)$, then we can always assume that L_{1} is either fully reducible or belongs to one of the classes $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ and \mathfrak{M}_{3}. We shall assume just that in the following. We shall say that a subalgebra $L \subset \operatorname{AIGL}(3, R)$ belongs to the class $\tilde{\mathfrak{M}}_{i}$ if L is an extension of a subalgebra F which belongs to the class \mathfrak{M}_{i} of the algebra $\operatorname{AGL}(3, R)(i=1,2,3)$. Note that the maximal subalgebra M_{2} from the class $\tilde{\mathfrak{M}}_{2}$ of the algebra $A G L(3, R)$ has a basis $\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \mathbb{D}^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\}$. Using [3], we get that the group G_{1} of $O(3,3)$-automorphisms which leaves invariant a totally isotropic subspace $V_{(3)}$ induces a group of $\operatorname{IGL}(3, R)$-automorphisms on $A_{(3)}$. Therefore, we can distinguish the following two steps at classification of subalgebras of the algebra $A_{(3)}$. At the first step, we find all subalgebras of the algebra $A_{(3)}$ nonequivalent up to $\operatorname{IGL}(3, R)$-conjugacy.

The set of subalgebras received is designated as \mathfrak{U}. Two subalgebras $L_{1}, L_{2} \in \mathfrak{U}$ can be conjugated by means of some $O(3,3)$-automorphism which does not belong to G_{1}. Thus, at the second step, we have the problem of classification of subalgebras from the set \mathfrak{U} up to $O(3,3)$-conjugacy. To solve this problem, let us consider the following totally isotropic subspaces V :

$$
\begin{array}{ll}
S_{1}=\left\langle Q_{1}+Q_{4}, Q_{2}+Q_{5}, Q_{3}+Q_{6}\right\rangle, & S_{2}=\left\langle Q_{1}+Q_{4}, Q_{2}+Q_{5}, Q_{3}-Q_{6}\right\rangle, \\
S_{3}=\left\langle Q_{1}+Q_{4}, Q_{2}-Q_{5}, Q_{3}-Q_{6}\right\rangle, & S_{4}=\left\langle Q_{1}-Q_{4}, Q_{2}-Q_{5}, Q_{3}-Q_{6}\right\rangle, \\
S_{5}=\left\langle Q_{1}-Q_{4}, Q_{2}+Q_{5}, Q_{3}-Q_{6}\right\rangle, & S_{6}=\left\langle Q_{1}-Q_{4}, Q_{2}+Q_{5}, Q_{3}+Q_{6}\right\rangle, \\
S_{7}=\left\langle Q_{1}+Q_{4}, Q_{2}-Q_{5}, Q_{3}+Q_{6}\right\rangle, & S_{8}=\left\langle Q_{1}-Q_{4}, Q_{2}-Q_{5}, Q_{3}+Q_{6}\right\rangle .
\end{array}
$$

Let us designate the following matrices as $C_{i}: C_{1}=\operatorname{diag}[1,1,1,1,1,-1], C_{2}=$ diag $[1,1,1,1,-1,1] C_{3}=\operatorname{diag}[1,1,1,-1,1,1]$. Let $\varphi_{i}(i=1,2,3)$ be an $O(3,3)$ automorphism of the algebra $A O(3,3)$ determined by the matrix $C_{i},(i=1,2,3)$. The group $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ generated by automorphisms φ_{i} is designated as G_{2}. The order of the group G_{2} is equal to 8 .

Theorem 2 If subalgebras $L_{1}, L_{2} \subset A_{(3)}$ are conjugated with respect to the group of $O(3,3)$-automorphisms, they are conjugated also with respect to the group $\left\{G_{1}, G_{2}\right\}$.

Proof. Note that there exist only the following totally isotropic subspaces of rank 3: $S_{1}, S_{2}, S_{3}, S_{4}$. Let f be an $O(3,3)$-automorphism, mapping the algebra $L_{1} \subset A_{(3)}$ on the algebra $L_{2} \subset A_{(3)}$. The subspace $f^{-1}\left(S_{1}\right)$ is totally isotropic and invariant with respect to the subalgebra L. It easy to make sure that there exists some $\operatorname{IGL}(3, R)$ automorphism ψ mapping $f^{-1}\left(S_{1}\right)$ on some subspace $S_{i}(i \in\{1, \ldots, 7\})$, and $\psi\left(L_{1}\right)=L_{1}$. The automorphism $f \psi$ maps L_{1} on L_{2}, and S_{1} on S_{2}. So we can assume that $f\left(L_{1}\right)=L_{2}$ and $f\left(S_{i}\right)=S_{1}$. Then $f=f_{1} \varphi$ for some $\operatorname{IGL}(3, R)$-automorphism $f \in G_{1}$ and $\varphi \in G_{2}$. The theorem is proved.

It follows from Theorem 2 that, at the second step, the classification of subalgebras of the set \mathfrak{U} should be done up to automorphisms of the form $f \varphi$ where $f \in G_{1}$ and $\varphi \in G_{2}$. Let us apply Theorem 2 to the problem of classification up to $O(3,3)$-conjugacy of class 3 subalgebras of the algebra $A O(3,3)$, which are not conjugate to subalgebras of the algebra $A_{(1)}$. Let L be one of such subalgebras. It is an extension in $A_{(3)}=\operatorname{AIGL}(3, R)$ of some subalgebra $F \subset A G(3, R)$. Taking into account that V does not contain a one-dimensional totally isotropic subspace invariant with respect to L, we get that F is either irreducible or belongs to the class M_{2}. Using the description of these classes adduced in [7] and additionally studying them up to conjugacy with respect to automorphisms of the form $f \varphi$, where $f \in G_{1}, \varphi \in G_{2}$, we get the complete classification up to $O(3,3)$-conjugacy of class 3 subalgebras of the algebra $A O(3,3)$, which are not conjugate to subalgebras of the algebra $A_{(1)}$. Further we use the following notations:

$$
A_{1}^{\prime}=\frac{1}{2} A_{1}-\frac{3}{2} \mathbb{D}+S, A_{3}^{\prime}=P_{2}, P_{1}^{\prime}=P_{1}, \quad P_{2}^{\prime}=-A_{3}, \mathbb{D}^{\prime}=-\frac{1}{2} A_{1}+\frac{1}{2} \mathbb{D}-S
$$

Class 3 subalgebras of the algebra $A O(3,3)$, which are not conjugate to subalgebras of the algebra $A_{(1)}$:

1) $\left\langle J_{23}+J_{45}, J_{13}+J_{46}, J_{12}+J_{56}\right\rangle \oplus\left\langle s_{1} S\right\rangle \oplus\left\langle s_{2} T_{1}, s_{2} T_{2}, s_{2} T_{3}\right\rangle \quad\left(s_{1}, s_{2}=0 ; 1\right)$;
2) $\left\langle J_{24}+J_{35}, J_{12}+J_{56}, J_{14}+J_{36}\right\rangle \oplus\left\langle s_{1} S\right\rangle \oplus\left\langle s_{2} T_{1}, s_{2} T_{2}, s_{2} T_{3}\right\rangle \quad\left(s_{1}, s_{2}=0 ; 1\right)$;
3) $A S L(3, R) \oplus\left\langle s_{1} S\right\rangle \oplus\left\langle s_{2} T_{1}, s_{2} T_{2}, s_{2} T_{3}\right\rangle \quad\left(s_{1}, s_{2}=0 ; 1\right)$,
where $\operatorname{ASL}(3, R)=\left\langle J_{23}+J_{45}, J_{13}+J_{46}, A_{1}^{\prime}, A_{2}^{\prime}, A_{3}, P_{1}^{\prime}, P_{2}^{\prime}, \mathbb{D}^{\prime}\right\rangle S$;
4) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}+\alpha \mathbb{D}^{\prime}+\beta S, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle \quad(\alpha \geq 0,2 \alpha-\beta \geq 0)$;
5) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}+\alpha S, \mathbb{D}^{\prime}+\beta S, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle \quad(\alpha \geq 0,0 \leq \beta \leq 2)$;
6) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}^{\prime}, S, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle$;
7) $\left\langle A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle$;
8) $\left\langle A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \mathbb{D}^{\prime}+\alpha S, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle \quad(0 \leq \alpha \leq 2)$;
9) $\left\langle A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \mathbb{D}^{\prime}, S, P_{1}^{\prime}, P_{2}^{\prime}, T_{1}, T_{2}, T_{3}\right\rangle$;
10) $\left\langle A_{2}^{\prime}+A_{3}^{\prime},+\alpha\left(\mathbb{D}^{\prime}+2 S\right), P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle \quad(\alpha \geq 0)$;
11) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}+T_{1}, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle$
12) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}+\alpha\left(\mathbb{D}^{\prime}+2 S\right), P_{2}^{\prime}+T_{2}+\beta T_{3}, P_{2}^{\prime}-\beta T_{2}+T_{3}, T_{1}\right\rangle \quad(\alpha \leq 0)$;
13) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, P_{1}^{\prime}+T_{2}+\beta T_{3}, P_{2}^{\prime}-\beta T_{2}+T_{3}, T_{1}\right\rangle \quad(\beta \leq 0)$;
14) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}^{\prime}+2 S, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle(\alpha \leq 0)$;
15) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}+2 S, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle$;
16) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}+2 S, P_{1}^{\prime}+T_{2}+\beta T_{3}, P_{2}^{\prime}-\beta T_{2}+T_{3}, T_{1}\right\rangle \quad(\beta \geq 0)$;
17) $\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}^{\prime}+2 S, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}, T_{1}\right\rangle$;
18) $\left\langle A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, P_{1}^{\prime}+T_{2}+T_{3}, T_{1}\right\rangle$;
19) $\left\langle A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \mathbb{D}^{\prime}+2 S, P_{1}^{\prime}+T_{2}, P_{2}^{\prime}+T_{3}, T_{1}\right\rangle$.

On reduction of the d'Alembert equation in the pseudo-Euclidean space $\mathbf{R}_{\mathbf{2}, 2}$. We consider a nonlinear wave equation

$$
\square u+\lambda u^{3}=0
$$

in the pseudo-Euclidean space $R_{2,2}$, where

$$
\square u=u_{11}+u_{22}-u_{33}-u_{44}, u_{\alpha \beta}=\frac{\partial^{2} u}{\partial x_{\alpha} \partial x_{\beta}}, u \equiv u(x), x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; \alpha, \beta=1,2,3,4 .
$$

The maximal invariance algebra of this equation is the conformal algebra $A C(2,2)$ [1]. It is isomorphic to the algebra $A O(3,3)$ and is realized by the following operators:

$$
\begin{align*}
& \Omega_{\alpha \beta}=J_{\alpha+1, \beta+1}=g_{\alpha \alpha} x_{\alpha} \frac{\partial}{\partial x_{\beta}}-g_{\beta \beta} x_{\beta} \frac{\partial}{\partial x_{\alpha}}, \\
& P^{\alpha}=J_{1, \alpha+1}-J_{\alpha+1,6}=\frac{\partial}{\partial x_{\alpha}}, \\
& \mathbb{D}=-J_{16}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}+x_{4} \frac{\partial}{\partial x_{4}}+u \frac{\partial}{\partial u}, \tag{6}\\
& K^{\alpha}=J_{1, \alpha+1}+J_{\alpha+1,6}=-2 g_{\alpha \alpha} x_{\alpha} \mathbb{D}-x^{2} \frac{\partial}{\partial x_{\alpha}},
\end{align*}
$$

where $x^{2}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}, g_{11}=g_{22}=-g_{33}=-g_{44}=1 ; \alpha, \beta=1,2,3,4$. We use subalgebras of the algebra $A C(2,2)$ to look for invariant solutions of the d'Alembert equation. For this purpose, we will describe maximal subalgebras of ranks 3 and 4 of the algebra $A O(3,3)$, which are not conjugate to subalgebras of the algebra $A_{(1)}$. As shown earlier, such subalgebras belong to the class 0 or are contained in the algebra $A_{(3)}$. For convenience, we go from the algebra $A_{(3)}$ to the algebra $\varphi_{c}\left(A_{3}\right)$, where φ_{c} is an $O(3,3)$ automorphism determined by the matrix $C=\operatorname{diag}\left[E_{3}, J\right]$. Here E_{3} is the unit matrix of order $3, \quad J=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$. We will designate elements of the algebras $A_{(3)}$ and $\varphi_{c}\left(A_{3}\right)$ corresponding to each other by the automorphism φ_{c} by the same symbols. Hence, the maximal subalgebra M_{2} from the class \mathfrak{M}_{2} of the algebra $\varphi_{c}\left(A_{3}\right)$ is realized by the following operators:

$$
\begin{align*}
& \mathbb{D}^{\prime}=y_{3} \partial_{3}-y_{4} \partial_{4}, \quad A_{2}^{\prime}=\left(A_{2}^{\prime}=\left(y_{1} y_{2}+y_{3} y_{4}\right) \partial_{1}+\mathbb{D}\right. \\
& A_{3}=-\partial_{2}, \quad A_{1}^{\prime}=2 y \partial_{2}+y_{3} \partial_{3}+y_{4} \partial_{4}-u \partial_{u} \\
& P_{1}^{\prime}-\partial_{4}, \quad P_{2}^{\prime}=-y_{3} \partial_{1}+y_{2} \partial_{4}, \quad T_{1}=-\partial_{1} \tag{7}\\
& T_{2}=\partial_{3}, \quad T_{3}=y_{4} \partial_{1}-y_{2} \partial_{3}, \quad S=-y_{1} \partial_{1}-y_{3} \partial_{3}+\frac{1}{2} u \partial_{u}
\end{align*}
$$

where $y_{1}=x_{1}+x_{4}, y_{2}=x_{1}-x_{4}, y_{3}=x_{2}+x_{3}, y_{4}=x_{2}-x_{3}$, and $\mathbb{D}=y_{1} \partial_{1}+y_{2} \partial_{2}+y_{3} \partial_{3}+$ $y_{4} \partial_{4}+u \partial_{u}, \partial_{\alpha}=\frac{\partial}{\partial y_{\alpha}}(\alpha=1,2,3,4)$. Using the classification of subalgebras explained in Paragraphs 3 and 4, and formulae (7) and (8), we come to the following results.

Theorem 3 Let L be a maximal rank 4 subalgebra of the algebra $A C(2,2)$ not conjugated to a subalgebra of the algebra $A_{(1)}$. Then it is $C(2,2)$-conjugated to one of the following algebras:

1) $F_{1}=\left\langle J_{12}, J_{13}, J_{23}, J_{45}, J_{46}, J_{56}\right\rangle$;
2) $F_{2}=\left\langle J_{23}+J_{45}, J_{13}+J_{46}, J_{12}+J_{56}, S\right\rangle$;
3) $\quad F_{3}=\left\langle J_{24}+J_{35}, J_{12}+J_{56}, J_{14}+J_{36}, S\right\rangle$;
4) $F_{4}=\left\langle A_{2}^{\prime}+A_{3}^{\prime}, \mathbb{D}^{\prime}+2 S, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle$.

Theorem 4 Let L be a maximal rank 3 subalgebra of the algebra $A C(2,2)$ not conjugated to a subalgebra of the algebra $A_{(1)}$. Then it is $C(2,2)$-conjugated to one of the following algebras:

1) $L_{1}=\left\langle J_{12}, J_{13}, J_{23}, J_{45}\right\rangle$;
2) $L_{2}=\left\langle J_{23}, J_{45}, J_{46}, J_{56}\right\rangle$
3) $L_{3}=\left\langle 2_{16}+J_{34}, J_{14}+J_{36}+\sqrt{3} J_{35}, J_{13}+J_{46}-\sqrt{3} J_{45}\right\rangle$;
4) $L_{4}=\left\langle 2_{16}+J_{34}, J_{14}+J_{36}+\sqrt{3} J_{24}, J_{13}+J_{46}-\sqrt{3} J_{23}\right\rangle$;
5) $L_{5}=\left\langle J_{23}+J_{45}, J_{13}+J_{46}, J_{12}+J_{56}\right\rangle$;
6) $L_{6}=\left\langle J_{24}+J_{35}, J_{12}+J_{56}, J_{14}+J_{36}\right\rangle$;
7) $\quad L_{7}=\left\langle A_{2}^{\prime}+A_{3}^{\prime}+\alpha\left(\mathbb{D}^{\prime}+2 S\right), P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle(\alpha \geq 0)$;
8) $L_{8}=\left\langle A_{2}^{\prime}+A_{3}^{\prime}+T_{1}, P_{1}^{\prime}+T_{3}, P_{2}^{\prime}-T_{2}\right\rangle$;

Let us write down the complete systems of invariants of the subalgebras represented in Theorems 3 and 4.

$$
\begin{aligned}
& F_{1}: u^{2}\left[1+\left(y_{1} y_{2}+y_{3} y_{4}\right)^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right] . \\
& F_{2}: u^{4}\left(1+y_{2}^{2}+y_{4}^{2}\right)\left[\left(y_{1} y_{2}+y_{3} y_{4}\right)^{2}+y_{1}^{2}+y_{3}^{2}\right] . \\
& F_{3}: u^{4}\left(1+y_{2}^{2}-y_{4}^{2}\right)\left[\left(y_{1} y_{2}+y_{3} y_{4}\right)^{2}+y_{1}^{2}+y_{3}^{2}\right] . \\
& F_{4}: u^{4}\left(1+y_{2}^{2}\right)\left[2 y_{1}+2 y_{2}\left(y_{1} y_{2}+y_{3} y_{4}\right)-y_{3}^{2}+y_{4}^{2}\right] . \\
& L_{1}: \omega^{\prime}=u\left(1+y_{1} y_{2}+y_{3} y_{4}\right), \omega=\frac{\left(1+y_{1} y_{2}+y_{3} y_{4}\right)^{2}}{\left(y_{1}-y_{2}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}} . \\
& L_{2}: \omega^{\prime}=u\left(1-y_{1} y_{2}-y_{3} y_{4}\right), \omega=\frac{\left(1-y_{1} y_{2}-y_{3} y_{4}\right)^{2}}{\left(y_{1}+y_{2}\right)^{2}+\left(y_{3}+y_{4}\right)^{2}} . \\
& L_{3}: \omega^{\prime}=u \omega_{1}, \omega=\frac{\omega_{2}\left(3 \omega_{1}-\omega_{2}\right)^{2}-3 \sqrt{3} \omega_{3}^{2}}{\omega_{1}^{3}}
\end{aligned}
$$

where $\omega_{1}=y_{1}+y_{2}, \omega_{2}=4 y_{1}+\sqrt{3} y_{4}^{2}, \omega_{3}=\sqrt{3}\left(y_{1}-y_{2}\right) y_{4}+2 y_{3}+y_{4}^{3}$.

$$
L_{4}: \omega^{\prime}=u \omega_{1}, \omega=\frac{\omega_{2}\left(3 \omega_{1}-\omega_{2}\right)^{2}-3 \sqrt{3} \omega_{3}^{2}}{\omega_{1}^{3}}
$$

where $\omega_{1}=-y_{1}+y_{2}, \omega_{2}=-4 y_{1}+\sqrt{3} y_{4}^{2}, \omega_{3}=-\sqrt{3}\left(y_{1}+y_{2}\right),-2 y_{3}+y_{4}^{3}$;

$$
\begin{aligned}
& L_{5}: \omega^{\prime}=u^{2}\left(1+y_{2}^{2}+y_{4}^{2}\right), \omega=\frac{\left(y_{1} y_{2}+y_{3} y_{4}\right)^{2}+y_{1}^{2}+y_{3}^{2}}{1+y_{2}^{2}+y_{4}^{2}} \\
& L_{6}: \omega^{\prime}=u^{2}\left(1+y_{2}^{2}+y_{4}^{2}\right), \omega=\frac{\left(y_{1} y_{2}+y_{3} y_{4}\right)^{2}+y_{1}^{2}+y_{3}^{2}}{1+y_{2}^{2}-y_{4}^{2}} \\
& L_{7}: \omega^{\prime}=u\left(1+y_{2}^{2}\right)^{1 / 2} \exp \left(\alpha \arctan y_{2}\right), \omega=\frac{2 y_{1}-2 y_{3}^{2}+y_{4}^{2}+2 y_{2}\left(y_{1} y_{2}+y_{3} y_{4}\right)}{1+y_{2}^{2}-y_{4}^{2}} . \\
& L_{8}: \omega^{\prime}=u\left(1+y_{2}^{2}\right)^{1 / 2}, \omega=\frac{2 y_{1}-y_{3}^{2}+y_{4}^{2}+2 y_{2}\left(y_{1} y_{2}+y_{3} y_{4}\right)}{1+y_{2}^{2}}-2 \arctan y_{2} .
\end{aligned}
$$

We can check directly that the d'Alembert equation have no solutions invariant under respect to subalgebras $F_{i}(i=1, \ldots, 4), L_{5}$, and L_{6}. Considering all the remaining subalgebras of the rank 3 and using the ansatz $\omega^{\prime}=\varphi(\omega)$, we reduce the d'Alembert equation to ordinary differential equations with an unknown function φ :

$$
\begin{aligned}
& L_{1}:-4(4+\exp \omega) \ddot{\varphi}+2 \varphi \dot{\varphi}-8 \varphi+\lambda \varphi^{3}=0 \\
& L_{2}: 4(4+\exp \omega) \ddot{\varphi}-2 \varphi \dot{\varphi}-8 \varphi+\lambda \varphi^{3}=0 \\
& L_{3}: 9 \omega(\omega-4) \ddot{\varphi}+18(\omega-2) \dot{\varphi}+2 \varphi+\frac{\lambda}{4} \varphi^{3}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& L_{4}: 9 \omega(\omega-4) \ddot{\varphi}+18(\omega-2) \dot{\varphi}+2 \varphi-\frac{\lambda}{4} \varphi^{3}=0 . \\
& L_{7}:-16 \alpha \exp (-\omega) \ddot{\varphi}-8 \alpha \exp (-\omega) \dot{\varphi}+\lambda \varphi^{3}=0 . \\
& L_{8}:-16 \ddot{\varphi}+\lambda \varphi^{3}=0 .
\end{aligned}
$$

A general integral of the equation $-16 \ddot{+} \lambda \varphi^{3}=0$ has the form

$$
\omega+C=\int\left(\frac{\lambda \varphi^{4}}{32}+C_{1}\right)^{-1 / 2} d \varphi
$$

When $C_{1}=0$, we get $\varphi=\frac{4 \sqrt{2}}{\sqrt{\lambda}(\omega+C)}$. Thus, we have the following exact solution of the d'Alember equation:

$$
u=\frac{4 \sqrt{2}}{\left[\lambda\left(1+y_{2}^{2}\right)\right]^{1 / 2}\left(\frac{2 y_{1}-y_{3}^{2}+y_{4}^{2}+2 y_{2}\left(y_{1} y_{2}+y_{3} y_{4}\right)}{1+y_{2}^{2}}-2 \arctan y_{2}+C\right)}
$$

References

[1] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer Academic Publishers, 1993, 436p. (Russian version, Naukova Dumka, Kiev, 1989).
[2] Fushchych W., Barannyk L. and Barannyk A., Subgroup Analysis of the Galilei and Poincaré Groups and Reductions of Nonlinear Equations, Naukova Dumka, Kiev, 1991, 300p.
[3] Fushchych W., Barannyk L. and Barannyk A., On continuous subgroups of pseudoorthogonal and pseudounitary subgroups, Preprint N 86.87, Institute of Math. of Ukrainian Acad. of Sci., 1986.
[4] Patera J., Winternitz P. and Zassenhaus H., Continuous subgroups of the fundamental groups of physics, J. Math. Phys. 1975, V. 16, N8, 1597-1624.
[5] Fushchych W.I., Barannyk A.F. and Moskalenko Yu.D., On exact solutions of the nonlinear d'Alembert and Liouville equations in space $R_{2,2}$. I. Ukr. Math. J., 1990, V.42, N 8, 1142-1148.
[6] Barannyk A.F., Moskalenko Yu.D. and Fushchych W.I., Subalgebras of pseudoorthogonal algebra $A O(3,3)$, Preprint N 89.67, Institute of Math. of Ukrainian Acad. of Sci., 1989.
[7] Barannyk A.F., Moskalenko Yu.D. and Fushchych W.I., Subalgebras of affine algebra $\operatorname{AIGL}(3, R)$, Preprint N 89.65, Institute of Math. of Ukrainian Acad. of Sci., 1989.

