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Abstract

We prove a generalization to the case of s × s matrix linear differential operators
of the classical theorem of E. Cotton giving necessary and sufficient conditions for
equivalence of eigenvalue problems for scalar linear differential operators. The con-
ditions for equivalence to a matrix Schrödinger operator are derived and formulated
geometrically in terms of vanishing conditions on the curvature of a g`(s,R)-valued
connection. These conditions are illustrated on a class of matrix differential operators
of physical interest, arising by symmetry reduction from Dirac’s equation for a spinor
field minimally coupled with a cylindrically symmetric magnetic field.

Introduction.

Our purpose in this paper is to present a theorem which provides an explicit set of neces-
sary and sufficient conditions for the local equivalence of eigenvalue problems associated
to a general second-order linear s × s matrix differential operator in Rn and a matrix
Schrödinger operator. We will consider equivalences which arise from the combination of
local diffeomorphisms in Rn and conjugation of the matrix differential operator by non-
singular matrix-valued multiplication operators. In the scalar case (s = 1), this problem
was solved on the line (n = 1) in [4] and in n ≥ 2 dimensions in a classical paper of
E. Cotton [1]. For matrix differential operators on the line, the local equivalence problem
can also be solved explicitly [2].

The basic content of Cotton’s theorem is that in order for a scalar linear second-order
operator to be locally equivalent to a Schrödinger operator, a certain invariant 1-form
constructed from coefficients of the differential operator using the Levi-Civitá connection
of the metric determined by the principal symbol must be closed. This closure condition
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plays a very significant role in construction of quasi-exactly solvable Hamiltonians in n ≥ 2
dimensions from a given normal form for a Lie algebra of first-order differential operators
[3], [5]. The main goal of our note is to obtain a generalization of this closure condition in
the matrix case. We shall see that the analogue of this closure condition in the matrix case
is the vanishing of the curvature of a gl(s,R)-valued connection constructed from matrix-
valued coefficients of the given operator. These zero curvature conditions are expected to
play a significant role in construction of higher-dimensional quasi-exactly solvable matrix
Schrödinger operators.

1 Equivalence of linear differential operators.

Our goal in this section is to define the natural notion of local equivalence for matrix
linear differential operators in Rn which is best adapted to the study of eigenvalue prob-
lems. This is an obvious extension of earlier definitions formulated in the scalar case [3],
[4].

Let M and M̄ denote open subsets of Rn with local coordinates given, respectively, by
x = (x1, · · ·xn) and x̄ = (x̄1, · · · x̄n). Consider on M the k-th order linear s × s matrix
differential operator.

T =
∑
|I|≤k

AI∂I , (1.1)

where I = (i1, · · · , i`) ∈ N` denotes a multi-index,

|I| = i1 + · · ·+ i`, ∂I =
∂|I|

(∂x1)i1 · · · (∂x`)i`
,

and the AI are s × s matrices with entries in C∞(M ;R). Likewise, on M̄ , consider an
s× s matrix differential operator

T̄ =
∑
|I|≤k

ĀI ∂̄I . (1.2)

We say that T and T̄ are equivalent if they can be transformed into each other by the
combined effect of a change of variables and conjugation by a nonsingular s× s functional
matrix, i.e., if there exists a local diffeomorphism ϕ : M → M̄, x̄ = ϕ(x), and a GL(s,R)-
valued function µµµ ∈ C∞(M ;GL(s,R)) such that

T̄
(
(µµµψ)

∣∣∣
x=ϕ−1(x̄)

)∣∣∣
x̄=ϕ(x)

= µµµTψ, (1.3)

for all ψ ∈ C∞(M ;Rs).
This notion of equivalence is particularly wellsuited to the study of eigenvalue problems

since it preserves eigenvalues and induces a simple transformation law for eigenfunctions.
Indeed, if T and T̄ are equivalent and if

Tψ = λψ, (1.4)

then we have

T̄ ψ̄ = λψ̄, (1.5)
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where

ψ̄(x̄) = (µψ)
∣∣∣
x=ϕ−1(x̄)

. (1.6)

It is obviously an important problem to determine a workable set of necessary and sufficient
conditions for two linear differential operators to be equivalent in the above sense. This
is the problem we consider in Sections 2 and 3 in the case of 2nd-order operators.

2 Equivalence of scalar 2nd-order operators – E. Cotton’s
theorem.

The only case for which the equivalence problem defined in Section 1 has been solved
explicitly is that of scalar 2nd-order operators in n dimensions, corresponding to k = 2
and s = 1. For the case n ≥ 2, this is a classical result, going back to E. Cotton [1]. For
n = 1, we refer to [4]. We now briefly recall the main step leading to Cotton’s result, since
they will serve as a guide for the matrix case.

Thus, we are given a scalar differential operator T in M ,

T =
n∑

i,j=1

gij ∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi
+ c, (2.1)

where gij , bi, 1 ≤ i, j ≤ n, and c are real-valued C∞ functions in M . Likewise, we have
an operator

T̄ =
n∑

i,j=1

ḡij ∂2

∂x̄i∂x̄j
+

n∑
i=1

b̄i
∂

∂x̄i
+ c̄, (2.2)

with C∞ coefficients in M̄ .
It is easy to see that if T and T̄ are equivalent, then the gij and ḡij transform like the

components of a (0, 2) tensor and the quadratic forms associated to gij(x) and ḡij(ϕ(x))
must have the same rank and the same index. For applications to spectral problems in
quantum mechanics, there is no loss of generality in assuming that these quadratic forms
have a constant rank n and index zero, meaning that they are everywhere positive-definite.
We shall interpret gij as contravariant components of a Riemannian metric gij = (gij)−1

on M . We can thus rewrite T in a manifestly covariant form by using the Levi-Civitá
connection ∇i of gij ,

T =
n∑

i,j=1

gij(∇i −Ai)(∇j −Aj) + U, (2.3)

where the Ai are components of a 1-form and U is a scalar defined by

Ai =
n∑

j=1

gijAj = −b
i

2
+

1
2
√
g

n∑
j=1

∂(
√
g gij)
∂xj

, (2.4)

U = c+
n∑

i=1

(
−AiA

i +
1
√
g

∂

∂xi

(√
gAi

))
, (2.5)
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g = det (gij). (2.6)

We have a similar expression for T̄ :

T̄ =
n∑

i,j=1

ḡij(∇̄i − Āi)(∇̄j − Āj) + Ū . (2.7)

We shall denote the metrics and 1-forms associated to T and T̄ by

ds2 =
n∑

i,j=1

gijdx
idxj , ds̄2 =

n∑
i,j=1

ḡijdx̄
idx̄j , (2.8)

A =
n∑

i=1

Aidx
i , Ā =

n∑
i=1

Āidx̄
i. (2.9)

Note that since s = 1, the factor µ appearing in (1.3) will just be a nonvanishing
function µ ε C∞(M ;R∗). We have

µ−1
n∑

i,j=1

gij(∇i −Ai)(∇j −Aj) =

=
n∑

i,j=1

gij(∇i −Ai + µ−1µ,i)(∇j −Aj + µ−1µ,j).

(2.10)

Using (2.10) and the tensoriality of T , we obtain:

Theorem 1 Necessary and sufficient conditions for T and T̄ given by (2.3) and (2.7) to
be equivalent under a local diffeomorphism ϕ : M → M̄, x̄ = ϕ(x), and conjugation by
µ ε C∞(M ;R∗) are given by

ϕ∗(ds̄2) = ds2 , ϕ∗(Ā) = A+ µ−1dµ, (2.11)

ϕ∗(Ū) = U. (2.12)

For applications to spectral problems in quantum mechanics, it is important to consider
the case of Schrödinger operators

H = −1
2

n∑
i,j=1

gij∇i∇j + V, (2.13)

where V ∈ C∞(M ;R) is a potential function.

Corollary 1 The differential operator −1
2T , where T is given by (2.3), is equivalent to a

Schrödinger operator H if and only if

dA = 0. (2.14)

The closure condition (2.14) plays a crucial role in construction of quasi-exactly solvable
potentials in n ≥ 2 dimensions [3].
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3 Equivalence to matrix Schrödinger operators.

Following the standard terminology, we define a matrix Schrödinger operator to be an s×s
matrix differential operator of the form

H = −1
2

n∑
i,j=1

gij1s∇i∇j + V, (3.1)

where gij ’s are contravariant components of a Riemannian metric, ∇i denotes the covariant
derivative in the Levi-Civitá connection of that metric, 1s is the s×s identity matrix and V
is an s×s symmetric (or Hermitian) matrix of functions of x1, · · · , xn. Matrix Schrödinger
operators arise naturally in Pauli’s formulation of the nonrelativistic quantum mechanics
for particles with spin. They also arise by symmetry reduction from the second-order
matrix differential operator obtained by composing the Dirac operator with its formal
adjoint, as shown by the following example.

Consider the Dirac equation(
i

4∑
k=1

γγγk
(

∂

∂xk
+ ieAk

)
+m

)
ψ = 0, (3.2)

for a spinor field ψ minimally coupled with a cylindrically symmetric magnetic field arising
from a circular current in the XY -plane. (We shall use the standard Weyl representation
for the Dirac matrices γγγk, 1 ≤ k ≤ 4). Thus, there exists a gauge in which the vector
potential is of the form

(Ai) = (At, Ar, Aθ, Az) = (0, 0, Aθ(r, z), 0), (3.3)

where (r, θ, z) denote cylindrical coordinates.
In order to obtain a second-order operator, we act on the left of (3.2) with the formal

adjoint of the Dirac operator given, of course, by

−i
4∑

k=1

γγγk
(

∂

∂xk
+ ieAk

)
+m. (3.4)

This gives rise to a second-order equation for ψ, which decouples into two identical
2× 2 matrix eigenvalue problems for a two-component spinor

ψ =
(
ψ1

ψ2

)
. (3.5)

We can the separate time and angular variables, in view of the symmetry of the problem.
Thus, we let(

ψ1

ψ2

)
= e−iEt

(
ei(jz− 1

2
)θ R1(r, z)

ei(jz+ 1
2
)θ R2(r, z)

)
, (3.6)

and we obtain the eigenvalue problem

Hred ψred = λψred, (3.7)
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where

Hred =

(
−
(
∂2

∂r2
+

∂2

∂z2

)
− 1
r

∂

∂r
+ e2A2

θ

)
12 +

1
r2

(
(jz − 1

2)2 0
0 (jz + 1

2)2

)
−

−2e
Aθ

r

(
jz − 1

2 0
0 jz + 1

2

)
+ e

∂Aθ

∂z

(
0 1
1 0

) (3.8)

ψred =
(
R1

R2

)
, λ = E2 −m2. (3.9)

By conjugating Hred with the matrix-valued multiplication operator given by

µµµ = diag (r−
1
2 , r−

1
2 ), (3.10)

we arrive at the matrix differential operator 2HS , where HS is the matrix Schrödinger
operator given by

HS =

(
−1

2

(
∂2

∂r2
+

∂2

∂z2

)
− e

Aθ

r
+

j2z
2r2

)
12+

+
e

2
∂Aθ

∂z

(
0 1
1 0

)
+
(
e

2
Aθ

r
− 1

2
jz
r2

)(
1 0
0 −1

)
.

(3.11)

By construction, HS will have the same eigenvalues as Hred. This example provides a
natural motivation for the study of the full equivalence problem to the matrix Schrödinger
form (3.1), where the conjugating factor µ will now be replaced by a matrix-valued mul-
tiplication operator µµµ.

We observe that just as in the scalar case, form (3.1) for matrix Schrödinger operators
is not invariant under conjugation by a nonsingular s × s matrix µµµ of functions. In fact,
the operator W defined by

W = µµµ−1Hµµµ, (3.12)

will be of the form

W = −1
2

n∑
i,j=1

gij1s∇i∇j +
n∑

i=1

Bi∇i + C, (3.13)

where Bi, 1 ≤ i ≤ n, and C are s × s matrices. Therefore, it is natural to consider the
equivalence problem for s× s matrix differential operators T and T̄ given by

T =
n∑

i,j=1

gij1s
∂2

∂xi∂xj
+

n∑
i=1

Ki ∂

∂xi
+ L, (3.14)

T̄ =
n∑

i,j=1

Ḡij ∂2

∂x̄i∂x̄j
+

n∑
i=1

K̄i ∂

∂x̄i
+ L̄, (3.15)

where gij ’s are contravariant components of a Riemannian metric in M and the remaining
coefficients Ki,L,Gij , K̄i, and L̄ are functions on M and M̄ taking values in the space of
s× s matrices for all 1 ≤ i, j ≤ n.
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Now, just as we did in the scalar case, we study the combined effect of a local dif-
feomorphism ϕ : M → M̄, x̄ = ϕ(x), and conjugation by µµµ∈ C∞(M ;GL(s,R)) on the
second-order terms in T and T̄. We obtain:

n∑
k,`=1

Ḡk` ∂x
i

∂x̄k

∂xj

∂x̄`
= gij1s, 1 ≤ i, j ≤ n. (3.16)

It should be noted that the matrix µµµ by which we are conjugating does not appear in
(3.16). From (3.16), it follows immediately that

Ḡk` = ḡk`1s, 1 ≤ k, ` ≤ n, (3.17)

where ḡk` are contravariant components of a Riemannian metric on M̄ , which by (3.16) is
locally isometric to the metric defined on M by (gij).

We can therefore proceed in analogy with the scalar case and express T in covariant
form as

T =
n∑

i,j=1

gij1s(∇i −Ai)(∇j −Aj) + U, (3.18)

where the Ai are the components of an s× s matrix- valued 1-form on M and U an s× s
matrix-valued function on M , defined by

Ai =
n∑

j=1

gijAj = −1
2
Ki +

1
2
√
g

n∑
j=1

∂(
√
g gij)
∂xj

, (3.19)

U = L +
n∑

i=1

(
−AiAi +

1
√
g

∂

∂xi
(
√
gAi)

)
. (3.20)

Similarly, we have on M̄

T̄ =
n∑

i,j=1

ḡij1s(∇̄i − Āi)(∇̄j − Āj) + Ū. (3.21)

If µµµ∈ C∞(M ;GL(s,R)), we have, in analogy with (2.10),

µµµ−1Tµµµ =
n∑

i,j=1

gij1s(∇i − µµµ−1Aiµµµ+ µµµ−1µµµ,i)(∇j − µµµ−1Ajµµµ+ µµµ−1µµµ,j) + µµµ−1Uµµµ.(3.22)

From (3.22) and the tensoriality of Ai, we deduce immediately that the s× s matrix-
valued 1-form AAA, defined by

AAA =
n∑

i=1

Aidx
i, (3.23)

transforms like the connection 1-form of a g`(s,R)-valued connection on M .



ON THE EQUIVALENCE OF MATRIX DIFFERENTIAL 285

Theorem 2 Necessary and sufficient conditions for T and T̄ given by (3.14) and (3.15)
to be equivalent under a local diffeomorphism ϕ : x̄ = ϕ(x) and conjugation by µµµ∈
C∞(M ;GL(s,R)) are given by

(i) Ḡij = ḡij1s, where ḡij denote contravariant components of a Riemannian metric
on M̄ .

(ii) ϕ∗(ds̄2) = ds2, where

ds̄2 =
n∑

i,j=1

ḡijdx̄
idx̄j , ds2 =

n∑
i,j=1

gijdx
idxj . (3.24)

(iii) ϕ∗(ĀAA) = µµµ−1AAAµµµ− µµµ−1dµµµ. (3.25)

(iv) ϕ∗(Ū) = µµµ−1Uµµµ. (3.26)

It is now straightforward to obtain necessary and sufficient conditions for the matrix
differential operator T̄ given by (3.15) to be equivalent to a matrix Schrödinger operator
H of the form (3.1).

Corollary 2 The matrix differential operator −1
2T̄, where T̄ is given by (3.15), will be

equivalent to a matrix Schrödinger operator H of the form (3.1) if and only if:

(i) Conditions i) and ii) of Theorem 2 are satisfied

(ii) The g`(s,R)-valued connection defined by ĀAA has zero curvature,

dĀAA+ ĀAA ∧ ĀAA = 0, (3.27)

or equivalently

ĀAAi,j − ĀAAj,i − [ĀAAi, ĀAAj ] = 0 (3.28)

(iii) The matrix potential V defined by

V(x) = −1
2
µ̄µµ−1Ūµ̄µµ|x̄=ϕ(x) , (3.29)

is Hermitian for some µµµ∈ C∞(M̄ ;GL(s,R)) solving

µ̄µµ−1ĀAAµ̄µµ− µ̄µµ−1dµ̄µµ = 0. (3.30)

We finally remark that, as a consequence of Condition ii) of Theorem 2, the matrix
differential operator −1

2T̄ will be equivalent to a matrix Schrödinger operator with a “flat”
symbol

H = −1
2

n∑
i=1

(
∂

∂xi

)2

1s + V, (3.31)

if and only if Condition i) of Theorem 2 and Conditions ii) and iii) of Corollary 2 are
satisfied, and the Riemann-Christoffel curvature tensor of (ḡij) vanishes identically:

R̄i
jk` = 0.
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