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Abstract

We prove a generalization to the case of s X s matrix linear differential operators
of the classical theorem of E. Cotton giving necessary and sufficient conditions for
equivalence of eigenvalue problems for scalar linear differential operators. The con-
ditions for equivalence to a matrix Schrodinger operator are derived and formulated
geometrically in terms of vanishing conditions on the curvature of a gf(s, R)-valued
connection. These conditions are illustrated on a class of matrix differential operators
of physical interest, arising by symmetry reduction from Dirac’s equation for a spinor
field minimally coupled with a cylindrically symmetric magnetic field.

Introduction.

Our purpose in this paper is to present a theorem which provides an explicit set of neces-
sary and sufficient conditions for the local equivalence of eigenvalue problems associated
to a general second-order linear s x s matrix differential operator in R”™ and a matrix
Schrodinger operator. We will consider equivalences which arise from the combination of
local diffeomorphisms in R™ and conjugation of the matrix differential operator by non-
singular matrix-valued multiplication operators. In the scalar case (s = 1), this problem
was solved on the line (n = 1) in [4] and in n > 2 dimensions in a classical paper of
E. Cotton [1]. For matrix differential operators on the line, the local equivalence problem
can also be solved explicitly [2].

The basic content of Cotton’s theorem is that in order for a scalar linear second-order
operator to be locally equivalent to a Schrédinger operator, a certain invariant 1-form
constructed from coefficients of the differential operator using the Levi-Civita connection
of the metric determined by the principal symbol must be closed. This closure condition
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plays a very significant role in construction of quasi-exactly solvable Hamiltonians in n > 2
dimensions from a given normal form for a Lie algebra of first-order differential operators
[3], [5]. The main goal of our note is to obtain a generalization of this closure condition in
the matrix case. We shall see that the analogue of this closure condition in the matrix case
is the vanishing of the curvature of a gl(s, R)-valued connection constructed from matrix-
valued coefficients of the given operator. These zero curvature conditions are expected to
play a significant role in construction of higher-dimensional quasi-exactly solvable matrix
Schrédinger operators.

1 Equivalence of linear differential operators.

Our goal in this section is to define the natural notion of local equivalence for matrix
linear differential operators in R™ which is best adapted to the study of eigenvalue prob-
lems. This is an obvious extension of earlier definitions formulated in the scalar case [3],
[4].

Let M and M denote open subsets of R™ with local coordinates given, respectively, by

r = (2%,---2") and T = (z!,---2"). Consider on M the k-th order linear s x s matrix
differential operator.
T= > Ao, (1.1)
<k
where I = (iy,---,i7) € N denotes a multi-index,
ol

| =1+ + g, or =

(9x1)™ - (Qxb)ie”

and the A’ are s x s matrices with entries in C*°(M;R). Likewise, on M, consider an
s X s matrix differential operator

T=)>Y Al9,. (1.2)

We say that T and T are equivalent if they can be transformed into each other by the
combined effect of a change of variables and conjugation by a nonsingular s x s functional
matrix, i.e., if there exists a local diffeomorphism ¢ : M — M, & = p(x), and a GL(s, R)-
valued function p € C*°(M;GL(s,R)) such that

T((wy) _=uTy, (1.3)

z=p(z)
for all p € C°(M;R?).
This notion of equivalence is particularly wellsuited to the study of eigenvalue problems
since it preserves eigenvalues and induces a simple transformation law for eigenfunctions.
Indeed, if T and T are equivalent and if

Ty = M, (1.4)

then we have

T ) = \i), (1.5)

rz=p~1 (a‘c))
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where

»(@) = (1)) (1.6)

e=p~1(z)
It is obviously an important problem to determine a workable set of necessary and sufficient

conditions for two linear differential operators to be equivalent in the above sense. This
is the problem we consider in Sections 2 and 3 in the case of 2nd-order operators.

2 Equivalence of scalar 2nd-order operators — E. Cotton’s
theorem.

The only case for which the equivalence problem defined in Section 1 has been solved
explicitly is that of scalar 2nd-order operators in n dimensions, corresponding to k = 2
and s = 1. For the case n > 2, this is a classical result, going back to E. Cotton [1]. For
n = 1, we refer to [4]. We now briefly recall the main step leading to Cotton’s result, since
they will serve as a guide for the matrix case.

Thus, we are given a scalar differential operator 1" in M,

noo 52 "o
T = B b — 2.1
2w T2 .

where ¢¥,b", 1 <i, j <n, and c are real-valued C* functions in M. Likewise, we have
an operator

T = Z g”axlaﬂ +sza - +¢, (2.2)

3,j=1

with C™ coefficients in M.

It is easy to see that if T and T are equivalent, then the ¢” and g% transform like the
components of a (0,2) tensor and the quadratic forms associated to ¢ (x) and g% (¢(z))
must have the same rank and the same index. For applications to spectral problems in
quantum mechanics, there is no loss of generality in assuming that these quadratic forms
have a constant rank n and index zero, meaning that they are everywhere positive-definite.
We shall interpret g%/ as contravariant components of a Riemannian metric 9ij = (g)~1
on M. We can thus rewrite T in a manifestly covariant form by using the Levi-Civita
connection V; of g;j,

T =3 gU(Vi— AT, — A+ T, 23)

; n . n o ggij
A ZZngjZ—*‘V‘ Z (\g;J ), (2.4)
Jj=1 =1

U=c+ zn: <AiAi + L i. (@Al)) : (2.5)
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g = det (gi;)- (2.6)
We have a similar expression for T':

T=> g9Vi—A)V;—A;)+U. (2.7)
=1

We shall denote the metrics and 1-forms associated to T and T by

i,j=1 ,j=1
A= Z Aidmi s A= Z /Ldi‘l (2.9)
=1 =1

Note that since s = 1, the factor p appearing in (1.3) will just be a nonvanishing
function p e C>°(M;R*). We have

n

pt Z 99 (Vi— 4)(V; — Aj) =
b=t (2.10)

=Y gV A+ i) (Vi — A+ ).
ig=1

Using (2.10) and the tensoriality of T', we obtain:

Theorem 1 Necessary and sufficient conditions for T and T given by (2.3) and (2.7) to
be equivalent under a local diffeomorphism ¢ : M — M, = o(x), and conjugation by
we C®(M;R*) are given by

p*(ds®) = ds* , ¢*(A) = A+p tdp, (2.11)

For applications to spectral problems in quantum mechanics, it is important to consider
the case of Schrodinger operators

H—_- ZAvAS 2.1
2”2_:19 V.V;+V, (2.13)

where V' € C*°(M;R) is a potential function.

Corollary 1 The differential operator —%T, where T is given by (2.3), is equivalent to a
Schriodinger operator H if and only if

dA =0. (2.14)

The closure condition (2.14) plays a crucial role in construction of quasi-exactly solvable
potentials in n > 2 dimensions [3].
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3 Equivalence to matrix Schrodinger operators.

Following the standard terminology, we define a matriz Schrodinger operator to be an s X s
matrix differential operator of the form

1 M
H=—2 ) gLV, + V. 1
QMZIQ ViV, + (3.1)

where ¢”’s are contravariant components of a Riemannian metric, V; denotes the covariant
derivative in the Levi-Civita connection of that metric, 14 is the sx s identity matrix and V
is an s x s symmetric (or Hermitian) matrix of functions of !, - - -, 2™ Matrix Schrédinger
operators arise naturally in Pauli’s formulation of the nonrelativistic quantum mechanics
for particles with spin. They also arise by symmetry reduction from the second-order
matrix differential operator obtained by composing the Dirac operator with its formal
adjoint, as shown by the following example.
Consider the Dirac equation

. 0
. k . .
(2;::1')' (8:0’“ + zeAk> + m) Y =0, (3.2)

for a spinor field ¥ minimally coupled with a cylindrically symmetric magnetic field arising
from a circular current in the XY-plane. (We shall use the standard Weyl representation
for the Dirac matrices 4%,1 < k < 4). Thus, there exists a gauge in which the vector
potential is of the form

(Ai) = (At Ar, Ag, Az) = (0,0, Ap(r, 2),0), (3.3)

where (1,0, z) denote cylindrical coordinates.
In order to obtain a second-order operator, we act on the left of (3.2) with the formal
adjoint of the Dirac operator given, of course, by

4
0
k=1

This gives rise to a second-order equation for , which decouples into two identical
2 X 2 matrix eigenvalue problems for a two-component spinor

- (2)

We can the separate time and angular variables, in view of the symmetry of the problem.
Thus, we let

(1/11) _ _iEt <€i(jz
= e .
)2 iUzt

and we obtain the eigenvalue problem

NI= N=

¥Ry (r,z)
)6 RQ(T, Z) ) ’ (36)

Hred wred = Awredy (37)
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where
0? 0? 10 1 ((j.—3)2 0
o (20 )10 ) L (U5 0
d ( (ar”a%) ot ) e To" )
Ag (j.—3 0 04 (0 1 '
_2€7~< 0 jz+;)+€az (1 o)
o= () A=E-m? (3.9)
Ry
By conjugating H,oq with the matrix-valued multiplication operator given by
p = diag (r*%,r*%), (3.10)

we arrive at the matrix differential operator 2Hg, where Hg is the matrix Schrodinger
operator given by

1[(0% 02 Ay g2
HS—<‘2<w+azz>‘er+w lot

+65‘Ae<0 1>+(6Ae_1jz><1 0)
2 0z \1 0 27 272 0 —-1)°

By construction, Hg will have the same eigenvalues as H,oq. This example provides a
natural motivation for the study of the full equivalence problem to the matrix Schrodinger
form (3.1), where the conjugating factor p will now be replaced by a matrix-valued mul-
tiplication operator p.

We observe that just as in the scalar case, form (3.1) for matrix Schrodinger operators
is not invariant under conjugation by a nonsingular s X s matrix g of functions. In fact,
the operator W defined by

(3.11)

W =p 'Hy, (3.12)
will be of the form
1 noo
W=-23> ¢'1,ViV;+ > BV +C, (3.13)
ij=1 i=1

where B?, 1 < i < n, and C are s x s matrices. Therefore, it is natural to consider the
equivalence problem for s x s matrix differential operators T and T given by

L o2 nooo9
T = Zj]_sf KZ n L, 314
”zzzlg ox'0x? + ; ox* + ( )
T:Zn:(;ij 32 ‘+ZH:K" 8A+IZ (3.15)
o owow o ow

where ¢“/’s are contravariant components of a Riemannian metric in M and the remaining
coefficients K*, L, G, K", and L are functions on M and M taking values in the space of
s X s matrices for all 1 <, 7 <n.
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Now, just as we did in the scalar case, we study the combined effect of a local dif-
feomorphism ¢ : M — M, = ¢(x), and conjugation by pe C*(M;GL(s,R)) on the
second-order terms in T and T. We obtain:

=kl 81’1 83:3

n
k=1

It should be noted that the matrix g by which we are conjugating does not appear in
(3.16). From (3.16), it follows immediately that

GF =gF1,, 1<k ¢<n, (3.17)

where g* are contravariant components of a Riemannian metric on M, which by (3.16) is
locally isometric to the metric defined on M by (g%).

We can therefore proceed in analogy with the scalar case and express T in covariant
form as

T= )Y ¢91,(Vi—A;)(V; - Aj)+ U, (3.18)
ij=1

where the A; are the components of an s X s matrix- valued 1-form on M and U an s X s
matrix-valued function on M, defined by

X 1o, 1 &a(yggY)
Al — ZgUAj = K4+ Z c . (3.19)
= 2" T gL oo

= i L 9 i
U=L+ ; (—AiA + 7500 (VgA )) . (3.20)

Similarly, we have on M
T = §714(Vi — A)(V; — A;) + U. (3.21)
If pe C*°(M;GL(s,R)), we have, in analogy with (2.10),

pTp= Y g71(Vi—p A ) (Vi — T A ) + U0l (3.22)

ig=1

From (3.22) and the tensoriality of A;, we deduce immediately that the s X s matrix-
valued 1-form A, defined by

A=>"Ada’, (3.23)

i=1

transforms like the connection 1-form of a gf(s, R)-valued connection on M.
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Theorem 2 Necessary and sufficient conditions for T and T given by (3.14) and (3.15)
to be equivalent under a local diffeomorphism ¢ : T = (x) and conjugation by pe
C>®(M;GL(s,R)) are given by

(i) G = gii1,, where g denote contravariant components of a Riemannian metric
on M.

(ii) ¢*(d5%) = ds?, where

ds® = Y gijdz'da?, ds® =Y gijda‘dal. (3.24)
i,j=1 tj=1

(ii1) " (A) = p ' Ap—p dp. (3.25)

() ¢*(U) =p"Up. (3.26)

It is now straightforward to obtain necessary and sufficient conditions for the matrix
differential operator 7' given by (3.15) to be equivalent to a matrix Schrédinger operator
H of the form (3.1).

Corollary 2 The matriz differential operator —%T, where T is given by (3.15), will be
equivalent to a matriz Schrodinger operator H of the form (3.1) if and only if:

(i) Conditions i) and ii) of Theorem 2 are satisfied
(i) The gl(s,R)-valued connection defined by A has zero curvature,

dA+ANA=0, (3.27)
or equivalently
.;4473‘ — .;4]'72' — [AZ,Aj] =0 (3.28)

(i4i) The matrixz potential V defined by

V() = b Ol ) (329)

is Hermitian for some pe C>(M;GL(s,R)) solving
p AR —pldp = 0. (3.30)
We finally remark that, as a consequence of Condition ii) of Theorem 2, the matrix

differential operator —%’:_[‘ will be equivalent to a matrix Schrédinger operator with a “flat”
symbol

H__1z":<a)21 LV (3.31)
2 ox’ s ’ '

i=1

if and only if Condition i) of Theorem 2 and Conditions ii) and iii) of Corollary 2 are
satisfied, and the Riemann-Christoffel curvature tensor of (g;;) vanishes identically:



286

F. FINKEL, N. KAMRAN

References

[1] Cotton E., Sur les invariants différentiels de quelques équations aux dérivées partielles du second

ordre, Ann. Ecole Normale, 1900, V.17, 211-244.
inkel F., Gonzdalez-Lépez A. and Rodriguez M.A., Quasiexactly solvable spin 5 Schrédinger opera-

[2] Finkel F., Gonzélez-Lépez A. and Rodriguez M.A., Quasi ly solvable spin % Schrodinger op
tors, UCM preprint.

[3] Gonzélez-Lépez A., Kamran N. and Olver P.J., New quasi-exactly solvable Hamiltonians in two
dimensions, Commun. Math. Phys., 1994, V.159, 503-537.

[4] Kamran N. and Olver P.J., Equivalence of differential operators, SIAM J. Math. Anal., 1989, V.20,
1172-1185.

[5] Shifman M.A. and Turbiner A., Quantal problems with partial algebraization of the spectrum, Com-

mun. Math. Phys., 1989, V.126, 347-365.



