On the Equivalence of Matrix Differential Operators to Schrödinger Form

F. FINKEL ${ }^{\dagger *}$ and N. KAMRAN ${ }^{\ddagger \star}$
${ }^{\dagger}$ Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid, Spain
federico@ciruelo.fis.ucm.es
\ddagger Department of Mathematics and Statistics, McGill University, Montréal, Québec H3A 2K6, Canada
nkamran@math.mcgill.ca

Abstract

We prove a generalization to the case of $s \times s$ matrix linear differential operators of the classical theorem of E . Cotton giving necessary and sufficient conditions for equivalence of eigenvalue problems for scalar linear differential operators. The conditions for equivalence to a matrix Schrödinger operator are derived and formulated geometrically in terms of vanishing conditions on the curvature of a $g \ell(s, \mathbf{R})$-valued connection. These conditions are illustrated on a class of matrix differential operators of physical interest, arising by symmetry reduction from Dirac's equation for a spinor field minimally coupled with a cylindrically symmetric magnetic field.

Introduction.

Our purpose in this paper is to present a theorem which provides an explicit set of necessary and sufficient conditions for the local equivalence of eigenvalue problems associated to a general second-order linear $s \times s$ matrix differential operator in \mathbf{R}^{n} and a matrix Schrödinger operator. We will consider equivalences which arise from the combination of local diffeomorphisms in \mathbf{R}^{n} and conjugation of the matrix differential operator by nonsingular matrix-valued multiplication operators. In the scalar case ($s=1$), this problem was solved on the line $(n=1)$ in [4] and in $n \geq 2$ dimensions in a classical paper of E. Cotton [1]. For matrix differential operators on the line, the local equivalence problem can also be solved explicitly [2].

The basic content of Cotton's theorem is that in order for a scalar linear second-order operator to be locally equivalent to a Schrödinger operator, a certain invariant 1 -form constructed from coefficients of the differential operator using the Levi-Civitá connection of the metric determined by the principal symbol must be closed. This closure condition

Copyright © 1997 by Mathematical Ukraina Publisher. All rights of reproduction in form reserved.

[^0]plays a very significant role in construction of quasi-exactly solvable Hamiltonians in $n \geq 2$ dimensions from a given normal form for a Lie algebra of first-order differential operators [3], [5]. The main goal of our note is to obtain a generalization of this closure condition in the matrix case. We shall see that the analogue of this closure condition in the matrix case is the vanishing of the curvature of a $g l(s, \mathbf{R})$-valued connection constructed from matrixvalued coefficients of the given operator. These zero curvature conditions are expected to play a significant role in construction of higher-dimensional quasi-exactly solvable matrix Schrödinger operators.

1 Equivalence of linear differential operators.

Our goal in this section is to define the natural notion of local equivalence for matrix linear differential operators in \mathbf{R}^{n} which is best adapted to the study of eigenvalue problems. This is an obvious extension of earlier definitions formulated in the scalar case [3], [4].

Let M and \bar{M} denote open subsets of \mathbf{R}^{n} with local coordinates given, respectively, by $x=\left(x^{1}, \cdots x^{n}\right)$ and $\bar{x}=\left(\bar{x}^{1}, \cdots \bar{x}^{n}\right)$. Consider on M the k-th order linear $s \times s$ matrix differential operator.

$$
\begin{equation*}
\mathbf{T}=\sum_{|I| \leq k} \mathbf{A}^{I} \partial_{I}, \tag{1.1}
\end{equation*}
$$

where $I=\left(i_{1}, \cdots, i_{\ell}\right) \in \mathbf{N}^{\ell}$ denotes a multi-index,

$$
|I|=i_{1}+\cdots+i_{\ell}, \quad \partial_{I}=\frac{\partial^{|I|}}{\left(\partial x^{1}\right)^{i_{1}} \cdots\left(\partial x^{\ell}\right)^{i_{\ell}}},
$$

and the \mathbf{A}^{I} are $s \times s$ matrices with entries in $C^{\infty}(M ; \mathbf{R})$. Likewise, on \bar{M}, consider an $s \times s$ matrix differential operator

$$
\begin{equation*}
\overline{\mathbf{T}}=\sum_{|I| \leq k} \overline{\mathbf{A}}^{I} \bar{\partial}_{I} \tag{1.2}
\end{equation*}
$$

We say that \mathbf{T} and $\overline{\mathbf{T}}$ are equivalent if they can be transformed into each other by the combined effect of a change of variables and conjugation by a nonsingular $s \times s$ functional matrix, i.e., if there exists a local diffeomorphism $\varphi: M \rightarrow \bar{M}, \bar{x}=\varphi(x)$, and a $G L(s, \mathbf{R})$ valued function $\boldsymbol{\mu} \in C^{\infty}(M ; G L(s, \mathbf{R}))$ such that

$$
\begin{equation*}
\left.\overline{\mathbf{T}}\left(\left.(\boldsymbol{\mu} \psi)\right|_{x=\varphi^{-1}(\bar{x})}\right)\right|_{\bar{x}=\varphi(x)}=\boldsymbol{\mu} \mathbf{T} \psi, \tag{1.3}
\end{equation*}
$$

for all $\psi \in C^{\infty}\left(M ; \mathbf{R}^{s}\right)$.
This notion of equivalence is particularly wellsuited to the study of eigenvalue problems since it preserves eigenvalues and induces a simple transformation law for eigenfunctions. Indeed, if T and \bar{T} are equivalent and if

$$
\begin{equation*}
\mathbf{T} \psi=\lambda \psi \tag{1.4}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\overline{\mathbf{T}} \bar{\psi}=\lambda \bar{\psi} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\psi}(\bar{x})=\left.(\mu \psi)\right|_{x=\varphi^{-1}(\bar{x})} . \tag{1.6}
\end{equation*}
$$

It is obviously an important problem to determine a workable set of necessary and sufficient conditions for two linear differential operators to be equivalent in the above sense. This is the problem we consider in Sections 2 and 3 in the case of 2nd-order operators.

2 Equivalence of scalar 2nd-order operators - E. Cotton's theorem.

The only case for which the equivalence problem defined in Section 1 has been solved explicitly is that of scalar 2nd-order operators in n dimensions, corresponding to $k=2$ and $s=1$. For the case $n \geq 2$, this is a classical result, going back to E. Cotton [1]. For $n=1$, we refer to [4]. We now briefly recall the main step leading to Cotton's result, since they will serve as a guide for the matrix case.

Thus, we are given a scalar differential operator T in M,

$$
\begin{equation*}
T=\sum_{i, j=1}^{n} g^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}}+c, \tag{2.1}
\end{equation*}
$$

where $g^{i j}, b^{i}, 1 \leq i, \quad j \leq n$, and c are real-valued C^{∞} functions in M. Likewise, we have an operator

$$
\begin{equation*}
\bar{T}=\sum_{i, j=1}^{n} \bar{g}^{i j} \frac{\partial^{2}}{\partial \bar{x}^{i} \partial \bar{x}^{j}}+\sum_{i=1}^{n} \bar{b}^{i} \frac{\partial}{\partial \bar{x}^{i}}+\bar{c}, \tag{2.2}
\end{equation*}
$$

with C^{∞} coefficients in \bar{M}.
It is easy to see that if T and \bar{T} are equivalent, then the $g^{i j}$ and $\bar{g}^{i j}$ transform like the components of a $(0,2)$ tensor and the quadratic forms associated to $g^{i j}(x)$ and $\bar{g}^{i j}(\varphi(x))$ must have the same rank and the same index. For applications to spectral problems in quantum mechanics, there is no loss of generality in assuming that these quadratic forms have a constant rank n and index zero, meaning that they are everywhere positive-definite. We shall interpret $g^{i j}$ as contravariant components of a Riemannian metric $g_{i j}=\left(g^{i j}\right)^{-1}$ on M. We can thus rewrite T in a manifestly covariant form by using the Levi-Civitá connection ∇_{i} of $g_{i j}$,

$$
\begin{equation*}
T=\sum_{i, j=1}^{n} g^{i j}\left(\nabla_{i}-A_{i}\right)\left(\nabla_{j}-A_{j}\right)+U, \tag{2.3}
\end{equation*}
$$

where the A_{i} are components of a 1 -form and U is a scalar defined by

$$
\begin{align*}
& A^{i}=\sum_{j=1}^{n} g^{i j} A_{j}=-\frac{b^{i}}{2}+\frac{1}{2 \sqrt{g}} \sum_{j=1}^{n} \frac{\partial\left(\sqrt{g} g^{i j}\right)}{\partial x^{j}}, \tag{2.4}\\
& U=c+\sum_{i=1}^{n}\left(-A_{i} A^{i}+\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} A^{i}\right)\right), \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
g=\operatorname{det}\left(g_{i j}\right) \tag{2.6}
\end{equation*}
$$

We have a similar expression for \bar{T} :

$$
\begin{equation*}
\bar{T}=\sum_{i, j=1}^{n} \bar{g}^{i j}\left(\bar{\nabla}_{i}-\bar{A}_{i}\right)\left(\bar{\nabla}_{j}-\bar{A}_{j}\right)+\bar{U} \tag{2.7}
\end{equation*}
$$

We shall denote the metrics and 1-forms associated to T and \bar{T} by

$$
\begin{align*}
& d s^{2}=\sum_{i, j=1}^{n} g_{i j} d x^{i} d x^{j}, \quad d \bar{s}^{2}=\sum_{i, j=1}^{n} \bar{g}_{i j} d \bar{x}^{i} d \bar{x}^{j}, \tag{2.8}\\
& \mathcal{A}=\sum_{i=1}^{n} A_{i} d x^{i}, \quad \overline{\mathcal{A}}=\sum_{i=1}^{n} \bar{A}_{i} d \bar{x}^{i} . \tag{2.9}
\end{align*}
$$

Note that since $s=1$, the factor μ appearing in (1.3) will just be a nonvanishing function $\mu \in C^{\infty}\left(M ; \mathbf{R}^{*}\right)$. We have

$$
\begin{align*}
& \mu^{-1} \sum_{i, j=1}^{n} g^{i j}\left(\nabla_{i}-A_{i}\right)\left(\nabla_{j}-A_{j}\right)= \\
& \quad=\sum_{i, j=1}^{n} g^{i j}\left(\nabla_{i}-A_{i}+\mu^{-1} \mu_{, i}\right)\left(\nabla_{j}-A_{j}+\mu^{-1} \mu_{, j}\right) \tag{2.10}
\end{align*}
$$

Using (2.10) and the tensoriality of T, we obtain:
Theorem 1 Necessary and sufficient conditions for T and \bar{T} given by (2.3) and (2.7) to be equivalent under a local diffeomorphism $\varphi: M \rightarrow \bar{M}, \bar{x}=\varphi(x)$, and conjugation by $\mu \in C^{\infty}\left(M ; \mathbf{R}^{*}\right)$ are given by

$$
\begin{align*}
& \varphi^{*}\left(d \bar{s}^{2}\right)=d s^{2}, \quad \varphi^{*}(\overline{\mathcal{A}})=\mathcal{A}+\mu^{-1} d \mu, \tag{2.11}\\
& \varphi^{*}(\bar{U})=U . \tag{2.12}
\end{align*}
$$

For applications to spectral problems in quantum mechanics, it is important to consider the case of Schrödinger operators

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i, j=1}^{n} g^{i j} \nabla_{i} \nabla_{j}+V \tag{2.13}
\end{equation*}
$$

where $V \in C^{\infty}(M ; \mathbf{R})$ is a potential function.
Corollary 1 The differential operator $-\frac{1}{2} T$, where T is given by (2.3), is equivalent to a Schrödinger operator H if and only if

$$
\begin{equation*}
d \mathcal{A}=0 . \tag{2.14}
\end{equation*}
$$

The closure condition (2.14) plays a crucial role in construction of quasi-exactly solvable potentials in $n \geq 2$ dimensions [3].

3 Equivalence to matrix Schrödinger operators.

Following the standard terminology, we define a matrix Schrödinger operator to be an $s \times s$ matrix differential operator of the form

$$
\begin{equation*}
\mathbf{H}=-\frac{1}{2} \sum_{i, j=1}^{n} g^{i j} \mathbf{1}_{s} \nabla_{i} \nabla_{j}+\mathbf{V} \tag{3.1}
\end{equation*}
$$

where $g^{i j}$,s are contravariant components of a Riemannian metric, ∇_{i} denotes the covariant derivative in the Levi-Civitá connection of that metric, $\mathbf{1}_{s}$ is the $s \times s$ identity matrix and \mathbf{V} is an $s \times s$ symmetric (or Hermitian) matrix of functions of x^{1}, \cdots, x^{n}. Matrix Schrödinger operators arise naturally in Pauli's formulation of the nonrelativistic quantum mechanics for particles with spin. They also arise by symmetry reduction from the second-order matrix differential operator obtained by composing the Dirac operator with its formal adjoint, as shown by the following example.

Consider the Dirac equation

$$
\begin{equation*}
\left(i \sum_{k=1}^{4} \gamma^{k}\left(\frac{\partial}{\partial x^{k}}+i e A_{k}\right)+m\right) \psi=0 \tag{3.2}
\end{equation*}
$$

for a spinor field ψ minimally coupled with a cylindrically symmetric magnetic field arising from a circular current in the $X Y$-plane. (We shall use the standard Weyl representation for the Dirac matrices $\gamma^{k}, 1 \leq k \leq 4$). Thus, there exists a gauge in which the vector potential is of the form

$$
\begin{equation*}
\left(A_{i}\right)=\left(A_{t}, A_{r}, A_{\theta}, A_{z}\right)=\left(0,0, A_{\theta}(r, z), 0\right) \tag{3.3}
\end{equation*}
$$

where (r, θ, z) denote cylindrical coordinates.
In order to obtain a second-order operator, we act on the left of (3.2) with the formal adjoint of the Dirac operator given, of course, by

$$
\begin{equation*}
-i \sum_{k=1}^{4} \gamma^{k}\left(\frac{\partial}{\partial x^{k}}+i e A_{k}\right)+m \tag{3.4}
\end{equation*}
$$

This gives rise to a second-order equation for ψ, which decouples into two identical 2×2 matrix eigenvalue problems for a two-component spinor

$$
\begin{equation*}
\psi=\binom{\psi_{1}}{\psi_{2}} \tag{3.5}
\end{equation*}
$$

We can the separate time and angular variables, in view of the symmetry of the problem. Thus, we let

$$
\binom{\psi_{1}}{\psi_{2}}=e^{-i E t}\left(\begin{array}{ll}
e^{i\left(j_{z}-\frac{1}{2}\right) \theta} & R_{1}(r, z) \tag{3.6}\\
e^{i\left(j_{z}+\frac{1}{2}\right) \theta} & R_{2}(r, z)
\end{array}\right)
$$

and we obtain the eigenvalue problem

$$
\begin{equation*}
\mathbf{H}_{\mathrm{red}} \psi_{\mathrm{red}}=\lambda \psi_{\mathrm{red}} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{H}_{\mathrm{red}}=\left(-\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{1}{r} \frac{\partial}{\partial r}+e^{2} A_{\theta}^{2}\right) \mathbf{1}_{2}+\frac{1}{r^{2}}\left(\begin{array}{cc}
\left(j_{z}-\frac{1}{2}\right)^{2} & 0 \\
0 & \left(j_{z}+\frac{1}{2}\right)^{2}
\end{array}\right)- \tag{3.8}\\
& -2 e \frac{A_{\theta}}{r}\left(\begin{array}{cc}
j_{z}-\frac{1}{2} & 0 \\
0 & j_{z}+\frac{1}{2}
\end{array}\right)+e \frac{\partial A_{\theta}}{\partial z}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \psi_{\text {red }}=\binom{R_{1}}{R_{2}}, \quad \lambda=E^{2}-m^{2} . \tag{3.9}
\end{align*}
$$

By conjugating $\mathbf{H}_{\text {red }}$ with the matrix-valued multiplication operator given by

$$
\begin{equation*}
\boldsymbol{\mu}=\operatorname{diag}\left(r^{-\frac{1}{2}}, r^{-\frac{1}{2}}\right), \tag{3.10}
\end{equation*}
$$

we arrive at the matrix differential operator $2 \mathbf{H}_{S}$, where \mathbf{H}_{S} is the matrix Schrödinger operator given by

$$
\begin{align*}
\mathbf{H}_{S} & =\left(-\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-e \frac{A_{\theta}}{r}+\frac{j_{z}^{2}}{2 r^{2}}\right) \mathbf{1}_{2}+ \tag{3.11}\\
& +\frac{e}{2} \frac{\partial A_{\theta}}{\partial z}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\left(\frac{e}{2} \frac{A_{\theta}}{r}-\frac{1}{2} \frac{j_{z}}{r^{2}}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{align*}
$$

By construction, \mathbf{H}_{S} will have the same eigenvalues as $\mathbf{H}_{\text {red }}$. This example provides a natural motivation for the study of the full equivalence problem to the matrix Schrödinger form (3.1), where the conjugating factor μ will now be replaced by a matrix-valued multiplication operator $\boldsymbol{\mu}$.

We observe that just as in the scalar case, form (3.1) for matrix Schrödinger operators is not invariant under conjugation by a nonsingular $s \times s$ matrix $\boldsymbol{\mu}$ of functions. In fact, the operator \mathbf{W} defined by

$$
\begin{equation*}
\mathbf{W}=\boldsymbol{\mu}^{-1} \mathbf{H} \boldsymbol{\mu}, \tag{3.12}
\end{equation*}
$$

will be of the form

$$
\begin{equation*}
\mathbf{W}=-\frac{1}{2} \sum_{i, j=1}^{n} g^{i j} \mathbf{1}_{s} \nabla_{i} \nabla_{j}+\sum_{i=1}^{n} \mathbf{B}^{i} \nabla_{i}+\mathbf{C}, \tag{3.13}
\end{equation*}
$$

where $\mathbf{B}^{i}, 1 \leq i \leq n$, and \mathbf{C} are $s \times s$ matrices. Therefore, it is natural to consider the equivalence problem for $s \times s$ matrix differential operators \mathbf{T} and $\overline{\mathbf{T}}$ given by

$$
\begin{align*}
& \mathbf{T}=\sum_{i, j=1}^{n} g^{i j} \mathbf{1}_{s} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+\sum_{i=1}^{n} \mathbf{K}^{i} \frac{\partial}{\partial x^{i}}+\mathbf{L}, \tag{3.14}\\
& \overline{\mathbf{T}}=\sum_{i, j=1}^{n} \overline{\mathbf{G}}^{i j} \frac{\partial^{2}}{\partial \bar{x}^{i} \partial \bar{x}^{j}}+\sum_{i=1}^{n} \overline{\mathbf{K}}^{i} \frac{\partial}{\partial \bar{x}^{i}}+\overline{\mathbf{L}}, \tag{3.15}
\end{align*}
$$

where $g^{i j}$'s are contravariant components of a Riemannian metric in M and the remaining coefficients $\mathbf{K}^{i}, \mathbf{L}, \mathbf{G}^{i j}, \overline{\mathbf{K}}^{i}$, and $\overline{\mathbf{L}}$ are functions on M and \bar{M} taking values in the space of $s \times s$ matrices for all $1 \leq i, j \leq n$.

Now, just as we did in the scalar case, we study the combined effect of a local diffeomorphism $\varphi: M \rightarrow \bar{M}, \bar{x}=\varphi(x)$, and conjugation by $\boldsymbol{\mu} \in C^{\infty}(M ; G L(s, \mathbf{R}))$ on the second-order terms in \mathbf{T} and $\overline{\mathbf{T}}$. We obtain:

$$
\begin{equation*}
\sum_{k, \ell=1}^{n} \overline{\mathbf{G}}^{k \ell} \frac{\partial x^{i}}{\partial \bar{x}^{k}} \frac{\partial x^{j}}{\partial \bar{x}^{\ell}}=g^{i j} \mathbf{1}_{s}, \quad 1 \leq i, j \leq n . \tag{3.16}
\end{equation*}
$$

It should be noted that the matrix $\boldsymbol{\mu}$ by which we are conjugating does not appear in (3.16). From (3.16), it follows immediately that

$$
\begin{equation*}
\overline{\mathbf{G}}^{k \ell}=\bar{g}^{k \ell} \mathbf{1}_{s}, \quad 1 \leq k, \ell \leq n \tag{3.17}
\end{equation*}
$$

where $\bar{g}^{k \ell}$ are contravariant components of a Riemannian metric on \bar{M}, which by (3.16) is locally isometric to the metric defined on M by $\left(g^{i j}\right)$.

We can therefore proceed in analogy with the scalar case and express \mathbf{T} in covariant form as

$$
\begin{equation*}
\mathbf{T}=\sum_{i, j=1}^{n} g^{i j} \mathbf{1}_{s}\left(\nabla_{i}-\mathbf{A}_{i}\right)\left(\nabla_{j}-\mathbf{A}_{j}\right)+\mathbf{U} \tag{3.18}
\end{equation*}
$$

where the \mathbf{A}_{i} are the components of an $s \times s$ matrix- valued 1-form on M and \mathbf{U} an $s \times s$ matrix-valued function on M, defined by

$$
\begin{align*}
& \mathbf{A}^{i}=\sum_{j=1}^{n} g^{i j} \mathbf{A}_{j}=-\frac{1}{2} \mathbf{K}^{i}+\frac{1}{2 \sqrt{g}} \sum_{j=1}^{n} \frac{\partial\left(\sqrt{g} g^{i j}\right)}{\partial x^{j}}, \tag{3.19}\\
& \mathbf{U}=\mathbf{L}+\sum_{i=1}^{n}\left(-\mathbf{A}_{i} \mathbf{A}^{i}+\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} \mathbf{A}^{i}\right)\right) . \tag{3.20}
\end{align*}
$$

Similarly, we have on \bar{M}

$$
\begin{equation*}
\overline{\mathbf{T}}=\sum_{i, j=1}^{n} \bar{g}^{i j} \mathbf{1}_{s}\left(\bar{\nabla}_{i}-\overline{\mathbf{A}}_{i}\right)\left(\bar{\nabla}_{j}-\overline{\mathbf{A}}_{j}\right)+\overline{\mathbf{U}} . \tag{3.21}
\end{equation*}
$$

If $\boldsymbol{\mu} \in C^{\infty}(M ; G L(s, \mathbf{R}))$, we have, in analogy with (2.10),

$$
\begin{equation*}
\boldsymbol{\mu}^{-1} \mathbf{T} \boldsymbol{\mu}=\sum_{i, j=1}^{n} g^{i j} \mathbf{1}_{s}\left(\nabla_{i}-\boldsymbol{\mu}^{-1} \mathbf{A}_{i} \boldsymbol{\mu}+\boldsymbol{\mu}^{-1} \boldsymbol{\mu}_{, i}\right)\left(\nabla_{j}-\boldsymbol{\mu}^{-1} \mathbf{A}_{j} \boldsymbol{\mu}+\boldsymbol{\mu}^{-1} \boldsymbol{\mu}_{, j}\right)+\boldsymbol{\mu}^{-1} \mathbf{U}_{\boldsymbol{\mu}} \cdot(\tag{3.22}
\end{equation*}
$$

From (3.22) and the tensoriality of \mathbf{A}_{i}, we deduce immediately that the $s \times s$ matrixvalued 1 -form \mathcal{A}, defined by

$$
\begin{equation*}
\mathcal{A}=\sum_{i=1}^{n} \mathbf{A}_{i} d x^{i}, \tag{3.23}
\end{equation*}
$$

transforms like the connection 1-form of a $g \ell(s, \mathbf{R})$-valued connection on M.

Theorem 2 Necessary and sufficient conditions for \mathbf{T} and $\overline{\mathbf{T}}$ given by (3.14) and (3.15) to be equivalent under a local diffeomorphism $\varphi: \bar{x}=\varphi(x)$ and conjugation by $\boldsymbol{\mu} \in$ $C^{\infty}(M ; G L(s, \mathbf{R}))$ are given by
(i) $\overline{\mathbf{G}}^{i j}=\bar{g}^{i j} \mathbf{1}_{\text {s }}$, where $\bar{g}^{i j}$ denote contravariant components of a Riemannian metric on \bar{M}.
(ii) $\varphi^{*}\left(d \bar{s}^{2}\right)=d s^{2}$, where

$$
\begin{equation*}
d \bar{s}^{2}=\sum_{i, j=1}^{n} \bar{g}_{i j} d \bar{x}^{i} d \bar{x}^{j}, \quad d s^{2}=\sum_{i, j=1}^{n} g_{i j} d x^{i} d x^{j} . \tag{3.24}
\end{equation*}
$$

(iii) $\quad \varphi^{*}(\overline{\mathcal{A}})=\boldsymbol{\mu}^{-1} \mathcal{A} \boldsymbol{\mu}-\boldsymbol{\mu}^{-1} d \boldsymbol{\mu}$.
(iv) $\varphi^{*}(\overline{\mathbf{U}})=\boldsymbol{\mu}^{-1} \mathbf{U} \boldsymbol{\mu}$.

It is now straightforward to obtain necessary and sufficient conditions for the matrix differential operator \bar{T} given by (3.15) to be equivalent to a matrix Schrödinger operator \mathbf{H} of the form (3.1).

Corollary 2 The matrix differential operator $-\frac{1}{2} \overline{\mathbf{T}}$, where $\overline{\mathbf{T}}$ is given by (3.15), will be equivalent to a matrix Schrödinger operator \mathbf{H} of the form (3.1) if and only if:
(i) Conditions i) and ii) of Theorem 2 are satisfied
(ii) The $g \ell(s, \mathbf{R})$-valued connection defined by $\overline{\mathcal{A}}$ has zero curvature,

$$
\begin{equation*}
d \overline{\mathcal{A}}+\overline{\mathcal{A}} \wedge \overline{\mathcal{A}}=0 \tag{3.27}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\overline{\mathcal{A}}_{i, j}-\overline{\mathcal{A}}_{j, i}-\left[\overline{\mathcal{A}}_{i}, \overline{\mathcal{A}}_{j}\right]=0 \tag{3.28}
\end{equation*}
$$

(iii) The matrix potential \mathbf{V} defined by

$$
\begin{equation*}
\mathbf{V}(x)=-\left.\frac{1}{2} \overline{\boldsymbol{\mu}}^{-1} \overline{\mathbf{U}} \overline{\boldsymbol{\mu}}\right|_{\bar{x}=\varphi(x)}, \tag{3.29}
\end{equation*}
$$

is Hermitian for some $\boldsymbol{\mu} \in C^{\infty}(\bar{M} ; G L(s, \mathbf{R}))$ solving

$$
\begin{equation*}
\bar{\mu}^{-1} \overline{\mathcal{A}} \overline{\boldsymbol{\mu}}-\overline{\boldsymbol{\mu}}^{-1} d \overline{\boldsymbol{\mu}}=0 . \tag{3.30}
\end{equation*}
$$

We finally remark that, as a consequence of Condition ii) of Theorem 2, the matrix differential operator $-\frac{1}{2} \overline{\mathbf{T}}$ will be equivalent to a matrix Schrödinger operator with a "flat" symbol

$$
\begin{equation*}
\mathbf{H}=-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\partial}{\partial x^{i}}\right)^{2} \mathbf{1}_{s}+\mathbf{V} \tag{3.31}
\end{equation*}
$$

if and only if Condition i) of Theorem 2 and Conditions ii) and iii) of Corollary 2 are satisfied, and the Riemann-Christoffel curvature tensor of ($\bar{g}_{i j}$) vanishes identically:

$$
\bar{R}_{j k \ell}^{i}=0 .
$$

References

[1] Cotton E., Sur les invariants différentiels de quelques équations aux dérivées partielles du second ordre, Ann. École Normale, 1900, V.17, 211-244.
[2] Finkel F., González-López A. and Rodríguez M.A., Quasiexactly solvable spin $\frac{1}{2}$ Schrödinger operators, UCM preprint.
[3] González-López A., Kamran N. and Olver P.J., New quasi-exactly solvable Hamiltonians in two dimensions, Commun. Math. Phys., 1994, V.159, 503-537.
[4] Kamran N. and Olver P.J., Equivalence of differential operators, SIAM J. Math. Anal., 1989, V.20, 1172-1185.
[5] Shifman M.A. and Turbiner A., Quantal problems with partial algebraization of the spectrum, Commun. Math. Phys., 1989, V.126, 347-365.

[^0]: * Supported by DGICYT grant PB92-097
 * Supported by NSERC grant \#0GP0105490

