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Abstract

Solutions invariant under subalgebras of the affine algebra AIGL(3,R) are found.

1 Introduction

The system of nonlinear differential equations

∂Ek

∂t
+Hl

∂Ek

∂xl
= 0,

∂Hk

∂t
+ El

∂Hk

∂xl
= 0 (k, l = 1, 2, 3) (1)

was proposed in [1] to study electromagnetic fields. For Ek = Hk (k = 1, 2, 3) system (1)
becomes the Euler system of equations for ideal fluid that was studied in [2–6]. Symmetry
properties of system (1) were investigated in [7]. It was stated that the maximal invariance
algebra of the system under consideration is the affine algebra AIGL(4,R), three basis
elements of which are nonlinear differential operators.

The aim of our research is to construct solutions of system (1) with the help of symmetry
reduction of this system to systems of ordinary differential equations. In this paper, we
restrict ourselves to the case where Ek, Hk don’t depend on the variable x3.

Let us give a more detailed characteristic of each Section of the paper.
In Section 2, we get a number of statements concerning systems of linear invariants of

subalgebras of the algebra AIGL(4,R), on which we construct ansatzes [8, 9]. Note that
overwhelming majority of classes of conjugate subalgebras contains subalgebras for which
there exist linear ansatzes.

In Section 3, we obtain solutions to system (1) that are functions only of t and x1. In
this case, we can consider functions E1, H1 as components of a solution to the system of
equations

∂E1

∂t
+H1

∂E1

∂x1
= 0,

∂H1

∂t
+ E1

∂H1

∂x1
= 0, (2)

functions E2, E3 as solutions of the homogeneous equation

∂Ek

∂t
+H1

∂Ek

∂x1
= 0, (3)
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and functions H2, H3 as solutions of the homogeneous equation
∂Hk

∂t
+ E1

∂Hk

∂x1
= 0. (4)

System of equations (2) is invariant under the affine algebra AIGL(2,R). For this reason,
with the help of one-dimensional subalgebras of the algebra AIGL(2,R), one can reduce
system (2) to systems of ODEs. If the function E1(t, x1) is not constant, then each solution
of equation (3) can be presented in the form ψ(E1(t, x1)), where ψ is some differentiable
function. Moreover, for each differentiable function ψ, the function ψ(E1(t, x1)) is a
solution of equation (3). One can say the same about equation (4).

In Section 4, we construct solutions to system (1), that are functions of t, x1, x2.
Functions E1, E2, H1, H2 are components of a solution to the system of equations

∂Ek

∂t
+Hl

∂Ek

∂xl
= 0,

∂Hk

∂t
+ El

∂Hk

∂xl
= 0 (k, l = 1, 2), (5)

function E3 can be regarded as a solution of the homogeneous equation
∂E3

∂t
+H1

∂E3

∂x1
+H2

∂E3

∂x2
= 0, (6)

and H3 as a solution of the homogeneous equation
∂H3

∂t
+ E1

∂H3

∂x1
+ E2

∂H3

∂x2
= 0.

If the functions E1(t, x1, x2), E2(t, x1, x2) are functionally independent in some domain Γ,
then each solution to equation (6) can be presented in this domain in the form
ψ(E1(t, x1, x2), E2(t, x1, x2)), where ψ is some differentiable function. In addition, for
an arbitrary differentiable function, ψ the function ψ(E1(t, x1, x2), E2(t, x1, x2)) of the
variables t, x1, x2 is a solution of equation (6).

System of equations (5) is invariant under the affine algebra AIGL(3,R). To perform
reduction of system (5) to systems of ODEs, we need two-dimensional subalgebras of
the algebra AIGL(3,R), that have only one main invariant of the variables t, x1, x2. We
obtain the list of such subalgebras up to affine conjugation from results of the classification
performed in [10].

2 Linear ansatzes

To unify systems (1), (2) and (5), we consider the system of equations
∂Ek

∂x0
+Hl

∂Ek

∂xl
= 0,

∂Hk

∂x0
+ El

∂Hk

∂xl
= 0 (k, l = 1, 2, . . . , n). (7)

Here x0 = t, n is an arbitrary natural number. By the same reasoning as in [7], we deduce
that the invariance algebra of system (7) is the affine algebra AIGL(n+ 1,R), the basis
of which is generated by the vector fields:

Pµ =
∂

∂xµ
(µ = 0, 1, . . . , n), Γab = xa

∂

∂xb
+ Ea

∂

∂Eb
+Ha

∂

∂Hb
,

Ga = x0
∂

∂xa
+

∂

∂Ea
+

∂

∂Ha
, G′

a = xa
∂

∂x0
− EaEl

∂

∂El
−HaHl

∂

∂Hl
,

Λ = x0
∂

∂x0
+ xl

∂

∂xl
(a, b = 1, 2, . . . , n).

(8)
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Mark that summation over the repeated index l is from 1 to n.
The linear span of the system of operators, obtained from basis (8) as a result of

excluding operators G′
a (a = 1, 2, . . . , n), forms a Lie subalgebra of the algebra AIGL(n+

1,R). Denote this subalgebra by Q and call it the linear part of the invariance algebra of
system (7).

Each operator Y ∈ Q can be presented in the form

Y = aα(x)
∂

∂xα
+ bij

(
Ej

∂

∂Ei
+Hj

∂

∂Hi

)
+ ci

(
∂

∂Ei
+

∂

∂Hi

)
, (9)

where x = (x0, x1, . . . , xn); bij , ci are real numbers; α = 0, 1, 2, . . . , n; i, j = 1, 2, . . . , n.

Definition. An invariant of the subalgebra Q that is a linear function of variables Ea,
Ha (a = 1, . . . , n) is called linear.

Let

B =


b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . . . . . . . . . . . . . .
bn1 bn2 . . . bnn

 , C =


c1
c2
...
cn

 ,

U =


u11(x) u12(x) . . . u1n(x)
u21(x) u22(x) . . . u2n(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
un1(x) un2(x) . . . unn(x)

 , V =


v1(x)
v2(x)

...
vn(x)

 .

Theorem. A system of functions fq = uqi(x)Ei + vq(x), q = 1, 2, . . . , n, is a system of
linear invariants of an operator Y , functionally independent of variables E1, E2, . . . , En if
and only if

aα(x)
∂U

∂xα
+ UB = 0, aα(x)

∂V

∂xα
+ UC = 0 (10)

and detU 6= 0 in some domain of the point x space.

Proof. Obviously,

Y (fq) = aα(x)
∂uqi(x)
∂xα

Ei + aα(x)
∂vq(x)
∂xα

+ bijuqiEj + ciuqi.

Therefore, Y (fq) = 0 if and only if

aα(x)
∂uqi

∂xα
+ uqlbli = 0, aα(x)

∂vq

∂xα
+ uqlcl = 0

for all values of i, q = 1, 2, . . . , n. This system of equations can be rewritten in the matrix
form of matrix equation (10).

The matrix U is a Jacobi matrix for functions f1, f2, . . . , fn with respect to variables
E1, E2, . . . , En. Hence, the system of these functions is functionally independent if and
only if detU 6= 0 in some domain of the point x space. The theorem is proved.
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Proposition 1. Let B 6= 0. The matrix U = exp(f(x)B) satisf ies the f irst equation of
system (10) if and only if

aα(x)
∂f

∂xα
= −1.

Proof. Since

∂U

∂xα
=

∂f

∂xα
UB,

U satisfies the first equation of system (10) if and only if(
aα(x)

∂f

∂xα
+ 1

)
UB = 0.

The last equality holds if and only if

aα(x)
∂f

∂xα
+ 1 = 0.

The proposition is proved.

Proposition 2. Let

Y1 = a(1)
α (x)

∂

∂xα
+ . . . , Y2 = a(2)

α (x)
∂

∂xα
+ . . .

be operators of the form (9) and their corresponding matrices B1 and B2 mutually commute
and are also linearly independent. The matrix U = exp(f(x)B1) × exp(g(x)B2) satisf ies
the system of equations

a(1)
α (x)

∂U

∂xα
+ UB1 = 0, a(2)

α (x)
∂U

∂xα
+ UB2 = 0 (11)

if and only if

a(1)
α (x)

∂f(x)
∂xα

+ 1 = 0, a(1)
α (x)

∂g(x)
∂xα

= 0,

a(2)
α (x)

∂f(x)
∂xα

= 0, a(2)
α (x)

∂g(x)
∂xα

+ 1 = 0.

(12)

Proof. The matrix U satisfies system (11) if and only if
a(1)

α (x)
∂f(x)
∂xα

UB1 + a(1)
α (x)

∂g(x)
∂xα

UB2 + UB1 = 0,

a(2)
α (x)

∂f(x)
∂xα

UB1 + a(2)
α (x)

∂g(x)
∂xα

UB2 + UB2 = 0.

Since the matrices B1 and B2 are linearly independent, the last system holds if and only
if equations (12) hold. The proposition is proved.
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Proposition 3. Let

Y1 = a(1)
α (x)

∂

∂xα
+ . . . , Y2 = a(2)

α (x)
∂

∂xα
+ . . .

be operators of the form (9) and their corresponding matrices B1 and B2 be connected by the
relation [B2, B1] = B2B1−B1B2 = λB1, λ 6= 0. The matrix U = exp(f(x)B1) exp(g(x)B2)
satisfies system of equations (11) if and only if

a(1)
α (x) e−λg(x) ∂f(x)

∂xα
+ 1 = 0, a(1)

α (x)
∂g(x)
∂xα

= 0,

a(2)
α (x)

∂f(x)
∂xα

= 0, a(2)
α (x)

∂g(x)
∂xα

+ 1 = 0.

(13)

Proof. Since, by Campbell-Hausdorff’s formula,

exp(θB2)·B1 ·exp(−θB2) = B1 +
λθ

1!
B1 +

(λθ)2

2!
B1 + · · · = eλθ B1,

we have

B1 exp(g(x)B2) = e−λg(x) exp(g(x)B2)B1.

The matrix U satisfies system (11) if and only if
a(1)

α (x)
∂f(x)
∂xα

e−λg(x) UB1 + a(1)
α (x)

∂g(x)
∂xα

UB2 + UB1 = 0,

a(2)
α (x)

∂f(x)
∂xα

e−λg(x) UB1 + a(2)
α (x)

∂g(x)
∂xα

UB2 + UB2 = 0.

By the hypothesis, [B2, B1] 6= 0, therefore, the matrices B1 and B2 are linearly indepen-
dent. Having equated to zero the expressions at B1 and B2 on the left-hand sides of the
equalities written down, we obtain equalities (13). The proposition is proved.

Let

~E =


E1

E2
...
En

 , ~H =


H1

H2
...
Hn

 , ~V =


v1(x)
v2(x)

...
vn(x)

 .
It is easy to see that, if components of the vector-function U ~E+ ~V are linear invariants of
a subalgebra F ⊂ Q for some n× n-matrix U = U(x), components of the vector-function
U ~H + ~V are also linear invariants of this subalgebra F .

To perform symmetry reduction of system (7) to systems of ODEs we need n-dimen-
sional subalgebras of the algebra F that have one main invariant ω that depends only on
the variables x0, x1, . . . , xn. On such subalgebras, we construct ansatzes of the form

U ~E + ~V = ~M(ω), U ~H + ~V = ~N(ω), (14)

where ~M(ω), ~N(ω) are unknown n-component functions, matrices U , ~V are known, and
detU 6= 0 in some domain of the point x space. Ansatz (14) can be presented in the form

~E = U−1 ~M(ω)− U−1~V , ~H = U−1 ~N(ω)− U−1~V . (15)

We call ansatzes of the form (14) or (15) linear. In their searching for, we use the
statements proved.
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3 Solutions of system (1) that are functions of t and x1

To obtain such solutions, one should solve system (2). As was noticed in Section 2, the
invariance algebra of system (2) is the affine algebra AIGL(2,R) with the generators

D = t
∂

∂t
− x1

∂

∂x1
− 2E1

∂

∂E1
− 2H1

∂

∂H1
, S = x1

∂

∂t
− E2

1

∂

∂E1
−H2

1

∂

∂H1
,

T = t
∂

∂x1
+

∂

∂E1
+

∂

∂H1
, P0 =

∂

∂t
, P1 =

∂

∂x1
, Z = t

∂

∂t
+ x1

∂

∂x1
.

Up to conjugacy with respect to the group of inner automorphisms the algebra
AIGL(2,R) has the following one-dimensional subalgebras:

〈D − αZ〉 (α ≥ 0, α 6= 1), 〈D − Z − 2αP0〉 (α ∈ R), 〈Z〉, 〈P1〉,

〈T + αP0〉, 〈T + αZ〉 (α 6= 0), 〈T − S + αZ〉 (α ∈ R).

Employing some of these subalgebras, let us perform reduction of system (2) to systems
of ODEs, on solutions of which we shall construct the corresponding solutions of system
(2) and then ones of systems (1).

3.1. 〈D − Z〉 : E1 = x1M1(ω), H1 = x1N1(ω), ω = t,

Ṁ1 +N1M1 = 0, Ṅ1 +M1N1 = 0.

If M1 = N1, then E1 =
x1

t+ C ′ , H1 =
x1

t+ C ′ and E2, E3, H2, H3 are arbitrary functions

of
x1

t+ C ′ . If M1 = N1 + C, C 6= 0, then

E1 =
Cx1

1− C̃ e−Ct
, H1 =

CC̃x1 e−Ct

1− C̃ e−Ct
.

Components E2, E3 may be arbitrary functions of
Cx1

1− C̃ e−Ct
and components H2, H3

may be arbitrary functions of
CC̃x1 e−Ct

1− C̃ e−Ct
.

3.2. 〈T + αP0〉 (α 6= 0) : E1 =
1
α
t+M1(ω), H1 =

1
α
t+N1(ω), ω = x1 −

t2

2α
,

1
α

+N1Ṁ1 = 0,
1
α

+M1Ṅ1 = 0.

The pair of functions

M1 = (Cω + C ′)
1
2 , N1 = − 2

αC
(Cω + C ′)

1
2

is a solution of the reduced system and the corresponding solution of system (2) is of the
form

E1 =
t

α
+

[
C

(
x1 −

t2

2α

)
+ C ′

] 1
2

, H1 =
t

α
− 2
αC

[
C

(
x1 −

t2

2α

)
+ C ′

] 1
2

.
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Components E2, E3 are arbitrary differentiable functions of E1 and components H2, H3

are arbitrary differentiable functions of H1.

3.3. 〈T 〉 : E1 =
x1

t
+M1(ω), H1 =

x1

t
+N1(ω), ω = t,

Ṁ1 +
1
ω
N1 = 0, Ṅ1 +

1
ω
M1 = 0.

The reduced system has the general solution M1 = Cω +
C̃

ω
, N1 = −Cω +

C̃

ω
and the

corresponding solution of system (2) is

E1 =
x1

t
+ Ct+

C̃

t
, H1 =

x1

t
− Ct+

C̃

t
.

Components E2, E3 are arbitrary differentiable functions of E1 and components H2, H3

are arbitrary differentiable functions of H1.

3.4. 〈T − S〉 : E1 =
x1
t +M1(ω)

1− x1
t M1(ω)

, H1 =
x1
t +N1(ω)

1− x1
t N1(ω)

, ω = t2 + x2
1,

2ωṀ1 + (1 +M2
1 )N1 = 0, 2ωṄ1 + (1 +N2

1 )M1 = 0.

To the solution M1 = N1 = (Cω − 1)−
1
2 of the reduced system, there corresponds the

following solution of system (2):

E1 = H1 =
1 + x1

t

[
C(t2 + x2

1)− 1
] 1

2[
C(t2 + x2

1)− 1
] 1

2 − x1
t

.

Components E2, E3, H2, H3 are arbitrary differentiable functions of E1.

4 Solutions of system (1) that are functions of t, x1, x2

The problem is to constract solutions that are not equivalent to solutions depending only
on t and x1. To obtain them for system (5), one should restrict oneself in reducing to
employing only two-dimensional subalgebras of the algebra AIGL(3,R) that have a zero
intersection with the translation space 〈P0, P1, P2〉. Let us give the list of such subalgebras
basing on results of the classification of all subalgebras of the algebra AIGL(3,R) with
respect to affine conjugation performed in [10].

Let

B = −Γ11 + Γ22, C = Γ21, F = −Γ12, Z = Γ11 + Γ22,

D = 2Λ− Γ11 − Γ22 (see notations (8)).

Up to affine conjugation, the algebra AIGL(3,R) contains only the following two-
dimensional subalgebras that have zero intersection with the space 〈P0, P1, P2〉:

〈G1, G2〉, 〈G1 + P2, G2 + εP1〉 (ε = 0, 1), 〈G1, G2 + P2〉, 〈C,G1〉,
〈C + P2, G1 + εP0〉 (ε = ±1), 〈C + P2, G1〉, 〈C +G2, G1〉,
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〈C +G2, G1 + P1〉, 〈D + Z,C〉, 〈D + Z,C +G2〉, 〈D + Z + 2C,G1〉,

〈D + Z + 2C + 2G2, G1〉, 〈D + Z + 2G1, G2〉, 〈D + Z + 2G1, C +G2〉,

〈D + αZ,G1〉, 〈Z,G1〉, 〈Z −D + 2P1, G1〉, 〈Z −D + 2P2, G1〉,

〈D + 3Z,G1 + P0〉, 〈Z,G1 + P2〉, 〈D + αZ,C〉, 〈Z,C〉,

〈Z −D + 2P1, C〉, 〈Z −D + 2P1, C + P2〉, 〈Z −D,C + P2〉,

〈Z + αP0, C + βP0〉 (α, β = 0, 1; α+ β = 1), 〈Z + C,D + Z〉,

〈D + αZ + βC,G1〉, 〈Z + αC,G1〉, 〈Z −D + 2C + 2P2, G1〉,

〈Z + C + P0, G1 + P2〉, 〈D + 3Z + 2C,G1 + P0〉, 〈Z + αC,D + Z + 2C〉,

〈B + αD + (1 + α)Z,G2〉, 〈B +D + 2Z,G2 + P1〉, 〈B +D + 2Z,G2 + P0〉,

〈B −D + P2, G2〉, 〈B + Z + P1, G2〉, 〈B + αD + (1 + α)Z +G1, G2〉,

〈B −D +G1 + P2, G2〉, 〈B + Z +G1, G2 + P2〉,

〈B +D + 2Z +G1, G2 + P1〉, 〈B + αD + βZ,C〉,

〈B + 2Z −D + P1, C + P0〉, 〈B + αD + (1− α)Z + P1, C〉 (α 6= 0, 1),

〈B − 3Z + P0, C + P2〉, 〈B + αZ + P0, C〉 (α 6= ±1),

〈B + αD − (α+ 3)Z,C + P2〉 (α 6= −1,−2),

〈B + (α− 1)Z −D,C + P0〉 (α 6= ±1),

〈B + αD + (α− 3)Z,C +G2〉, 〈B + 2D − Z + P1, C +G2〉,

〈B −D − 4Z,C +G2 + P0〉, 〈F + C + αZ,D + Z〉 (α ≥ 0),

〈F + C + α(D + Z), Z + β(D + Z)〉 (α ≥ 0), 〈D,Z〉,

〈B + αZ,D + Z〉 (0 ≤ α < 1),

〈B + α(D + Z), Z + β(D + Z)〉 (α ≥ 3β + 1),

〈B +D,Z〉, 〈2B +D + Z,D − Z〉, 〈2B +D + Z + 2P1, D − Z + αP1〉,

〈2B +D + Z,Z −D + 2P1〉, 〈F + C + P0, Z + αP0〉 (α ≥ 0), 〈F + C,Z + P0〉.

From this list, we exclude the subalgebra 〈C,G1〉, the rank of which is equal to 1 with
respect to the variables t, x1, x2.

Let us present some examples of symmetry reduction of system (5), performed with
the help of given subalgebras.

4.1. 〈G1, G2 + P2〉 : E1 =
x1

t
+M1(ω), E2 =

x2

t+ 1
+M2(ω),

H1 =
x1

t
+N1(ω), H2 =

x2

t+ 1
+N2(ω), ω = t,

 N1 + ωṀ1 = 0, N2 + (ω + 1)Ṁ2 = 0,

M1 + ωṄ1 = 0, M2 + (ω + 1)Ṅ2 = 0.
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The general solution of the reduced system

M1 = C1ω +
C2

ω
, M2 = C3(ω + 1) +

C4

ω + 1
,

N1 = −C1ω +
C2

ω
, N2 = −C3(ω + 1) +

C4

ω + 1
,

is associated with the following solution of system (5):

E1 =
x1

t
+ C1t+

C2

t
, E2 =

x2

t+ 1
+ C3(t+ 1) +

C4

t+ 1
,

H1 =
x1

t
− C1t+

C2

t
, H2 =

x2

t+ 1
− C3(t+ 1) +

C4

t+ 1
.

In this case, E3 is an arbitrary differentiable function of E1 and E2 and H3 is an arbitrary
differentiable function of H1 and H2.

4.2. 〈C + P2, G1 + εP0〉 (ε = ±1) : E1 = εt+M1(ω) + x2M2(ω), E2 = M2(ω),

H1 = εt+N1(ω) + x2N2(ω), H2 = N2(ω), ω = t2 − 2εx1 + εx2
2, ε− 2εN1Ṁ1 +N2M2 = 0, N1Ṁ2 = 0,

ε− 2εM1Ṅ1 +M2N2 = 0, M1Ṅ2 = 0.

The solution of the reduced system M1 = N1 = 0, M2 = M(ω), N2 = − ε

M(ω)
, where

M(ω) is an arbitrary nonzero function, is associated with the solution of system (1):

E1 = εt+ x2M(ω), H1 = εt− εx2M
−1(ω),

E2 = M(ω), H2 = −εM−1(ω), ω = t2 − 2εx1 + εx2
2,

E3 = g(εt+ x2M(ω),M(ω)), H3 = h(εt− εx2M
−1(ω),−εM−1(ω)),

where g, h are arbitrary differentiable functions.
The solution M1 = 0, M2 = C1, N1 = C2, N2 = − ε

C1
, is associated with the solution

of system (5)

E1 = εt+ C1x2, E2 = C1, H1 = εt− ε

C1
x2 + C2, H2 = − ε

C1
.

For it,

E3 = g

(
x2 +

ε

C1
t, x1 −

ε

2
t2 +

ε

C1
tx2 +

t2

2C2
1

− C2t

)
,

H3 = h

(
x2 − C1t, x1 − C1tx2 +

C2
1 − ε

2
t2
)
,

where g, h are arbitrary differentiable functions.

4.3. 〈C + P2, G1〉 : E1 =
x1

t
− x2

2

2t
+M1(ω) + x2M2(ω), E2 = M2(ω),
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H1 =
x1

t
− x2

2

2t
+N1(ω) + x2N2(ω), H2 = N2(ω), ω = t, ωṀ1 +N1 + Ṁ2Ṅ2ω = 0, Ṁ2 = 0,

ωṄ1 +M1 + Ṁ2Ṅ2ω = 0, Ṅ2 = 0.

The reduced system has the general solution M1 = C3ω+
C4

ω
, N1 = −(C1C2 +C3)ω+

C4

ω
,

M2 = C1, N2 = C2. It is associated with the following solution of system (5):

E1 =
x1

t
− x2

2

2t
+ C1x2 + C3t+

C4

t
, E2 = C1,

H1 =
x1

t
− x2

2

2t
+ C2x2 − (C1C2 + C3)t+

C4

t
, H2 = C2.

Components E3, H3 are given by the formulas:

E3 = g

(
x2 − C2t, x1 −

(
C2

2

2
− C1C2 − C3

)
t2 + C4 −

(x2 − C2t)2

2

)
,

H3 = h

(
x2 − C1t, x1 −

(
C2

1

2
+ C3

)
t2 + C4 −

(x2 − C1t)2

2

)
,

where g, h are arbitrary differentiable functions.
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