
FaultFaultFaultFault InjectionInjectionInjectionInjection forforforfor SCADESCADESCADESCADE ModelsModelsModelsModels

Xiaolin Shen1,,a,,,, Shaoyin Wang2,,,, Daqing Wang3,,,, Xiaoping Xue1
1School of Electronic and Information Engineering, Tongji University, Shanghai, China

2National Maglev Engineering Center, Tongji University, Shanghai, China
3Shanghai Metro Technology Center, Shanghai, China

ashenxiaolinwufan@126.com

Keywords:Keywords:Keywords:Keywords: Fault injection; Fault-tolerant; ATP; SCADE

Abstract.Abstract.Abstract.Abstract. A fault injection method based on SCADE was designed in this paper, which can simulate
hardware failure in the form of software fault. Injecting faults into SCADE models brings forward
fault tolerance testing to development phase avoiding the cost of changing fault-tolerant design by
modifying the code. Development and fault injection test are in the same environment, which
improves the efficiency of the project management. Speed and location measuring subsystem of ATP
was selected as the target model in this paper and faults were injected into it in SCADE. The effect on
the system of the injected fault can be observed in the simulation process. The weakness of the
fault-tolerant design of the system can be found with this method.

IntroductionIntroductionIntroductionIntroduction
With the rapid development of urban transportation, the popularity of rail transit has become an

important issue to solve the increasingly serious traffic congestion. Communications Based Train
Control (CBTC), which has advantages of high speed and high density, has gradually become the first
choice of the signal system in the field of rail transit.

Automatic Train Protection system (ATP), which is one of the core subsystems of CBTC, is
crucial to ensure the safety of train operation. ATP must satisfy strict requirements of the safety of its
software because of the possible disastrous consequences of its failure, including significant financial
losses and threat to human lives. To improve the safety of the system, formal software method based
on SCADE is used in the development of the ATP software and the development process combined
with the corresponding testing process forms the V&V model, which is recommended by EN50128
standards.

ATP is required to have the fault-tolerant ability, which should at least guarantee that the system
would not transfer to the failed unsafe state [1] in any situation. However, normal testing cannot test
the fault-tolerant ability for hardware failure, as it only aims to test whether the software system can
properly execute its function to the requirements in software level. Therefore, we can simulate the
hardware failure in the form of software faults and inject the faults into the software system to test the
fault-tolerant ability of the system.

The work of this paper is designing such a method to inject faults simulating hardware failure into
our ATP system using SCADE. We simulate exceptions of variables and operators caused by various
hardware failures such as bit flipping, set types of these exceptions as fault types, and establish fault
models called fault nodes in this paper of these fault types using SCADE.

In order to maintain the original structure of the system, fault injection can be implemented by
inserting fault nodes into the copy of the system model or replacing the original nodes in the copy of
the system model with fault nodes. We run the system with the injected faults in SCADE and set the
frequency of the occurrence of the faults, which can simulate permanent, intermittent and transient
faults, to test the fault tolerance of the system in the development phase by observing and analyzing
the behavior of the system.

The remainder of this paper is organized as follows. The first section is the introduction. The
second section briefly discusses some related works. The third section presents the fault injection

 International Conference on Information Science and Computer Applications (ISCA 2013）

© 2013. The authors - Published by Atlantis Press 20

method based on SCADE models. Simulation and analysis of the fault injection are presented in the
fourth section. Conclusions and future work are given in the fifth section.

RelatedRelatedRelatedRelated WWWWorksorksorksorks
In this section, we mainly discuss the Software Implementation Fault Injection (SWIFI). SWIFI

can be classified into high layer and low layer according to the different layers of faults to simulate.
Fault injection in the high layer mainly simulates human errors in software design and

implementation, such as code error, data error, variable error, program environment error, etc. [2].
Development of our ATP system makes use of the SCADE suit platform, which is developed by
Esterel Technologies providing support of formal modeling and verification. SCADE has integrated
code generator, which can automatically generate codes complying with the class A certification of
DO-178B. As the code generator can generate codes of high safety level, we need not to consider
human errors in coding in our fault injection method.

Fault injection in the low layer mainly simulates hardware failure in the system load, which can
inject faults into the bottom of the software such as CPU registers and memory locations and so on.
The earliest research in this aspect is FIAT [3] proposed by Siewiorek et al., FIAT can select the
physical location of the memory image to inject fault, and disrupt the memory image of the task. Soon,
Kanawati proposed a new fault injection tool FERRARI [4], using the Unix system call ptrace to set
breakpoints in the target process, can modify the process memory image and CPU registers. Xception
[5], proposed by Carreira, using modern CPU registers to trigger the fault injection process, can inject
faults simulating faults in memory and registers into the distributed PowerPC system with small
intrusion. However, the traditional low layer fault injection is applicable to the fault tolerance testing
of the off-the-shelf system.

For safety critical system, if the test result shows that the fault tolerance of the system is not
complete, it is necessary to change the fault-tolerant design by modifying the code, which is costly
and time-consuming. In our development process, all of design, implementation, testing and
verification of the software can be completed using SCADE, so we proposed a method to inject faults
simulating hardware failure into the system model in SCADE which can test the improper
fault-tolerant design of the system and improve it directly in the development phase using SCADE,
avoiding the cost of modifying the code. Using SCADE models to simulate faults makes our fault
injection more intuitive. Moreover, development and fault injection test are in the same environment,
which will obviously improve the efficiency of the project management.

FaultFaultFaultFault IIIInjectionnjectionnjectionnjection UUUUsingsingsingsing SCADESCADESCADESCADE
Formal model editor, simulator, verifier, code generator, report generator, etc. with graphic

interface are provided in SCADE. In the phase of software development, SCADE editor was adopted
to establish model of the system, testing in the corresponding phases were implemented by SCADE
simulator. Therefore, fault injection in this phase should be implemented with SCADE editor and
SCADE simulator.

As many calculations in SCADE model can be completed by variables and operators, we tried to
import exceptions of variables and operators as fault types into the system model to test the
fault-tolerant ability of the system. These faults are caused by hardware failures such as bit flipping in
CPU registers, so we can implement these fault types by simulating corresponding kinds of hardware
failures using fault nodes, and the fault nodes can be established using SCADE editor. Time
properties of the occurrence of the faults also can be set in SCADE simulator to simulate permanent,
intermittent and transient faults.

Fault Injection Location and Rules.... The normal test procedure operated by simulator in SCADE
can be controlled only by external input of the system model. Such test mode cannot be exposed to the
internal side of the system and cannot simulate internal fault of the system either. Therefore, faults
should be injected into the internal side of the system model in our method. According to our target

21

fault types to inject, faults can be inserted into the location of variables and operators in SCADE
model.

In order to increase efficiency of fault injection and independently analyze the influence of the fault
at later time, the location of the fault injection should be controlled avoiding injecting equivalent fault
to the greatest extent. In addition, fault injection is implemented in SCADE, so the system model with
fault should observe the syntax and logic rules in SCADE to pass the examination of SCADE, and
thus the model can be established and operated. By combining with the above two requirements, fault
injection should be restricted in the following ways:

Rule 1: Fault location: In order to avoid injecting equivalent fault, when the injection location of
fault is chosen, attentions should be paid to: the injectable variables should be those which resulted
from the predefined SCADE operators, operators imported by SCADE or constant; faults cannot be
injected into other indirect variables that can trace back to such variables.

For instance, the SCADE model contains the following relation, where L1, L2, L3, L4, L5, L6 are
variables in this model:

L3=L1*L2, (1)
L4=L3, (2)
L6=L5+L3, (3)
L7=-L3. (4)

Fault that simulates L3 exception or operator exception can be injected into Eq. 1; it’s meaningless
to inject fault into Eq. 2, as it only represents the transitive relation of values. It is meaningless to
import L3 exception into Eq. 3, but L6 exception or operator exception can be injected into it. Fault can
be injected into Eq. 4, as it indicates the calculation relation rather than transitive relation of values.

Rule 2: Operator predefined: In order to observe the syntax and logic rules in SCADE, operator
predefined in SCADE should be utilized to simulate the fault type of operator exception. Moreover,
characteristics of interfaces should be maintained after fault nodes replacing the original nodes; in
other words, data types and numbers of the original input and output variables should remain
unchanged. For example, if the operator “+” in Eq. 5 to be replaced by “*”, Eq. 5 can be directly
substituted by Eq. 6, where L1, L2, L3 are variables in the SCADE model.

L3=L1+L2, (5)
L3=L1*L2. (6)

According to operators predefined in SCADE and the frequently used data types, substitutable
operators and the corresponding types of interface variables are listed in Table 1.

Table 1 Available substitutable operator
In1 type In2 type Out type Available operators
Int Int Int +, -, *, **, DIV, MOD
Int Int Bool >, >=, <, <=, =, <>
Real Real Real +, -, *, /
Real Real Bool >, >=, <, <=, =, <>
Char Char Bool >, >=, <, <=, =, <>
Bool Bool Bool AND, OR, XOR, =, <>

Note that: “=” in SCADE is the operator to judge equivalence.
Fault Injection Model.... A fault module with fault nodes simulating the target fault types was

established in SCADE. And it will be convenient for the management of the fault injection process if
a fault injection model could be constructed and fault nodes in the fault module could satisfy the fault
injection model.

For fault injection process, a complete model should contain fault location, fault type, fault
injection time and fault duration time. Therefore, our fault injection model can be described with the
following parameters:

22

Fault_Injection_Model (<Loc>, <Fault_Type>, <Par1>, <Fault_Freq>, <Par2>, <Par3>). Where
<Loc> represents the location of the fault, and each Loc is unique in the target system; <Fault_Type>
and <Par1> are used to describe the fault types to inject; <Fault_Freq>, <Par 2> and <Par 3> are used
to describe time properties of the fault injection.

Fault types described by <Fault_Type> and <Par1> can be implemented by establishing fault
nodes using SCADE editor, where Fault_Type refers to the type of the fault node and Par1 is the
parameter used to control the fault node which is input by the tester. Fault types described by
Fault_Type and Par1 are shown in Table 2.

Table 2 Fault types and description
Fault_Type Available variable

type
Par1 type Par1 description

Sw_Operat
or

Int, Real, Char,
Bool

Enum Represents the operator to replace with.

Flip_Bool Bool Null Parameter not needed.

Flip_Bit Int, Real Int
Binary representation of Par1 representing
a bit-vector, which is to bitwise "XOR"
with the variable.

Set_Bit Int, Real Int
Binary representation of Par1 representing
a bit-vector, which is to bitwise "OR"
with the variable.

Clear_Bit Int, Real Int Binary representation of Par1 representing
a bit-vector, all bits of which are flipped
and then it is to bitwise "AND" with the
variable.

Sw_Value Int, Real, Char,
Bool

Same type as the
available variable.

Represents the variable value to replace
with.

Parameter <Loc> is appointed by Tri_loc of the fault node like Fig.1 shows, Tri_loc is the
parameter in the simulation execution process, _loc points out <Loc>, and the value of Tri_loc is
controlled by the fault injection time.

Fig. 1 Flip_Bool node
There is no internal concept of time in SCADE, so time properties can be simulated by the cycle of

the simulation process. A cycle is equal to an execution of the simulation; in each execution process,
a series of inputs in the test scenario file can be read step by step under the control of the simulator,
and a series of outputs can be generated. According to the time properties of true faults, faults can be
classified into permanent fault, intermittent fault and transient fault [6].

(1) Permanent fault will always exist in the system once it occurs until the fault is recovered.
During the simulation process, extending the fault injection time from the cycle in which the fault
first occurs to each cycle after the fault occurs can simulate permanent fault.

(2) Intermittent fault is the transitory fault that occurs occasionally until the fault is recovered.
During the simulation process, intermittent fault can be simulated by setting the cycle in which the
fault first occurs and the interval period of the occurrence of the fault.

(3) Transient fault is the one that happens temporarily, it occurs just once. During the simulation
process, setting the fault occurrence in a cycle can simulate transient fault.

Time properties of the fault injection model described by <Fault_Freq>, <Par 2> and <Par 3> are
implemented by the set command SSM:: in the test scenario file supported by SCADE simulator.
Fault_Freq refers to the occurrence frequency of fault, Par2 and Par3 are input by the tester to control
the duration time of fault. Table 3 presents the relation among these three parameters.

23

app:ds:variable
app:ds:variable

Process of Fault Injection.... Fault module with fault nodes was added into the system project in the
form of a library, so the testers are able to insert the fault nodes into the location where fault is
expected to happen. To simulate different kinds of faults in the software system, fault nodes cover
different kinds of variable exceptions and operator exceptions in this paper.

Table 3 Fault frequency and description
Fault_Freq Par2 type Par2 description Par3 type Par3 description

Permanent Int The cycle in which the
injected fault occurs. Null Parameter not needed.

Intermittent Int
The cycle in which the
injected fault first
occurs.

Int
Interval period of the
occurrence frequency of
the fault.

Transient Int The cycle in which the
injected fault occurs. Null Parameter not needed.

Using test scenario files supported by SCADE simulator, the system model with fault can be driven.
Test scenario files here are Tcl scripts. The system model can operate automatically at single step or
multiple steps under the control of the simulator. All outputs of the system can be monitored via
observer provided in the simulator; besides, internal behavior of the system at each step of execution
can be observed which is convenient for analyzing the fault-tolerant ability of the system.

If the system behavior during the simulation satisfies the safety requirements with the injected
faults, we consider that the system is fault-tolerant for these faults. Otherwise, we need to modify the
fault-tolerant design according to the error behavior of the system to improve the fault tolerance of
these kinds of faults until the system become fault-tolerant for all kinds of faults.

For the description of a safety system, there are three states [1]. Operational state refers to the state
in which the system executes its functions correctly; failed safe state refers to the state in which the
system can no longer execute its functions correctly, but this will not harm to the safety of the system
or human lives; failed unsafe state refers to the state in which the system can no longer execute its
functions correctly and may hazard the safety of the system and human lives. The safety property
requires that fault-tolerant ability of the safety critical system should guarantee that the system would
not transfer from operational state to failed unsafe state when fault occurs.

FaultFaultFaultFault IIIInjectionnjectionnjectionnjection EEEExamplesxamplesxamplesxamples
There are various fault nodes and different combination of parameters available for different

system models. All of the fault injection process should comply with the injection rules described in
this paper. Here gives two simulation processes and result analysis using Set_Value and Sw_Operator
in Table 2 as examples. Simulations have been implemented by injecting fault nodes into a system
model established in SCADE to prove the validity of the proposed fault injection method. Illustration
of the simulation is also presented in this section.

Speed and location measuring subsystem of ATP is selected as the target system in the simulation.
The result of the speed and location measuring system is the input of the core control subsystem of
ATP, so it will directly affect the safety of ATP. Speed and location measuring system works with the
wheel speed sensor and the radar device, which are two calculation parts of the system. When the
train is running, we need to judge the spin or slide operation state of the train and calculate the train
speed and travel distance according to the output of the two calculation parts.

The system model established by SCADE editor is shown in Fig. 2, where Wheel_Speed is the
result of the wheel speed sensor calculation part, Radar_Speed is the result of the wheel radar
calculation part, Erro is the common calculation error of the radar device, Normal_Go, Slide, Spin are
the operation states of the system. We injected fault into wheel speed sensor calculation part and radar
calculation part shown in Fig.3 respectively and ran the simulation twice, then we analyzed the
system behaviors according to the simulation results.

Failed Safe Situation of the System.... Assuming that fault occurred in the wheel speed sensor
calculation part. To simulate this scenario, we injected a variable exception into this part. In SCADE,

24

app:ds:intermittent
app:ds:transient

we inserted the Set_Value node in our fault nodes library into an output variable, using Par1 to set the
output variable value and setting the fault to be intermittent in the test scenario file. When the fault
was injected into the system model, we ran the system with and without fault respectively using the
same test cases. The operation situation of the fault free system is shown in Fig. 4, and the operation
situation of the system with fault is shown in Fig. 5.

Fig. 2 Speed and location measuring system model

Input

Wheel Speed Sensor
Calculation Pa r tR adar Calculation Pa r t

Control of the output
speed and distance

Output

Feedback

Fig. 3 Function description of the model
According to the operation process observed in SCADE simulator, in the cycle with fault, the

train’s operation state transfers from Normal_Go to Spin and the speed measuring results come from
the radar device part. The results are not very accurate compared with the results of the fault free
system. In the fault free cycle, despite that the injected fault has interference on the output of the
system, the train’s operation state can recover to Normal_Go and the output error converges fast.
Therefore, we consider that failed safe state of the system is satisfied.

Fig. 4 Operation situation of the fault free
system

Fig. 5 Operation situation of the system with
variable exception

Failed Unsafe Situation of the System. Assuming that fault occurred in the radar calculation part.
To simulate this scenario, we injected operator exception into this part. In SCADE, we replaced the
original node with the Sw_Operator node, using Par1 to switch “*” to “+” and setting the fault to be
transient in the test scenario file. When the fault was injected into the system model, we ran the
system with fault using the same test cases as the fault free system. The operation situation of the
system is shown in Fig. 6.

According to the operation process observed in SCADE simulator, in the cycle with fault, the
output speed of the wheel speed sensor part is accurate compared with the fault free system. However,
as the miscalculation of the radar device part, the train’s operation state transfers from Normal_Go to
Slide wrongly and the speed measuring results has notable error compared with the results from the
fault free system. And the error converges slowly in the fault free cycle. The output error of the speed
and location measuring system will lead to the failed unsafe state of the train. Obviously, the
fault-tolerant design has not taken faults in the radar device part into consideration. So it is necessary
to improve the fault-tolerant design for the radar calculation part.

To conduct a comprehensive analysis of the fault-tolerant ability of the system, fault injection
using the proposed method need to combine with the analysis of the functional requirements and
safety requirements. Choosing appropriate fault type and injection point will make fault injection test
more effective.

25

Fig. 6 Operation situation of the system with operator exception

ConclusionsConclusionsConclusionsConclusions andandandand FFFFutureutureutureuture WWWWorkorkorkork
A fault injection method based on SCADE models was proposed in this paper, which can simulate

hardware failure in the form of software fault. Then speed and location measuring subsystem of ATP
was selected as the target model in this paper and faults were injected into it in SCADE. The effect on
the system of the injected fault was observed in the simulation process. Then the weakness of the
fault-tolerant design of the system was found by analyzing the system behavior.

Compared with traditional SWIFI method, our proposed method for fault tolerance testing can be
used in early development phase to avoid the cost of modifying codes. Development and fault
injection test are in the same environment, which obviously improves the efficiency of the project
management. All of permanent, intermittent and transient faults can be simulated in our method.

Fault injection in SCADE is restricted in some extent as fault models in SCADE must observe the
syntax and logic rules in SCADE which would lead to lacking of the fault types. Research on fault
injection in state machine in SCADE models in the future is important. Moreover, it will greatly
increase the usable range of the proposed fault injection method to develop more fault types that can
be imported into SCADE or supported by SCADE in the future work.

ReferencesReferencesReferencesReferences

[1] E. Cutright, T. DeLong, Johnson B, Generic processor fault model, Technical Report
UVA-CSCS-NSE-004 Revision 00. (2002).

[2] J.F. Chen, Y.S. Lu, X.D Xie, Research on software fault injection testing, Journal of Software.
2009, 20(6): 1425−1443.

[3] J.H. Barton, E.W. Czeck, Z.Z. Segall, D.P. Siewiorek, Fault injection experiments using FIAT,
IEEE Trans. on Computers. 1990, 39(4): 575−582.

[4] A.K. Ghani, A.K. Nasser, A.A. Jacob, FERRARI: A flexible software-based fault and error
injection system. IEEE Trans. on Computers. 1995, 44(2): 248−260.

[5] J. Carreira, H. Madeira, J.G. Silva, Xception: A technique for the experimental evaluation of
dependability in modern computers, IEEE Trans. on Software Engineering, 1998, 24(2): 125−136.

[6] X.Z. Yang, Fault and its Form of Expression, in: Fault-tolerant Technique and STRATUS
Fault-tolerant Computer, Harbin, 1993, pp. 28-29.

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment
This work is supported by the Open foundation of the State Key Laboratory of Rail Traffic

Control and Safety (Contract No.RCS2010K007), Beijing Jiaotong University.

26

app:ds:usable
app:ds:range

