

WordNet-Based Suffix Tree Clustering Algorithm

Qiuyue Dang1,a, Jiwei Zhang1,b, Yueming Lu2,c and Kuo Zhang3,d
1School of Information and Communication Engineering, Beijing University of Posts and

Telecommunications, Beijing, China
2Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education,

Beijing, China
3Beijing Sogou Technology Development Co., Ltd, Beijing, China

aqiuyue_dang@163.com, bp40.fate@gmail.com , cymlu@bupt.edu.cn, dzhangkuo@sogou-inc.com

Keywords: search results clustering, suffix tree, STC, WordNet synsets.

Abstract. High space cost and ignoring synonyms in STC (Suffix Tree Clustering algorithm) are
challenges for search results clustering. Aiming at these challenges, this paper proposes a
WordNet-based suffix tree clustering algorithm (WNSTC). WNSTC can construct a suffix tree
containing WordNet synsets. When constructing the suffix tree, WNSTC looks every feature word
up in WordNet database. If the feature word is included in WordNet, its synsets will be added into
corresponding node. The node in the suffix tree may be a set of words (strings) with similar
meaning instead of a single word (string). Experiments executed on data sets show that WNSTC has
better clustering quality and smaller suffix tree size than original STC algorithm.

Introduction

Search engines are considered as the most common tool to retrieve information from the Internet.
But the search results returned by search engines usually come with huge quantity and a long list.
What’s more, the search results will be very diverse when users’ search term is not correct or
ambiguous. It’s time-consuming and arduous to find the most relevant search result [1]. Search
results clustering is an efficient method to make the search results easier to scan. It aims to cluster
search results into meaningful groups and provide a navigator to easily access the satisfying results
for users [2]. Search results clustering works on snippets (a summary of the search results), which is
different from document clustering (working on long text).STC (Suffix Tree Clustering) algorithm
is a classic search results clustering algorithm, which was proposed by Zamir and Etzionit in 1998.
It is an incremental and liner time (in the document collection size) algorithm, which creates
clusters based on phases shared between documents [3]. STC doesn’t use VSM (Vector Space
Model) to express text as bag-of-words, which is different from other clustering algorithms, such as
K-means [4]. Zamir and Etzionit showed that STC is faster and more flexible than other standard
snippets clustering methods.

However, STC is still not perfect. It ignores the semantic information in snippets and in
high-cost of space when the number of snippets is huge. There are two classic improved algorithms
based on STC, SHOC [5] and Lingo [6]. SHOC uses singular value decomposition (SVD) to
discover the semantic information in term-document matrix generated by VSM. Lingo uses
common phase discovery and LSI (Latent Semantic Indexing) [7] to group snippets into meaningful
clusters. Unfortunately, because their processes are still based on VSM, the semantic relationship
between the words is not recognized explicitly. What’s more, they are high-dimensional when

 International Conference on Information Science and Computer Applications (ISCA 2013）

© 2013. The authors - Published by Atlantis Press 66

applied to large numbers of snippets, which goes against the high space cost of STC.
In this paper, a WordNet-based suffix tree clustering algorithm is proposed, which is called

WNSTC. WordNet (“WN” for short) - a large lexical database of English, is used in WNSTC to
analyze the synonyms information in snippets explicitly [8]. In the feature extraction stage of
WNSTC, only the nouns and verbs in snippets are extracted because they have great thematic
significance in linguistics. This method is good for feature dimension reduction. When constructing
the suffix tree, every feature word is retrieved from WordNet to get its synsets and we record them
in the corresponding node. In other words, a few of conventional suffix tree nodes with different
forms, which have the same meaning, will be one node in WNSTC. The effectiveness of WNSTC is
proved by experiments in section 3.

root

car consume petrolauto gasoline

consume

gasoline

gasoline petrolconsume

petrol

Fig. 1 The conventional suffix tree constructed by STC

Fig. 2 The new suffix tree constructed by WNSTC

WordNet-Based Suffix Tree Clustering Algorithm

 The Suffix Tree of WNSTC. WNSTC focuses on improving the clustering quality by integrating
WordNet’s synsets on the semantic level. For this reason, the suffix tree of WNSTC is designed to
highlight the similar meaning expressed by synonyms for the string. Starting from this idea, we add
the feature words’ synsets to the suffix tree, which are retrieved from WordNet database. Here is an
example. Supposing we have a feature word – car, its synsets in WordNet are listed below:

a) car, auto, automobile, machine, motorcar
b) car, railcar, railway car, railroad car
c) cable car, car
d) car, gondola

67

e) car, elevator car
The first synset is the most common meaning of “car”. In order to reduce the complexity of

nodes, we just choose the first synset to add to the node standing for “car”. Now, the node in
WNSTC’s suffix tree will not indicate a word or a string with the same characters, but a similar
meaning expressed by a set of synonymous words or strings, like {car, auto, automobile, machine,
motorcar} . But, we still use “car” as the main word for this node.

Fig. 3 The suffix tree construction flow of WNSTC

There is another example to show the difference between WNSTC’s suffix tree and STC’s suffix
tree. Suppose we have two documents: D1 = {car, consume, gasoline}, D2 = {auto, consume,
petrol}. Fig. 1 is the conventional suffix tree of STC algorithm. It’s obvious that this suffix tree is
sparse and the synonymous words like “car” and “auto” are not recognized. Fig. 2 is the new suffix

68

tree constructed by the method of WNSTC. We can see that the node in Fig. 2 is not a single word
any more. Every word contained in WordNet database is combined with its synsets and all these are
recorded in corresponding node (within the dotted box). There is curious question: where are “auto”
and “petrol”? When constructing the suffix tree, “auto” is found in “car, auto, automobile, machine,
motorcar”, called node A, so new node for “auto” is no longer created and we link “auto” to node A.
The suffix tree in Fig. 2 is compact obviously. We can perceive the semantic advantages of WNSTC
to some extent.

The most important difference between WNSTC and STC is reflected when constructing the
suffix tree. To keep things simple, we show the suffix tree construction method of WNSTC for one
snippet in Fig. 3.

WNSTC Algorithm. WNSTC algorithm has three main steps: preprocessing, constructing suffix
tree and identifying clusters. The following sections explain these steps one by one.

Step1: preprocessing. Preprocessing is aim to extract the words or strings from snippets, which
have great thematic significance. In linguistics, function words do not have real meaning and cannot
act as parts of the sentence generally. Notional words, such as nouns, verbs and adjectives, carry an
explicit meaning. And nouns and verbs are the majority of notional words. Consequently, in
preprocessing phase of WNSTC algorithm, nouns and verbs are extracted from every snippet to
constitute a feature word collection. It’s in favor of reducing the nodes number of suffix tree
constructed in next step. For example, given a snippet “gasoline is consumed by car”, it will be
{gasoline, consumed, car} after preprocessing.

Step2: constructing suffix tree. After preprocessing, all snippets are in form of feature words
collection. We call the suffix tree construction method of WNSTC described in 2.1 to complete this
phase. In order to understand more about the suffix tree construction method of WNSTC, we give
an example to show the details constructing suffix tree branch starting from the first feature. We still
use the two snippets in section 2.1: D1 = {car, consume, gasoline}, D2 = {auto, consume, petrol}.
Consider the diagram a-k in Fig. 4.

Step3: identifying clusters. Like STC algorithm, there are two parts: identifying base clusters and
combining base clusters[3], when identifying clusters. From step 2, the labels under leaf nodes
mean a set of documents having common phrase. So, each leaf node which has labels containing
more than two documents is a base cluster. And the phrase formed by all nodes’ main words on this
branch is the topic of this base cluster exactly.

After identifying base clusters, the snippets are grouped to base clusters collections, like {B1, B2,
B3, …… , Bn}. If the similarity between two base clusters is 1, they will be combined to one cluster.
We use the similarity measure between base clusters in [3]. Given two base clusters Bm , Bn and a
parameter α, we define that the similarity between Bm and Bn is 1, if Eq. 1 is satisfied. If not, the
similarity between Bm and Bn is 0.

m

nm

B

BB
 and

n

nm

B

BB
 (1)

In Eq. 1, | Bm | and | Bn | represent the size of Bm and Bn, respectively. | Bm∩Bn | represents the
number of common documents contained in Bm and Bn. Specially, the pre-defined parameter in our
method is 0.6, because our experiments using α=0.6 have relatively good performance usually.

69

70

gasolene, gas,
petrol

devour, down, go
through

root

car

consume

auto, automobile,
machine, motorcar

gasoline

gasolene, gas,
petrol

devour, down, go
through

root

car

consume

auto, automobile,
machine, motorcar

gasoline

gasolene, gas,
petrol

root

car

consume

auto, automobile,
machine, motorcar

gasoline

devour, down, go
through

gasolene, gas,
petrol

devour, down, go
through

root

car

consume

auto, automobile,
machine, motorcar

gasoline

1 1 2 1

15. auto is found in T, link it to
T;

16. consume is found in T, link it to
T;

17. petrol is found in T, link it to
T;

1 1 1 1

1 1

18. creat other label for D2; (The first number
means D2, the second number means this
branch starts from the first feature word)

h i

j k

Fig. 4 The details constructing suffix tree branch starting from the first feature

Experiment and Evaluation

 Data Sets. In order to get a natural response, we collect experimental data set from Open
Directory Project Web – DMOZ [9]. Every website collected in DMOZ has a short introduction,
which is very similar to search results’ snippet. What’s more, DMOZ is the largest, most
comprehensive human-edited directory of the Web. It is constructed and maintained by a vast,
global community of volunteer editors [10]. For this reason, the classes provided by DMOZ are
authentic and objective. Altogether we collect nine data sets. The details of these data sets are
showed in Table 1.

71

Table 1 Data sets for details

Data Set Totality Classes (number)
3a 102 shirt (35);swimwear(33); music (34)
3b 73 photography(25);tobacco(30); auto loans(18)
3c 114 music(34);corns(49);Disney(31)
3d 111 drinking games(43);holiday list(33);poultry(35)
3e 86 baseball(20);golf(34);table tennis(32)
3f 135 action movie(14);outdoor organization(102);pizza cooking(19)
4a 136 diamond(37);tobacco(35);photography(33);Disney(31)
4b 88 computer algorithm(25);digital video (24);movie award(23);

Biology Genetics(16)
4c 84 action movie(14);newspaper

publisher(26);poultry(35);weather(9)
 Experiment and Result. We evaluate WNSTC’s performance in two ways: measuring clustering

accuracy and counting nodes number. There are many evaluation methods for measuring clustering
accuracy, such as recall, precision, F-measure, etc. In this paper, we use the classic F-measure to
measuring the clustering accuracy of WNSTC. The more accurate clustering is, the higher
F-measure value is. Furthermore, we compare WNSTC with STC to demonstrate the advantages of
our proposal. Both WNSTC and STC are used to make clustering on every data set in section 4.2.
And, the comparison experiments’ result is shown in Fig. 5 to Fig. 8.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3a 3b 3c 3d 3e 3f 4a 4b 4c

WNSTC

STC

Fig. 5 The F-measure Values of WNSTC and STC

78.00%

79.00%

80.00%

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

WNSTC

STC

Fig. 6 The Average F-measure Values of WNSTC and STC
72

0

1000

2000

3000

4000

5000

6000

3a 3b 3c 3d 3e 3f 4a 4b 4c

STC

WNSTC

Fig. 7 The Number of Feature Words Comparison

500

1000

1500

2000

2500

3000

3a 3b 3c 3d 3e 3f 4a 4b 4c

WNSTC

STC

Fig. 8 The Number of Suffix Tree Nodes Comparison
 From Fig. 5 the F-measure value of WNSTC is higher than STC or very close to STC. There

are six experiment results show that WNSTC has higher F-measure value than STC. Because the
dateset itself would have an effect on clustering performance, we calculate the average F-measure
for WNSTC and STC. Fig. 6 shows that WNSTC’s average performance is always better than STC.

From Fig. 7 and Fig. 8 the feature words and suffix tree nodes of WNSTC are always less than
STC. The decreasing percentage we calculated is nearly 10 percent on average. As you know, less
suffix tree nodes and less feature words are both good to save storage and improve traversal speed.

Conclusions

 This paper has presented a new suffix tree clustering algorithm based on WordNet – WNSTC.
WNSTC can recognize the synonyms of snippets’ feature word by WordNet and integrate them into
suffix tree by expanding the suffix tree nodes. Experimental results show that WNSTC has better
clustering quality and smaller suffix tree size than original STC algorithm. However, there are still
some points unconsidered in WNSTC which need for further study, such as extracting clustering
labels on semantic level and recognizing more semantic information for search results.

References

[1] Krzysztof Strzalka,Aleksander Zgrzywa : Semantic Search Results Clustering. ICCCI 2010, pp.
145–151.

73

[2] Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, Dawid Weiss: A Survey of Web
Clustering Engines, ACM Computing Surveys (CSUR), v.41 n.3, p.1-38, July 2009.

[3] Zamir, O., Etzioni, O.: Web document clustering: a feasibility demonstration. In: SIGIR 1998,
pp. 46-54(1998).

[4] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In
KDD Workshop on Text Mining, 2000.

[5] Dell, Z., Yisheng, D.: Semantic, Hierarchical, Online Clustering of Web Search Results. In:
APWeb 2004, pp.69-78 (2004).

[6] Stanislaw, O., Jerzy, S., A concept-driven algorithm for clustering search results. In: Intelligent
Systems, IEEE, Vol. 20, No. 3. , pp. 48-54 (2005).

[7] M.W. Berry, S.T. Dumais, and G.W. O’Brien,Using Linear Algebra for Intelligent Information
Retrieval, tech. report UT-CS-94-270,Univ. of Tennessee, 1994.

[8] WordNet, http://wordnet.princeton.edu/.

[9] NAN YANG, YUE LIU, GANG YANG. Clustering of web search results based on combination
of links and in-snippets[C]. 2011 Eighth Web Information Systems and Applications Conference.
2011.108-113.

[10] Open Directory Project Web, http://www.dmoz.org/docs/en/about.html.

Acknowledgment

This research was supported by National 863 Program (No. 2011AA01A205), P. R. China.

74

