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Abstract. High space cost and ignoring synonyms in STC (Suffix Tree Clustering algorithm) are 
challenges for search results clustering. Aiming at these challenges, this paper proposes a 
WordNet-based suffix tree clustering algorithm (WNSTC). WNSTC can construct a suffix tree 
containing WordNet synsets. When constructing the suffix tree, WNSTC looks every feature word 
up in WordNet database. If the feature word is included in WordNet, its synsets will be added into 
corresponding node. The node in the suffix tree may be a set of words (strings) with similar 
meaning instead of a single word (string). Experiments executed on data sets show that WNSTC has 
better clustering quality and smaller suffix tree size than original STC algorithm. 

Introduction 

Search engines are considered as the most common tool to retrieve information from the Internet. 
But the search results returned by search engines usually come with huge quantity and a long list. 
What’s more, the search results will be very diverse when users’ search term is not correct or 
ambiguous. It’s time-consuming and arduous to find the most relevant search result [1]. Search 
results clustering is an efficient method to make the search results easier to scan. It aims to cluster 
search results into meaningful groups and provide a navigator to easily access the satisfying results 
for users [2]. Search results clustering works on snippets (a summary of the search results), which is 
different from document clustering (working on long text).STC (Suffix Tree Clustering) algorithm 
is a classic search results clustering algorithm, which was proposed by Zamir and Etzionit in 1998. 
It is an incremental and liner time (in the document collection size) algorithm, which creates 
clusters based on phases shared between documents [3]. STC doesn’t use VSM (Vector Space 
Model) to express text as bag-of-words, which is different from other clustering algorithms, such as 
K-means [4]. Zamir and Etzionit showed that STC is faster and more flexible than other standard 
snippets clustering methods.  

However, STC is still not perfect. It ignores the semantic information in snippets and in 
high-cost of space when the number of snippets is huge. There are two classic improved algorithms 
based on STC, SHOC [5] and Lingo [6]. SHOC uses singular value decomposition (SVD) to 
discover the semantic information in term-document matrix generated by VSM. Lingo uses 
common phase discovery and LSI (Latent Semantic Indexing) [7] to group snippets into meaningful 
clusters. Unfortunately, because their processes are still based on VSM, the semantic relationship 
between the words is not recognized explicitly. What’s more, they are high-dimensional when 
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applied to large numbers of snippets, which goes against the high space cost of STC. 
In this paper, a WordNet-based suffix tree clustering algorithm is proposed, which is called 

WNSTC. WordNet (“WN” for short) - a large lexical database of English, is used in WNSTC to 
analyze the synonyms information in snippets explicitly [8]. In the feature extraction stage of 
WNSTC, only the nouns and verbs in snippets are extracted because they have great thematic 
significance in linguistics. This method is good for feature dimension reduction. When constructing 
the suffix tree, every feature word is retrieved from WordNet to get its synsets and we record them 
in the corresponding node. In other words, a few of conventional suffix tree nodes with different 
forms, which have the same meaning, will be one node in WNSTC. The effectiveness of WNSTC is 
proved by experiments in section 3.  
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Fig. 1 The conventional suffix tree constructed by STC 

 
Fig. 2 The new suffix tree constructed by WNSTC 

WordNet-Based Suffix Tree Clustering Algorithm 

   The Suffix Tree of WNSTC. WNSTC focuses on improving the clustering quality by integrating 
WordNet’s synsets on the semantic level. For this reason, the suffix tree of WNSTC is designed to 
highlight the similar meaning expressed by synonyms for the string. Starting from this idea, we add 
the feature words’ synsets to the suffix tree, which are retrieved from WordNet database. Here is an 
example. Supposing we have a feature word – car, its synsets in WordNet are listed below: 

a) car, auto, automobile, machine, motorcar 
b) car, railcar, railway car, railroad car 
c) cable car, car 
d) car, gondola 
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e) car, elevator car 
The first synset is the most common meaning of “car”. In order to reduce the complexity of 

nodes, we just choose the first synset to add to the node standing for “car”. Now, the node in 
WNSTC’s suffix tree will not indicate a word or a string with the same characters, but a similar 
meaning expressed by a set of synonymous words or strings, like {car, auto, automobile, machine, 
motorcar} . But, we still use “car” as the main word for this node. 

 
Fig. 3 The suffix tree construction flow of WNSTC 

There is another example to show the difference between WNSTC’s suffix tree and STC’s suffix 
tree. Suppose we have two documents: D1 = {car, consume, gasoline}, D2 = {auto, consume, 
petrol}. Fig. 1 is the conventional suffix tree of STC algorithm. It’s obvious that this suffix tree is 
sparse and the synonymous words like “car” and “auto” are not recognized. Fig. 2 is the new suffix 
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tree constructed by the method of WNSTC. We can see that the node in Fig. 2 is not a single word 
any more. Every word contained in WordNet database is combined with its synsets and all these are 
recorded in corresponding node (within the dotted box). There is curious question: where are “auto” 
and “petrol”? When constructing the suffix tree, “auto” is found in “car, auto, automobile, machine, 
motorcar”, called node A, so new node for “auto” is no longer created and we link “auto” to node A. 
The suffix tree in Fig. 2 is compact obviously. We can perceive the semantic advantages of WNSTC 
to some extent. 

The most important difference between WNSTC and STC is reflected when constructing the 
suffix tree. To keep things simple, we show the suffix tree construction method of WNSTC for one 
snippet in Fig. 3. 

WNSTC Algorithm. WNSTC algorithm has three main steps: preprocessing, constructing suffix 
tree and identifying clusters. The following sections explain these steps one by one. 

Step1: preprocessing. Preprocessing is aim to extract the words or strings from snippets, which 
have great thematic significance. In linguistics, function words do not have real meaning and cannot 
act as parts of the sentence generally. Notional words, such as nouns, verbs and adjectives, carry an 
explicit meaning. And nouns and verbs are the majority of notional words. Consequently, in 
preprocessing phase of WNSTC algorithm, nouns and verbs are extracted from every snippet to 
constitute a feature word collection. It’s in favor of reducing the nodes number of suffix tree 
constructed in next step. For example, given a snippet “gasoline is consumed by car”, it will be 
{gasoline, consumed, car} after preprocessing. 

Step2: constructing suffix tree. After preprocessing, all snippets are in form of feature words 
collection. We call the suffix tree construction method of WNSTC described in 2.1 to complete this 
phase. In order to understand more about the suffix tree construction method of WNSTC, we give 
an example to show the details constructing suffix tree branch starting from the first feature. We still 
use the two snippets in section 2.1: D1 = {car, consume, gasoline}, D2 = {auto, consume, petrol}. 
Consider the diagram a-k in Fig. 4.  

Step3: identifying clusters. Like STC algorithm, there are two parts: identifying base clusters and 
combining base clusters[3], when identifying clusters. From step 2, the labels under leaf nodes 
mean a set of documents having common phrase. So, each leaf node which has labels containing 
more than two documents is a base cluster. And the phrase formed by all nodes’ main words on this 
branch is the topic of this base cluster exactly.  

After identifying base clusters, the snippets are grouped to base clusters collections, like {B1, B2, 
B3, …… , Bn}. If the similarity between two base clusters is 1, they will be combined to one cluster. 
We use the similarity measure between base clusters in [3]. Given two base clusters Bm , Bn and a 
parameter α, we define that the similarity between Bm and Bn is 1, if Eq. 1 is satisfied. If not, the 
similarity between Bm and Bn is 0. 
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                                           (1) 

In Eq. 1, | Bm | and | Bn | represent the size of Bm and Bn, respectively. | Bm∩Bn | represents the 
number of common documents contained in Bm and Bn. Specially, the pre-defined parameter in our 
method is 0.6, because our experiments using α=0.6 have relatively good performance usually. 
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Fig. 4 The details constructing suffix tree branch starting from the first feature 

Experiment and Evaluation 

   Data Sets. In order to get a natural response, we collect experimental data set from Open 
Directory Project Web – DMOZ [9]. Every website collected in DMOZ has a short introduction, 
which is very similar to search results’ snippet. What’s more, DMOZ is the largest, most 
comprehensive human-edited directory of the Web. It is constructed and maintained by a vast, 
global community of volunteer editors [10]. For this reason, the classes provided by DMOZ are 
authentic and objective. Altogether we collect nine data sets. The details of these data sets are 
showed in Table 1. 
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Table 1 Data sets for details 

Data Set Totality Classes (number) 
3a 102 shirt (35);swimwear(33); music (34) 
3b 73 photography(25);tobacco(30); auto loans(18) 
3c 114 music(34);corns(49);Disney(31) 
3d 111 drinking games(43);holiday list(33);poultry(35) 
3e 86 baseball(20);golf(34);table tennis(32) 
3f 135 action movie(14);outdoor organization(102);pizza cooking(19) 
4a 136 diamond(37);tobacco(35);photography(33);Disney(31) 
4b 88 computer algorithm(25);digital video (24);movie award(23); 

Biology Genetics(16) 
4c 84 action movie(14);newspaper 

publisher(26);poultry(35);weather(9) 
 Experiment and Result. We evaluate WNSTC’s performance in two ways: measuring clustering 

accuracy and counting nodes number. There are many evaluation methods for measuring clustering 
accuracy, such as recall, precision, F-measure, etc. In this paper, we use the classic F-measure to 
measuring the clustering accuracy of WNSTC. The more accurate clustering is, the higher 
F-measure value is. Furthermore, we compare WNSTC with STC to demonstrate the advantages of 
our proposal. Both WNSTC and STC are used to make clustering on every data set in section 4.2. 
And, the comparison experiments’ result is shown in Fig. 5 to Fig. 8.  
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Fig. 5 The F-measure Values of WNSTC and STC 
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Fig. 6 The Average F-measure Values of WNSTC and STC 
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Fig. 7 The Number of Feature Words Comparison 
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Fig. 8 The Number of Suffix Tree Nodes Comparison 
 From Fig. 5 the F-measure value of WNSTC is higher than STC or very close to STC. There 

are six experiment results show that WNSTC has higher F-measure value than STC. Because the 
dateset itself would have an effect on clustering performance, we calculate the average F-measure 
for WNSTC and STC. Fig. 6 shows that WNSTC’s average performance is always better than STC. 

From Fig. 7 and Fig. 8 the feature words and suffix tree nodes of WNSTC are always less than 
STC. The decreasing percentage we calculated is nearly 10 percent on average. As you know, less 
suffix tree nodes and less feature words are both good to save storage and improve traversal speed. 

Conclusions 

   This paper has presented a new suffix tree clustering algorithm based on WordNet – WNSTC. 
WNSTC can recognize the synonyms of snippets’ feature word by WordNet and integrate them into 
suffix tree by expanding the suffix tree nodes. Experimental results show that WNSTC has better 
clustering quality and smaller suffix tree size than original STC algorithm. However, there are still 
some points unconsidered in WNSTC which need for further study, such as extracting clustering 
labels on semantic level and recognizing more semantic information for search results. 
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