On New Galilei- and Poincare-Invariant Nonlinear Equations for Electromagnetic Field

Wilhelm FUSHCHYCH and Ivan TSYFRA
Institute of Mathematics of the National Ukrainian Academy of Sciences, Tereshchenkivska Street 3, 252004 Kyiv, Ukraina

Abstract

Nonlinear systems of differential equations for \vec{E} and \vec{H} which are compatible with the Galilei relativity principle are proposed. It is proved that the Schrödinger equation together with the nonlinear equation of hydrodynamic type for \vec{E} and \vec{H} are invariant with respect to the Galilei algebra. New Poincare-invariant equations for electromagnetic field are constructed.

1. It is usually accepted to think that the classical Galilei relativity principle does not take place in electrodynamics. This postulate was accepted more then 100 years ago and it is even difficult to state the following problems:
2. Do systems of differential equations for vector-functions (\vec{E}, \vec{H}) or (\vec{D}, \vec{B}) which are invariant under the Galilei algebra exist?
3. Is it possible to construct a successive Galilei-invariant electrodynamics?
4. Do the new relativity principles different from Galilei or Poincare-Lorentz-Einstein ones exist?

The positive answers to this questions are given in $[1-6]$. But from the physical and mathematical points of view this fundamental problems still require detailed investigations. In the paper we continue these investigations. Further we give theorems on local symmetries of the following systems of differential equations

$$
\begin{align*}
& \frac{\partial \vec{D}}{\partial t}=\operatorname{rot} \vec{H}, \quad \frac{\partial \vec{B}}{\partial t}=-\operatorname{rot} \vec{E}, \tag{1}\\
& \operatorname{div} \vec{D}=0, \quad \operatorname{div} \vec{B}=0 ; \\
& a_{1} \vec{D}+a_{2} \square \vec{D}=F_{1}\left(\vec{E}^{2}, \vec{B}^{2}, \vec{B} \vec{E}\right) \vec{E}+F_{2}\left(\vec{E}^{2}, \vec{B}^{2}, \vec{B} \vec{E}\right) \vec{B}, \\
& b_{1} \vec{H}+b_{2} \square \vec{H}=R_{1}\left(\vec{E}^{2}, \vec{B}^{2}, \vec{B} \vec{E}\right) \vec{E}+R_{2}\left(\vec{E}^{2}, \vec{B}^{2}, \vec{B} \vec{E}\right) \vec{B} ; \tag{2}\\
& \frac{\partial \vec{E}}{\partial t}=\operatorname{rot} \vec{H}+N_{1} \vec{\nabla} P_{1}, \quad \frac{\partial \vec{H}}{\partial t}=-\operatorname{rot} \vec{E}+N_{2} \vec{\nabla} P_{2}, \tag{3}\\
& \operatorname{div} \vec{E}=N_{1} \frac{\partial P_{1}}{\partial t}, \quad \operatorname{div} \vec{H}=N_{2} \frac{\partial P_{2}}{\partial t} \tag{4}
\end{align*}
$$

where $N_{1}, N_{2}, P_{1}, P_{2}$ are functions of $w_{1}=\vec{E}^{2}-\vec{H}^{2}, w_{2}=\vec{E} \vec{H}$;

$$
\begin{align*}
& \frac{\partial E_{k}}{\partial t}+H_{l} \frac{\partial E_{k}}{\partial x_{l}}=\frac{\partial F_{1}(\pm \Psi)}{\partial x_{k}} \tag{5}\\
& \frac{\partial H_{k}}{\partial t}+ E_{l} \frac{\partial H_{k}}{\partial x_{l}}=\frac{\partial F_{2}(\pm \Psi)}{\partial x_{k}}, \quad k=1,2,3 \\
& i \frac{\partial \Psi}{\partial t}=\left\{-\frac{1}{2 m}\left[\partial_{l}-i e \lambda(\vec{E}-\vec{H})\left(\frac{\partial \vec{E}}{\partial x_{l}}-\frac{\partial \vec{H}}{\partial x_{l}}\right)\right]^{2}+\right. \tag{6}\\
&\left.e \lambda(\vec{E}-\vec{H})\left(\frac{\partial \vec{E}}{\partial t}-\frac{\partial \vec{H}}{\partial t}\right)\right\} \Psi-\frac{e}{2 m} \vec{\sigma}(\vec{E}-\vec{H}) \Psi,
\end{align*}
$$

$\vec{\sigma}$ are the Pauli matrices, Ψ is a wave function;

$$
\begin{align*}
i \frac{\partial \Psi}{\partial t}= & \left\{-\frac{1}{2 m}\left[\partial_{l}-i e\left(\lambda_{1} \frac{E_{l}}{\sqrt{\vec{E}^{2}}}+\lambda_{2} \frac{H_{l}}{\sqrt{\vec{H}^{2}}}\right)\right]^{2}+\right. \tag{7}\\
& \left.e \lambda_{1}\left(\frac{\lambda_{1}}{\sqrt{\vec{E}^{2}}}+\frac{\lambda_{2}}{\sqrt{\vec{H}^{2}}}\right)\right\} \Psi-\frac{e}{2 m} \beta\left[\vec{\sigma}\left(\lambda_{3} \frac{\vec{E}}{\sqrt{\vec{E}^{2}}}+\lambda_{4} \frac{\vec{H}}{\sqrt{\vec{H}^{2}}}\right)\right] \Psi
\end{align*}
$$

where $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \beta$ are functions of $\vec{E}^{2}, \vec{H}^{2}, \vec{E} \vec{H}$.

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v_{l} \frac{\partial}{\partial x_{l}}\right) m\left(\vec{v}^{2}\right) \vec{v}=a_{1}(\vec{E}+\vec{v} \times H)+a_{2}(\vec{H}-\vec{v} \times E), \tag{8}
\end{equation*}
$$

where $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right), a_{1}, a_{2}$ are smooth functions of $\vec{v}^{2}, \vec{E}^{2}, \vec{H}^{2}, \vec{v} \vec{E}, \vec{v} \vec{H}, \vec{E}(\vec{v} \times \vec{H})$, $\vec{H}(\vec{v} \times \vec{E})$.

Equation (8) can be considered as a hydrodynamics generalization of the classical Newton-Lorentz equation of motion.
2. To study symmetries of the above equations (1)-(4), we use in principle the standard Lie scheme and therefore all statements are given without proofs. But it should be noted that the proofs of theorems require nonstandard steps and long cumbersome calculations which are omitted here.

As proved in [9], system (1) of undetermined equations for $\vec{D}, \vec{B}, \vec{E}, \vec{H}$ is invariant with respect to the infinite-dimensional algebra which contains the Poincare, Galilei and conformal algebras as subalgebras. This fact allows us to impose some conditions on functional dependence of $\vec{D}, \vec{B}, \vec{E}, \vec{H}$ and to select equations invariant under the Galilei algebra $A G(1,3)$.
Theorem 1 System (1) is invariant with respect to the Galilei algebra $A G(1,3)$ with basis operators

$$
\begin{aligned}
& P_{0}=\partial_{t}=\frac{\partial}{\partial t}, \quad P_{a}=\partial_{x_{a}}=\frac{\partial}{\partial_{x_{a}}}, \\
& J_{a b}=x_{a} \partial_{x_{b}}-x_{b} \partial_{x_{a}}+E_{a} \partial_{E_{b}}-E_{b} \partial_{E_{a}}+H_{a} \partial_{H_{b}}-H_{b} \partial_{H_{a}}+ \\
& D_{a} \partial_{D_{b}}-D_{b} \partial_{D_{a}}+B_{a} \partial_{B_{b}}-B_{b} \partial_{B_{a}}, \\
& G_{a}=t \partial_{x_{a}}+\varepsilon_{a b c}\left(B_{b} \partial_{E_{c}}-D_{b} \partial_{H_{c}}\right)
\end{aligned}
$$

if

$$
\begin{equation*}
\vec{D}=N\left(\vec{B}^{2}, \vec{B} \vec{E}\right) \vec{B}, \quad \vec{H}=-N\left(\vec{B}^{2}, \vec{B} \vec{E}\right) \vec{E}+M\left(\vec{B}^{2}, \vec{B} \vec{E}\right) \vec{B}, \tag{9}
\end{equation*}
$$

where M, N are arbitrary functions of their variables.
Choosing concrete form of M and N, we obtain families of Galilei-invariant equations (1) with conditions (9). So, when $N=\vec{B} \vec{E}, M=1$, then (9) takes the form

$$
\vec{D}=\frac{(\vec{E} \vec{H})^{2}}{\left(1-\vec{E}^{2}\right)^{2}} \vec{E}+\frac{\vec{E} \vec{H}}{1-\vec{E}^{2}} \vec{H}, \quad \vec{B}=\frac{\vec{E} \vec{H}}{1-\vec{E}^{2}} \vec{E}+\vec{H}
$$

Corollary 1 The transformation rule for \vec{E} and \vec{H} has the form

$$
\vec{E} \rightarrow \vec{E}^{\prime}=\vec{E}+\vec{u} \times \vec{B}, \quad \vec{H} \rightarrow \vec{H}^{\prime}=\vec{H}-\vec{u} \times \vec{D}, \quad \vec{D} \rightarrow \vec{D}^{\prime}=\vec{D}, \quad \vec{B} \rightarrow \vec{B}^{\prime}=\vec{B}
$$

under Galilei transformations, where \vec{u} is a velocity of an inertial system with respect to another inertial system.

Theorem 2 System (1), (2) is invariant with respect to the Poincare algebra AP $(1,3)$ with basis elements

$$
\begin{aligned}
& P_{0}=\partial_{x_{0}}, \quad P_{a}=\partial_{x_{a}}, \\
& J_{a b}=x_{a} \partial_{x_{b}}-x_{b} \partial_{x_{a}}+E_{a} \partial_{E_{b}}-E_{b} \partial_{E_{a}}+H_{a} \partial_{H_{b}}-H_{b} \partial_{H_{a}}+ \\
& \\
& \quad D_{a} \partial_{D_{b}}-D_{b} \partial_{D_{a}}+B_{a} \partial_{B_{b}}-B_{b} \partial_{B_{a}}, \\
& J_{0 a}=x_{0} \partial_{x_{a}}+x_{a} \partial_{x_{0}}+\varepsilon_{a b c}\left(D_{b} \partial_{H_{c}}+E_{b} \partial_{B_{c}}-H_{b} \partial_{D_{c}}-B_{b} \partial_{E_{c}}\right)
\end{aligned}
$$

if and only if

$$
\begin{aligned}
& F_{1}=R_{2}=M\left(\vec{B}^{2}-\vec{E}^{2}, \vec{B} \vec{E}\right), \quad F_{2}=-R_{1}=N\left(\vec{B}^{2}-\vec{E}^{2}, \vec{B} \vec{E}\right), \\
& a_{1}=b_{1}=a\left(\vec{B}^{2}-\vec{E}^{2}, \vec{B} \vec{E}\right), \quad a_{2}=b_{2}=b\left(\vec{B}^{2}-\vec{E}^{2}, \vec{B} \vec{E}\right) .
\end{aligned}
$$

Theorem 3 System (3) is invariant with respect to the Poincare algebra AP(1,3) with basis elements

$$
\begin{aligned}
& P_{0}=\partial_{t}, \quad P_{a}=\partial_{x_{a}}, \\
& J_{a b}=x_{a} \partial_{x_{b}}-x_{b} \partial_{x_{a}}+E_{a} \partial_{E_{b}}-E_{b} \partial_{E_{a}}+H_{a} \partial_{H_{b}}-H_{b} \partial_{H_{a}}, \\
& J_{0 a}=t \partial_{x_{a}}+\varepsilon_{a b c}\left(E_{b} \partial_{H_{c}}-H_{b} \partial_{E_{c}}\right)
\end{aligned}
$$

if and only if \vec{E} and \vec{H} satisfy system (4).
System (5) was proposed in [4] and its symmetry has been studied in [10], when $F_{1}=0, F_{2}=0$.

Corollary 2 System (5), (6) can be considered as a system of equations describing the interaction of electromagnetic field with a Schrödinger field of $\operatorname{spin} s=1 / 2$.

Theorem 4 System (5), (6) is invariant with respect to the Galilei algebra $A G(1,3)$ whose basis elements are given by formulas

$$
\begin{align*}
& P_{0}=\partial_{t}, \quad P_{a}=\partial_{x_{a}} \\
& J_{a b}=x_{a} \partial_{x_{b}}-x_{b} \partial_{x_{a}}+E_{a} \partial_{E_{b}}-E_{b} \partial_{E_{a}}+H_{a} \partial_{H_{b}}-H_{b} \partial_{H_{a}}+\frac{1}{4}\left(\left[\sigma_{a}, \sigma_{b}\right] \Psi\right)_{n} \partial_{\Psi_{n}} \tag{10}\\
& G_{a}
\end{align*}=t \partial_{x_{a}}+\partial_{E_{a}}+\partial_{H_{a}}+i m x_{a} \Psi_{k} \partial_{\Psi_{k}} . ~ l
$$

if λ is a function of $W=(\vec{E}-\vec{H})^{2}$.
Theorem 5 Equation (7) is invariant with respect to the Galilei algebra $A G(1,3)$ with the basis elements $P_{\mu}, J_{a b}$ (10) and

$$
\begin{equation*}
G_{a}=t \partial_{x_{a}}-E_{a} E_{k} \partial_{E_{k}}-H_{a} H_{k} \partial_{H_{k}}+i m x_{a} \Psi_{k} \partial_{\Psi_{k}} \tag{11}
\end{equation*}
$$

if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \beta$ are functions of $W=\frac{\vec{E}^{2} \vec{H}^{2}}{(\vec{E} \vec{H})^{2}}$.
Corollary 3 Operators G_{a} (11) give the nonlinear representation of the Galilei algebra. Thus, one can consider system (5), (7) as a basis of the classical Galilei-invariant electrodynamics. The fields \vec{E}, \vec{H}, Ψ are transformed in the following way

$$
\begin{aligned}
\vec{E} & \rightarrow \vec{E}^{\prime}=\frac{\vec{E}}{1+\theta_{a} E_{a}} \\
\vec{H} & \rightarrow \vec{H}^{\prime}=\frac{\vec{H}}{1+\theta_{a} H_{a}} \quad \text { no sum over } a \\
\Psi & \rightarrow \Psi^{\prime}
\end{aligned}
$$

under transition from one inertial system to another, θ_{a} is group parameter.
Theorem 6 System (8) is invariant with respect to the Poincare algebra $A P(1,3)$ with basis elements

$$
\begin{align*}
& P_{0}=\partial_{t}, \quad P_{a}=\partial_{x_{a}}, \\
& J_{a b}=x_{a} \partial_{x_{b}}-x_{b} \partial_{x_{a}}+E_{a} \partial_{E_{b}}-E_{b} \partial_{E_{a}}+H_{a} \partial_{H_{b}}-H_{b} \partial_{H_{a}}+v_{a} \partial_{v_{b}}-v_{b} \partial_{v_{a}}, \tag{12}\\
& J_{0 a}=t \partial_{x_{a}}+\varepsilon_{a b c}\left(E_{b} \partial_{H_{c}}-H_{b} \partial_{E_{c}}\right)+\partial_{v_{a}}-v_{a}\left(v_{k} \partial_{v_{k}}\right)
\end{align*}
$$

if

$$
m\left(\vec{v}^{2}\right)=\frac{m_{0}}{\sqrt{1-\vec{v}^{2}}}
$$

and a_{1}, a_{2} are functions of W_{1}, W_{2}, W_{3}, where $W_{1}=\vec{E} \vec{H}, W_{2}=\vec{E}^{2}-\vec{H}^{2}, W_{3}=$ $\frac{1}{1-v^{2}}\left[(\vec{v} \vec{E})^{2}+(\vec{v} \vec{H})^{2}-\vec{v}^{2} \vec{H}^{2}-\vec{E}^{2}-2 \vec{E}(\vec{v} \times \vec{H})\right]$.

Corollary 4 From this theorem we obtain the dependence of a particle mass from \vec{v}^{2}, as a consequence of Poincare-invariance of system (8).

Theorem 7 System (8) is invariant with respect to the Galilei algebra $A G(1,3)$ with P_{μ}, $J_{a b}$ from (12) and

$$
G_{a}=t \partial_{x_{a}}+\partial_{v_{a}}
$$

only if $m=m_{0}=$ const, $a_{1}=a_{2}=0$.
Corollary 5 Operators (12) give a linear representation for \vec{E} and \vec{H} [8] and a nonlinear representation for velocity \vec{v}. The explicit form of transformations for \vec{v} generated by G_{1} is

$$
v_{1} \rightarrow v_{1}^{\prime}=\frac{v_{1}+\theta_{1}}{1+\theta_{1} v_{1}}, \quad v_{2} \rightarrow v_{2}^{\prime}=\frac{v_{2}}{1+\theta_{1} v_{1}}, \quad v_{3} \rightarrow v_{3}^{\prime}=\frac{v_{3}}{1+\theta_{1} v_{1}}
$$

Remark 1 In conclusion we note that there exists the nonlinear representation of the Galilei algebra $A G(1,3)$, generated by the operators $P_{\mu}, J_{a b}$ from (12) and

$$
G_{a}^{(1)}=t \partial_{x_{a}}-E_{a} E_{k} \partial_{E_{k}}-H_{a} H_{k} \partial_{H_{k}}-v_{a} v_{k} \partial_{v_{k}}
$$

Acknowledgment

Our work was carried out under financial support from INTAS.

References

[1] Fushchych W., On additional invariance of relativistic equations of motion, Teoretich. and Matem. Fizika, 1971, V.7, N 1, 3-12.
[2] Fushchych W., On additional invariance of the Dirac and Maxwell equations, Lettere Nuovo Cimento, 1974, V.11, N 10, 508-512.
[3] Fushchych W.I., On additional invariance of the Klein-Gordon-Fock equation, Proc. Acad. Sci. of USSR, 1976, V.230, N 3, 570-573.
[4] Fushchych W.I., New nonlinear equation for electromagnetic field having the velocity different from c, Proc. Acad. Sci. of USSR, 1992, N 1, 24-27.
[5] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993, 436p.
[6] Fushchych W., Ansatz'95, J. Nonlin. Math. Phys., 1995, V.2, N3-4, 216-235.
[7] Fushchych W.I., Nikitin A.G., Symmetries of Equations of Quantum Mechanics, New York, Allerton Press Inc., 1994.
[8] Fushchych W.I. and Nikitin A.G., Symmetries of Maxwell's Equations, Dordrecht, Reidel Publ. Comp., 1987.
[9] Fushchych W. and Tsyfra I., On symmetry of nonlinear equations of electrodynamics, Teor. and Matem. Fisika, 1985, V.64, N 1, 41-50.
[10] Fushchych W., Tsyfra I. and Boyko V., Nonlinear representations for Poincare and Galilei algebras and nonlinear equations for electromagnetic fields, J. Nonlin. Math. Phys., 1994, V.1, N 2, 210-221.

