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Abstract.Abstract.Abstract.Abstract. Phoenix is an implementation of MapReduce on shared memory, aiming at supporting
parallel computing based on multi-core/multi-processor efficiently. The extremal graph is a graph
with the maximum number of edges without some given subgraphs. In this paper, by allocating the
data of tasks appropriately and setting identifiers to distinguish different tasks, a parallel algorithm is
proposed and used to construct the extremal graphs without hexagon. The experimental results show
that the average speedup is 7.0432 on 8-core CPU and the average efficiency is 88.04% for
constructing the extremal graphs of order no more than 28. Finally, three extremal graphs of order 29
without hexagon are obtained by employing the algorithm.

IntroductionIntroductionIntroductionIntroduction
We consider only finite undirected graphs without loops or multiple edges. For a graph G = (V(G),

E(G)) of order |V(G)| and size |E(G)|, V(G) denotes the set of vertices and E(G) denotes the set of
edges of G respectively. Km is the complete graph of order m, Cm is the cycle of length m. The
extremal graph is a graph with the maximum number of edges containing no given subgraphs. The
extremal graphs with small order can be constructed by an algorithm efficiently. However, the
execution time of the algorithm grows exponentially with the increase of the orders of extremal
graphs. So it seems to be difficult to solve this problem by a single-core computer, thus parallel
algorithm for constructing extremal graphs based on multi-core chips will be a new trend in the
future.

MapReduce model, which is introduced by Google Inc., was originally used in the environments
of large-scale clusters of nodes and data center, and its high-level API is also being used to develop
the data-intensive applications [1]. Phoenix is an implementation of​MapReduce on shared memory,
aiming at supporting computations in parallel based on multi-core/multi-processor efficiently. It
contains a set of C and C++ programming API and an efficient runtime system, and it is implemented
on top of P-threads [2]. In this paper, we will design a parallel algorithm based on Phoenix system to
construct extremal graphs without containing hexagons.

RelatedRelatedRelatedRelated WorksWorksWorksWorks
In this section, we will introduce the definitions and results of extremal graphs, Parallel

programming, MapReduce model and Phoenix system.
Extremal graphs....We use ex(H, n) to denote the maximum size of a H -free graph of order n. The

graph of size ex(H, n) is called an extremal graph, and let EX(H, n) denote the set of all corresponding
extremal graphs. Yang and Rowlinson [3] also gave the exact values of ex(C6, n) and corresponding
extremal graphs for n ≤ 21. Sun, Zhao and Zhang [4] determined the exact values of ex(C6, n) and the
graphs in EX(C6, n) for 22 ≤ n ≤ 26.

Parallel programming and evaluation. The shared-memory programming is one of the most
common parallel program methods. The advantages of shared-memory programming are that the
global address space provides a user-friendly programming perspective to memory, and data sharing
between tasks is fast and uniform. The Phoenix, which is used in this paper, is a toolkit of parallel
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program development based on shared memory. It handles the complicated concurrency and locality
that make parallel programming difficult [2].

For parallel algorithms on multiple processors, how to measure their performance is an important
issue in parallel computing. The speedup Sp and parallel efficiency Ep defined in following formulas
are two common evaluating standards. Hence, we will use them to evaluate our parallel algorithm.

Sp = T1 / Tp (1)

Ep = Sp / p (2)

In the formulas, p is the number of processors, T1 is the execution time of the sequential algorithm,
and Tp the execution time of the parallel algorithm with p processors.

MapReduce.... The main operations of MapReduce are Map and Reduce methods. The Map takes as
input a single <key, value> pair, and produces as output any number of new <key, value> pairs. It is
crucial that the map operation is stateless, that is, it operates on one pair at a time. The Reduce takes
all of the values associated with a single key, and outputs a multiset of <key, value> pairs with the
same key [5]. The distributed system Hadoop is developed by Apache software foundation [6], which
is a common open source implementation of MapReduce.

Phoenix system.... Phoenix is an implementation of​ MapReduce for shared memory. The data
structure used to communicate basic function information and buffer allocation between the user code
and runtime is of type scheduler_args_t, whose fields are summarized in Table 1. The basic fields
provide pointers to input/output data buffers and the user-provided functions. The remaining fields
are optional, used to control scheduling decisions by the runtime.

Table 1 The scheduler_args_t data structure type
Basic Fields

Splitter Pointer to Splitter function
Map Pointer to Map function
Reduce Pointer to Reduce function

Optional Fields for Performance Tuning
Unit_size Pairs processed per Map/Reduce task
L1_cache_size L1 data cache size in bytes

The runtime system is controlled by the scheduler, which is initiated by user code. The scheduler
creates and manages the threads that run all Map and Reduce tasks. It also manages the buffers used
for task communication. The programmer provides the scheduler with all the required data and
function pointers through the scheduler_args_t structure. After initialization, the scheduler
determines the number of cores used for this computation. Each core spawns a worker thread that is
dynamically assigned some numbers of Map and Reduce tasks [2].

AlgorithmsAlgorithmsAlgorithmsAlgorithms
In this section we will describe the algorithm for constructing extremal graphs without hexagons

and designing a parallel algorithm based on the MapReduce model.
Parallel Algorithm FCG_Phoenix.... Let Sn(C6) denote the set of C6–free graphs of order n. For a

graph G, if C6⊈ G, C6 ⊆ G + e for any e∉E(G), we call G a Critical Graph. Let S*n(C6) denote the set
of critical graphs with order n not containing C6, and S*n(C6, ln) denote the subset of S*n(C6) in which
the size of each graph is no less than ln. In [4], a sequential algorithm FCG for constructing the graphs
in S*n(C6, ln) was descripted, we do not repeat it due to lack of space.

The parallel algorithm called FCG_Phoenix is shown in Fig. 1, where the value of lN needs to be
set in advance, N is the maximum order of extremal graphs for constructing. The other values of ln(6
≤ n < N) would be calculated by the Eq. 3, the proof of Eq. 3 is in [4]. In addition, the isomorphism
graphs would be removed by the algorithm employed in [4] during the construction.

ln = ln+1 – ⎣2× ln+1/(n + 1)⎦ (3)
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1. S5*(C6, l5) = {K5}; n = 6;
2. while (S*5(C6, l5) ≠ Ø) and (n ≤ N) do
3. S*n(C6, ln) = Ø; S'n(C6, ln) = Ø;
4. for every F∈ S*n-1(C6, ln-1) do
5. S'n(C6, ln) = S'n(C6, ln)∪{F': F'= F∪{v0}};
6. endfor
7. Initialize task_data; unit_size; cache_size;
8. divide S'n(C6, ln) into k subsets S'n, i(C6, ln) (1≤ i ≤k)
9. worker begin
10. Map task i begin (1≤ i≤ k):
11. read gni, mapid;
12. while S'n, i(C6, ln) ≠ Ø do
13. for every G∈ S'n, i(C6, ln) do
14. if (C6⊆ G)
15. for every vivj∈ C6 (1 ≤ i < j ≤ n − 1) do
16. G*= G − vivj; //delete edge
17. endfor
18. else
19. if G is a critical graph and |E(G)| >= ln

20. S*n, i(C6, ln) = S*n, i(C6, ln)∪ {G*};
21. endif

22. for every v0vi∈ E(
___

G) (1 ≤ i ≤ n − 1) do
23. G*= G + v0vi; //add edge
24. endfor
25. endif
26. endfor
27. endwhile
28. Map task i end
29. Reduce task begin:
30. S*n(C6, ln) = S*n, 1(C6, ln)∪...∪S*n, k(C6, ln);
31. write gni , mapid;
32. Reduce task end
33. worker end
34. n++;
35. endwhile

Fig. 1 The algorithm FCG_Phoenix

In the algorithm FCG_Phoenix based on MapReduce, a worker of Phoenix contains k Map tasks
and one reduce task. As described in [4], the graphs set S*n(C6, ln) are constructed from the graphs in
S*n-1(C6, ln-1) by adding a vertex v0 to them. We describe the parallel algorithm in detail as follows.
Initially, n = 6 and S*5(C6, l5) = {K5}. First, a set of some graphs is initialized, and the variables
task_data, unit_size, and cache_size are initialized by Phoenix runtime system properly. Let gni

denote the graph number processed by Map i, 1 ≤ i ≤ k. Then the graphs of S*n-1(C6, ln-1) are divided
into k parts such that gn1 = gn2 = ... = gnk-1 = ⎡|S*n-1(C6, ln-1)|/k⎤ and gnk = ⎡|S*n-1(C6, ln-1)|/k⎤ − k×gn1.
At line 11, each Map gets the graph number gni according to its mapid, and then constructs the critical
graphs by the processing called deleting edges and adding edges as shown between line 12 and line
27, which are similar to FCG. The subset of critical graphs is generated by Map i after executing the
above while-loop, we denote it by S*n,i(C6, ln). Note that the subset of graphs is divided into two parts
and stored in the memory and storage respectively if the capacity of the required memory is exceeded.
The Reduce merges the subsets S*n,1(C6, ln) S*n,2(C6, ln)… S*n,k(C6, ln) into S*n(C6, ln) (line 30), in
which the isomorphism graphs are removed, and thus the graphs with the maximal size of S*n (C6, ln)
are the ones in EX(C6, n). In addition, Reduce needs to write mapid and gni to a file for constructing
S*n+1(C6, ln).

In order to make use of the MapReduce model and enable the parallel algorithm to run efficiently,
we take some measures to realize FCG_Phoenix as follows.

(1) Design of the key-value pairs. MapReduce is a parallel programming model for a vast amount
of data based on key-value pairs. Therefore, it is critical to properly design key-value pairs in an
algorithm. Similar to [4], each key of key-value pairs is given a same specific key which does not
have a real meaning, and each value is a decimal number transformed from the adjacency matrix of a
graph. As an improvement, the argument that Map passes to Reduce is a pointer instead of value in
our algorithm. The pointer points to a two-dimensional array which the first dimension is mapid, and
the second dimension is the key of key-value pairs. Because the isomorphism graphs are removed in
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each Map, we only need to remove the isomorphism graphs between different Maps in Reduce.
Hence the above improvement can increase the efficiency of Reduce.

(2) The improvement of data structure map_args_t. In FCG_Phoenix, we need to distinguish
different Maps for the data distribution and computation. However, the Phoenix system has no
information of identifier of Map task. By the commutation with Yoo, one of the authors of Phoenix
[7], an identifier of each Map task is added to the fields of map_args_t. Moreover, since the graphs of
S*n+1(C6, ln) are constructed from S*n(C6, ln) in FCG_Phoenix, we need to get the exact value of |S*n(C6,
ln)| at the beginning. Hence, the number of graphs gni is added to the fields of map_args_t, where i is
the identifier of Map.

(3) Writing files and data allocation. For each Map, the results need to be written to storage if the
capacity of required memory is exceeded. However, there will exist write conflicts when the data is
simultaneously written to a same file by more than one Map tasks. To solve this problem, each Map
writes its result to a file named with its mapid, say Map i write data to file fi. The main process of
Reduce task is to remove the isomorphic graphs as follows. f1, f2,…, fk are merged to one file, say
fstorage using an external sorting algorithm. Then the data in memory is merged with fstorage to a new file
fall, which is the input file for the next while-loop (between line 2 and line 35).

In order to ensure load balance, we use the static allocation as the data allocating strategy, which is
similar to OpenMP directive statement “#pragma omp parallel for schedule (static, size)”. Assume
the critical graphs in fall are arranged in descending order of the size of graphs, and let each Map get
the continuous data from fall according to the value of cache_size, and call it method A. Note that the
larger the edge number of a graph is, the longer the execution time is. So, as an alternative, we can
assign the graphs in fall to each Map as even as possible according to the size of graphs. We call it
method B, and the file fall is pre-processed before used in this method. In order to compare the two
methods, we do an experiment for constructing extremal graphs of order no more than 26 without
hexagons, with l26 = 64. Note that the total execution time is mainly used to construct the graphs of
|S*n(C6, ln)| for 15 ≤ n ≤ 24, we show the execution time for each n in Fig. 2, respectively. The
experimental results show that the algorithm with method B is faster than that with A. Hence we use
the method B for data allocation in our algorithm.
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Fig. 2 Comparison of two methods for data allocation

ExperimentsExperimentsExperimentsExperiments
Environments. The hardware is a server with an eight-core 2.4 GHz, 12GB memory and 1TB disk.

The software are Ubuntu 10.04 lts(x86_64), Phoenix-2.0.0, GCC 4.4.3, CodeBlocks 8.02.
The evaluation of FCG_Phoenix.... Note that FCG_Phoenix is executed on the server with 8-core

CPU, we set p = 8 in Eq. 1 and Eq. 2. The comparison between the results of algorithms FCG and
FCG_Phoenix is shown in Table 2, where l28 = 70 and the other ln (6 ≤ n ≤ 27) are calculated by the Eq.
3. When vertex numbers are no more than 11, both T1 and Tp are less than one second, thus we do not
give them in Table 2. The speedup and efficiency are enhanced when n is greater than 11. They are
reached the peak 7.1137 and 88.92% respectively when n is equal to 21. The total execution time of
FCG is 1,074,240 seconds while the one of FCG-Phoenix is 152,523 seconds. Thus, the average
speedup is 7.0432, and the average efficiency is 88.04%.
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Table 2 Comparison the results between two algorithms

n ln
| S*n(C6,

ln)| T1 Tp S p Ep

12 16 1,789 9 2 5.4000 67.50%
13 18 6,320 43 6 6.7895 84.87%
14 20 23,433 222 34 6.5294 81.62%
15 23 74,223 841 124 6.7823 84.78%
16 26 183,816 2,649 385 6.8746 85.93%
17 29 408,573 7,209 1,049 6.8701 85.88%
18 32 877,570 19,221 2,760 6.9633 87.04%
19 35 1,939,261 49,867 7,196 6.9295 86.62%
20 38 3,887,788 124,307 17,530 7.0911 88.64%
21 41 7,856,799 315,705 44,380 7.1137 88.92%
22 45 5,332,338 269,920 38,182 7.0693 88.37%
23 49 2,368,863 171,051 24,256 7.0520 88.15%
24 53 779,193 78,538 11,379 6.9020 86.28%
25 57 156,395 26,422 3,905 6.7668 84.58%
26 61 18,508 7,205 1,162 6.2005 77.51%
27 65 1,411 998 165 6.0363 75.45%
28 70 1 31 6 5.1667 64.58%

The comparison of FCG-MR and FCG_Phoenix.... In order to test the efficiency of FCG_Phoenix,
we compare its efficiency with the distributed algorithm FCG-MR in [4], which constructs extremal
graphs of order no more than 26 without hexagons. Similarly, since the execution times are short
when the orders are small, we just compare their efficiency for 13 ≤ n ≤ 26 shown in Fig. 3. The
experimental results show that the average efficiency of FCG-MR is 85.14% and the maximum
efficiency is 88.86% while the average efficiency of FCG_Phoenix is 90.89% and the maximum
efficiency is 92.40%.
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Fig. 3 Comparison of the efficiencies of two algorithms

The construction for the graphs in S*n(C6, ln) for n ≤ 29. We use FCG_Phoenix to construct the
graphs in S*n(C6, ln) for 6 ≤ n ≤ 29, the values of ex(C6, n) and |EX(C6, n)| are shown in Table 3. The
three extremal graphs of EX(C6, 29) are shown in Fig. 4.

Table 3 The values of ex(C6, n) and |EX(C6, n)| (6 ≤ n ≤ 29)
n 6 7 8 9 10 11 12 13 14 15 16 17

ex(C6, n) 11 13 16 20 21 23 26 30 31 33 37 40

EX(C6, n) 1 1 1 1 3 3 3 2 7 11 1 4

n 18 19 20 21 22 23 24 25 26 27 28 29

ex(C6, n) 41 44 48 50 52 56 59 61 64 67 70 72

EX(C6, n) 32 8 2 12 16 2 1 1 3 9 1 3

ConclusionConclusionConclusionConclusion
The muti-core algorithm for constructing extremal graphs based on Phoenix is studied in this paper.

Besides mapping the key-value pairs properly, we take some methods to enhance the efficiency of the
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Fig. 4 The three graphs of EX(C6, 29)

muti-core algorithm, including data structure improvement and data pre-processing before allocation.
Next, some experiments are taken on 8-core CPU to evaluate our algorithm. The experimental results
show that the average speedup and efficiency of the algorithm are 7.0432 and 88.04%, and their peaks
are 7.1137 and 88.92% when the vertex number is equal to 21. Moreover, it also shows that the
efficiency of our algorithm is higher than FCG-MR, a distributed algorithm based on Hadoop for
constructing the graphs in S*n(C6, ln) for n ≤ 26 and l26 = 64. Finally, we use the muti-core algorithm to
construct the graphs of EX(C6, n) for 6 ≤ n ≤ 29.
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