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Abstract

Solutions of the Schrödinger equation for a particle with a tensor-like mass are consi-
dered. It is shown that the problem of determination of the coherent states in this case
is reduced to integration of the nonlinear system of ordinary differential equations.

In many cases a charged particle in solid state can have a tensor-like mass [1]. For this
reason it is interesting to investigate behavior of such a particle in the constant magnetic
field H ‖ z. This problem is more difficult for investigation than the problem of usual
axial symmetric oscillator [2], but some results can be obtained.

Let us consider the Schrödinger equation(
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ik is an inverse mass tensor and
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Electromagnetic potential for a constant magnetic field is
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H
2

(−x2, x1, 0, 0) . (3)

It is convenient to take the transversal variables x1, x2 in the axially-symmetric form

x = x1 + ix2, x+ = x1 − ix2. (4)

Then we obtain the Hamiltonian
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where p is the impulse of the particle along the z-axis. There are the following abbrevia-
tions in Eq. (5)

µ = m−1
11 −m−1

22 + 2im−1
12 , µ+ = m−1

11 −m−1
22 − 2im−1

12 , (6)
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)
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)
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22

)
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Following the general principles of quantum mechanics we look for a solution of Eq. (5)
in the quasiclassical form

ψ(~x, t) = φ(t) exp
(
i

h̄
s(x, x+, t)

)
, (9)

where φ and s are complex functions. Substituting (9) into Eq.(1) we obtain the equation
for the amplitude φ and Hamilton-Jacobi equation for s
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Since H is a quadratic Hamiltonian, we may assume that s is also quadratic [2]

s = A(t) +B(t)x+B+(t)x+ + C(t)x+x+ F (t)x2 + F+(t)x+2; (12)

and we obtain the amplitude equation
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and a system of equations for the other unknown functions A,B,B+, C, F, F+
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We see that when the coordinates are adopted on the axes of the tensor m−1
ik , the whole

problem is simplifield and

µ = µ+, ν = ν+ = 0 (20)

and only two parameters µ and χ, remain. The solution of the initial problem is reduced to
solution of the system of ordinary differential equations (14)–(19) but only the nonlinear
equations (17)–(19) are essential. When they are solved, integration of Eqs. (14)–(16)
becomes trivial.

There are coherent states in the system of solutions of Eqs. (18)–(19) if C = C0 =
iΩ
2
,

F+ = 0. Then the function F has the form

F = u(t) + a, (21)

where

u(t) =
u0

−isα+ (1 + isα) exp(−4isχgΩt)
, a = − iχΩ

µ

(
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)
, (22)

where the abbreviations are introduced

α =
µu0

2χgΩ
, g =

√
1− µ+µ

4χ2
, s = ±1. (23)

The stability of solutions is guaranteed by the conditions

|ReF | < Ω
2
, |ImF | < Ω

2
. (24)

Solutions with constants C,F, F+ are also new. There are solutions of the system (17)–(19)
when s+ = ±1 but they do not depend on s

F = −χ
µ

(
c+

iΩ
2

)(
1 + sg

)
,

F+ = −χ
µ

(
c− iΩ

2

)(
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)
.

(25)

In this case Eq. (17) for the function C may be satisfied if s+ = −s. But it is satisfied

identically and the constant function C may be arbitrary but C2 = −Ω2

4
.

It is important to have solutions of the system of equations with a real constant g. It
is guaranteed if the next conditions are satisfied:

4χ2 ≥ µ+µ (26)
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and

2m−1
11 m

−1
22 − (m−1

12 )2 ≥ 0. (27)

When m−1
12 = 0 (it exists ever) then µ = µ+. Selecting g=0, µ+µ = 4χ2 we have a simpler

solution for the function u(t)

u =
u0[1 + 2Re(µu0)t− 2iIm(µu0)t]

1 + 4Re(µu0)t+ 4ρ2t2
, (28)

where ρ is the modulus of the expression µu0. It is sufficient to set∣∣∣∣Re(u0 −
iχΩ
µ

)∣∣∣∣ ≤ Ω
2
,

∣∣∣∣Im(u0 −
iχΩ
µ

)∣∣∣∣ ≤ Ω
2

in order that the solution (28) have the stability. This depends on the choice of u0.
The calculation of averages in such a problem in L2-space is of great interest. It is

associated with calculation of the norm N of a wave function

N =
∫

(d~x)ψ+(~x, t)ψ(~x, t) = C∞| φ |2
∫

(d~x) exp
(
−2Ims

h̄

)
. (29)

From the Eq. (12) we find that

Ims = ImA, (30)

where the following notations are introduced

b1 = ImB + ImB+,

b2 = ReB −ReB+,

a1 = ImC + ImF + ImF+,

a2 = ImC − ImF − ImF+,

q = ReF −ReF+.

(31)

The norm of Exp. (29) is of the form

N =
πh̄

2
1√
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exp
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)

 (32)

It follows from above that average coordinates can be calculated

〈∆xi〉 = − h̄

2N
∂N

∂bi
, 〈x2

i 〉 = − h̄

2N
∂N

∂ai
, i = 1, 2 (33)

and indetermination, e.g., of the x2-coordinate is equal to

∆x2
2 = 〈x2

2〉 − 〈x2〉2 =
h̄a1

4(a1a2 − q2)
. (34)
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We can see that the presence of q increases indetermination.
The entropy S of the states with the given a1, a, q may be calculated as

S = −
∫

(d~xT )ψ+ψ lnψ+ψ = 1 + ln
πh̄

2
− ln

√
a1a2 − q2. (35)

And we assume coherent states have minimal entropy.
More common classification of the solutions of the system (14)–(19) requires employ-

ment of computer analysis.
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