International Conference on Information Science and Computer Applications (ISCA 20130

Markov Decision Process Parallel Value Iteration Algorithm On GPU
Peng Chen'2, Lu Lu?®

2Department of Computer Science and Engineering, South China University of Technology,
Guangzhou, Guangdong, People’s Republic of China
ac.peng01@mail.scut.edu.cn,Plul@scut.edu.cn

Keywords: GPU, parallel algorithm, OpenCL, Markov decision process (MDP)

Abstract. This paper defines an Out Of Play model based on Markov Decision Process. The best
path for playing can be found and recommended by using this model, and a value iteration
algorithm of Markov Decision Process is used to implement the model. In this paper, the
implementation of this model with CPU is presented. And then, in order to improve the
performance of the value iteration algorithm, a parallel value iteration algorithm on GPU is
designed and showed. For the calculation of a large amount of data, the experimental results show
that the parallel value iteration algorithm on GPU improves performance far more than that of the
serial value iteration algorithm on CPU.

Introduction

Graphic Processing Unit (GPU) attracts more and more attention in general-purpose computing
with the development of graphics hardware. But now, GPU is not only used in graphic, it is also
considered as a powerful technique for obtaining inexpensive, high performance parallelism [1, 2].
General-Purpose GPU is a highly parallel, multithreaded, many-core processor with a very high
computational power and memory bandwidth [3]. GPU architecture is designed for optimization of
massively parallel computing, because of this architectural difference, a GPU is in general more
advantageous for large-scale parallel data processing applications than general-purpose CPUs[4],
and the high performance computing community leveraging a GPU can yield performance increases
of several orders of magnitude[5,6]. High-performance computing with GPUs is called GPU
computing [7]. So using GPU for parallel computing will become a new focus for the purpose of
speeding up the calculation.

Markov Decision process is a stochastic dynamic system based on the theory of Markov process
and decision-making process. In Markov decision process, the ultimate goal is to find an action for
every state so that the performance of the system is the best. In this paper, in order to reach higher
performance, a parallel implementation on GPU is given, and OpenCL is selected to program.

Markov Decision Process

Markov Model. Markov Decision process [8][9] can be defined as a four tuple <S,A, T,R>. In
the tuple, S is a finite set of states, and A is a finite set of actions; T is probability distribution
( means the probability of transition from state to state by taking action a); R is the reward
function, and means the reward got when taking action from state to state . In MDP, there is a
parameter which is a discount factor and is used to reduce the interference from the future actions.

Value Iteration Algorithm. In order to solve Markov model, there are many algorithms proposed.
In this paper, the value iteration algorithm of MDP is selected for studying.

The main idea of value iteration algorithm [8] is iteration. In the algorithm, the target is to find
the optimal policy via the optimal value iteration. First, we give an initial value function for every
state, then we update the value function of every state to a next value function for every iteration
until satisfying a condition. Fig 1 [8] is the pseudo of value iteration algorithm.

© 2013. The authors - Published by Atlantis Press 299


mailto:blul@scut.edu.cn

Initialize V (s arbitrarily
Loop until policy good enough
Loop forsC 8
Loop foraC A
WV (s, a) =R (s) =¥ 2> T(s.a.5)V(s")
End loop
W (s) =max (VW (s, all
End loop

End loop

Fig.1: The pseudo of value iteration algorithm

Out of Play Model. According to Markov Model and the value iteration algorithm, this paper
gives a MDP model—Out Of Play model. This model can be described as follows: Go out for
playing, but we can’t decide where to go, or we don’t know which transportation (how to go: bus or
walk) can be chosen to reach the destination. In fact, this can be described as a MDP. In the scene,
choosing where to go and how to go are random and uncertain, and according to the uncertain
destination and mode of transportation, a MDP model can be created. In the model, the different
destinations can be described as the finite set of states, and the different transportations can be
described as the finite set of actions. Every state has an initial reward which represents the fun level.
Every state can take different actions to get to another state, and this meets a probability distribution.
In the model, a satisfied optimal path must be found. Fig 2 is the whole system model.

0.1

0.2

Place K . ;

Place T

(
Place Q 1 0.5 1 4
0.8

Fig.2: The model of Out of Play

In the Out Of Play model: y = 0.5;
The finite set of states: S={place A, place B, place C, place D, place E, place F, place G, place H,
place I, place J, place K, place L, place M, place N, place O, place P, place Q, place R, place S,
place T};
The finite set of actions: A={bus, walk};

In the order to describe this model clearly, s0, s1, s2, s3, s4, s5, s6, s7, s8, 9, s10, s11, s12, s13,
sl4, s15, s16, s17, s18 and s19 are used to represent place A, place B, place C, place D, place E,
place F, place G, place H, place I, place J, place K, place L, place M, place N, place O, place P,
place Q, place R, place S, place T respectively. al and a2 are used to represent bus and walk
respectively. The initial reward of every state is as follows:
R(s0)=70, R(s1) = 100, R(s2) = 95, R(s3) = 100, R(s4) = 120, R(s5) = 150, R(s6) = 80, R(s7) =180,
R(s8) =105, R(s9)=60, R(s10) =75, R(s11) =110, R(s12) = 75, R(s13)=170, R(s14)=85, R(s15)=90,

300




R(s16) =80, R(s17)=95, R(s18)=85, R(s19)=75

The probability from one state to another state:

T(s0,al,s6)=1,T(s0,a2,s1)=0.7, T(s0,a2,s2)=0.3; T(s1,al,s5)=0.5, T(sl,al,s13)=0.5, T(s1,a2,s7)=0.8,
T(sl,a2,s11)=0.2;T(s2,al,s4)=0.8,T(s2,al1,s9)=0.2,T(s2,a2,s3)=0.5,T(s2,a2,56)=0.5;T(s3,al,s8)=0.4,
T(s3,al,s14)=0.6,T(s3,a2,s4)=1;T(s4,al,s15)=0.5,T(s4,al,s17)=0.5,T(s4,a2,s5)=0.8,T(s4,a2,s9)=0.2;
T(s5,al,s14)=1,T(s5,a2,s4)=1;T(s6,al,s13)=0.2,T(s6,al,s14)=0.8,T(s6,a2,s1)=0.2,T(s6,a2,s11)=0.9;
T(s7,al,s13)=0.1,T(s7,al,s14)=0.9,T(s7,a2,s2)=0.5,T(s7,a2,s3)=0.5;T(s8,a1,s9)=1,T(s8,a2,s18)=1;T
(s9,al,515)=0.3,T(s9,al1,s19)=0.7,T(s9,a2,s5)=1;T(s10,a1,s13)=0.7,T(s10,al,s17)=0.3,T(s10,a2,s0)=
0.7,T(s10,a2,s12)=0.3;T(s11,al,s4)=1,T(s11,a2,s17)=0.5,T(s11,a2,s18)=0.5;T(s12,al,s14)=0.2, T(s1
2,a1,519)=0.8,T(s12,a2,s11)=0.5,T(s12,a2,s16)=0.5;T(s13,al1,s0)=0.2,T(s13,al1,s7)=0.8,T(s13,a2,s12)
=1;T(s14,a1,s9)=0.7,T(s14,al,s15)=0.3,T(s14,a2,s18)=0.5,T(s14,a2,5s19)=0.5;T(s15,al1,s7)=0.1,T(s1
5,a1,819)=0.9,T(s15,a2,s8)=1;T(s16,al,s1)=1,T(s16,a2,s17)=1;T(s17,al,s7)=0.6,T(s17,al,s13)=04,
T(s17,a2,s18)=0.5,T(s17,a2,s19)=0.5;T(s18,al,s5)=0.7,T(s18,a1,s9)=0.3,T(s18,a2,s19)=1;T(s19,al,
s15)=0.2,T(s19,a1,s16)=0.8,T(s19,a2,s14)=0.6,T(s19,a2,s17)=0.4

Parallel Computing On GPU

Find the Optimal Policy of Out of Play. In order to find the optimal policy of Out of Play, the
four steps are as follows.
(1) For every state, the value function should be computed, and we can find the optimal value
function according to the values. The optimal value function [10] could be defined as follows.

V*(s)=.. (1)

(2) In this paper, v is set to be 0.5, so the formula is as follows.

Vi(s) =. . )

(3) For every state, after computing the optimal value function, find the state whose value function
changes greatest. So get the maximum difference as below:

3)

Where n is the number of states.

(4) According to the above formulas, finding an optimal value for every state so that a unique
action exits for every state is necessary. But for an action taken to a state, the state can jump to
many states. The next state jumped is not unique. So the next unique state should be determined
to jump to. To achieve this effect, choosing the state whose transition probability is the greatest.

(4)

Where and are the serial numbers of the states, and means the taken action when the serial

number is .

Value Iteration Algorithm With OpenCL. OpenCL has its execution model. In this paper, it’s
necessary to combine the value iteration algorithm with OpenCL. Fig.3 is the hybrid execution
model of value iteration algorithm of MDP.

301



CPU
While(control the number of
execution on GPU)

Y

‘ Satisfied conditions

Y

CPU GPU
Enqueue the kernal program "| Compute units start computing

CPU Transport the results of GPU
Receive the computing results from <

GPU
While (true)

While (false)
CPU
Deal with the computing results
from GPU

Fig.3: The model of value iteration algorithm with OpenCL
According to value iteration algorithm of MDP and the programming method of OpenCL, the
pseudo code of value iteration algorithm which is used to implement the Out Of Play with OpenCL
is as Fig 4.

CPU
» Require: initialize V =0 and initialize
‘While difference
Difference =0
GPU
Faor all GPU work-items
| Satisfied conditions x_id = get_global_id(0)
r for i=0 to action_num-1
CPU Temp = R{s)+
clEngueueNDRangeKemel{cmdQueue, , .
i kernel, 1? NULL, g{lobaIWorkSize, > ¥ ZT(S’ a s W)
MNULL, O, MULL, NULL}) =35
V(s) = max(temp,V(s))
Record[i] =]
End for
CPU
clEngueusReadBuffer() L, |
Difference = ™
max(difference,V(s)-V) Transport the results from GPU |

While(false)

CPU

r

p=0
Fori=0tostate_ num-—1
For j =0 to state_num —1

p = max({p,pli, Record[il,j))

address[i] =j
end for
end for
initialize state s and num =0
do

check =s_next
if{!I{check is existed in result and
check! =:s)) result = result +check
num-++
while check! =sand num< satte_num

Fig.4: Pseudo code of value iteration algorithm in OpenCL

302



Display the Results

Part 3 has given a pseudo code of value iteration algorithm with OpenCL. After implementing
the Out Of Play model, this part shows the experimental results.

Fig 5 is the result of the Out Of Play model implemented by MFC. In the program, after
selecting the starting place, the system can give a recommended path with the modes of
transportation, and it is an optimal path.

according yo your initial position, the fun level of the location
and the ease of transportation we give you a best path of
out of play on weekend

choose your position = m -

the recommended path:

Place R{bus)}——=Place M{bus}——=Plce H{walk)}——=Plce D(walk)}——=Place
E{walk)}——-=>Place I(walk)——=Place G{walk)})——=Plce L{bus)——=Place F

——

Fig.5: The result of Out Of Play

Performance Comparison

In this paper, the main improvement is to change the value iteration algorithm of MDP to
parallel algorithm on GPU and implement the Out Of Play model by using parallel value algorithm
of MDP on GPU. As is expected, the performance of parallel value iteration algorithm improves a
lot.

(1) For different states

In this scene, after implementing the system with different number of states, but with the same ,
the experimental data shows the time consumed is extremely different. Table 1 shows the time used
for different number of states. According to the experimental results, apparently, the time of CPU
increases faster than GPU with the growth in the number of states. When the number of states
reaches 10000, the time consumed by CPU is 20 times more than that of the time consumed by
GPU. The performance of the model implemented on GPU improves much than that of CPU.

Table 1: time consumed on CPU and GPU with different number of states

The number of states 1000 2000 4000 10000
CPU time [ms] 2304 768 3328 23552
GPU time [ms] 1024 512 768 1024

(2) For different A

In this scene, after implementing the system with different , but with the same number of states,
the experimental results show the time consumed is very different. Table 2 shows the time
consumed for different . According to the experimental data, apparently, the time consumed by CPU
increases much faster than that of GPU with the reduction of . When is 0.0025, the time consumed
by CPU is 4 times more than the time consumed by GPU. The performance of the model
implemented by GPU improves much more than by CPU.

Table 2: time consumed on CPU and GPU with different

25 2.5 0.25 0.025 0.0025
CPU time [ms] 512 1280 1792 2560 2816
GPU time [ms] 512 512 512 768 768

303




Conclusion

This paper presents how to improve the performance of value iteration algorithm of MDP. Of
course, for the calculation of the large amount of data, parallel computing is a pathway to improve
performance, especially parallel computing on GPU. So we change the value iteration algorithm of
MDP to parallel algorithm on GPU and implement an Out Of Play model by the parallel algorithm.
According to the data from experiment, the performance of value iteration algorithm of MDP
improves a lot.

In the future, we can optimize the parallel algorithm on GPU according to the platform
optimization of OpenCL, so that the performance can improve much more. Except that, we can
change other Markov Decision Process algorithm to parallel algorithm on GPU.

Reference

[1] Ryoo, S., Rodrigues, C., Stone, S., et al.: Program optimization carving for GPU computing.
Journal of Parallel and Distributed Computing 68(10),2008,pp.1389—-1401.

[2] Maciej Zbierski. A Simulated Annealing Algorithm for GPU Clusters. Springer-Verlag Berlin
Heidelberg,2012,pp.750-759.

[3] Marek Btazewicz, Mitosz Ciznicki, Piotr Kopta,Krzysztof Kurowski, and Pawet Lichocki.:
Two-Dimensional Discrete Wavelet Transform on Large Images for Hybrid Computing
Architectures: GPU and CELL. Springer-Verlag Berlin Heidelberg.2012,pp.481-490.

[4] Kim, J., Hyeon, S., & Choi, S. (2010). Implementation of an SDR system using graphics
processing unit. [IEEE Communication Magazine, 48,2012,pp.156—162.

[5] Gong C, Liu J, Chen H, Xie J, Gong Z (2011) Accelerating the Sweep3D for a graphic
processor unit. JInform Process Syst 7(1):2011,pp.63-74.

[6] Sathappan OL, Chitra P, Venkatesh P, Prabhu M. Modified genetic algorithm for multiobjective
task scheduling on heterogeneous computing system. [JITCC 1(2),2011, pp.146—158.

[7] Hiroyuki Takizawa, Ryusuke Egawa, and Hiroaki Kobayashi. A Prototype Implementation of
OpenCL for SX Vector Systems. High Performance Computing on Vector Systems 2011, Part 1,
pp-41-50.

[8] Qi, Zhang, Guangzhong, Sun, Yinlong, Xu. Parrallel Algorithms for Soving Markov Decision
Process[C]. Germany:Springer-Verlag, 2009,pp.466-477.

[9] M. L. Puterman. Markov decision processes : discrete stochastic dynamic programming. John
Wiley & Sons, New York, 1994.

[10]Q1, Feng, Xuezhong Zhou, Houkuan Huang, Jian Yu, Yin Zhang, Xiaolin Tong, Runshun Zhang.
A MDP Solution for Traditional Chinese Medicine[C]. 2010 3rd International Conference on
Biomedical Engineering and Informatics, pp.2250-2254.

Acknowledgment

This paper is supported by Guangdong Production, Education & Research Project
(2012B091000050), Guangzhou Production, Education & Research Project (2011Y5-0004).

304





