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In this paper, we derive explicit expressions for Bonferroni Curve (BC), Bonferroni index (BI), Lorenz Curve
(LC) and Gini index (GI) for the Marshall-Olikn Exponential (MOE) distribution, which have mainly concern
with some aspects like poverty, welfare, decomposability, reliability, sampling and inference. We also establish
several recurrence relations satisfied by the single and the product moments of progressive Type-II right cen-
sored order statistics from MOE distribution, to enable one to evaluate the single and product moments of all
order in a simple recursive way.
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1. Introduction

Marshall and Olkin (1997) proposed a new method for adding a parameter to a family of distribu-
tions. In particular, they consider a two-parameter generalization of the one-parameter exponential
distribution as one parameter exponential family of distributions is not broad enough to model data
from various real contexts, which plays a central role in reliability and life time data analysis. Gaver
and Lewis (1980) developed a first order autoregressive time series model with exponential station-
ary marginal distribution. This type of process is found to be useful for modeling time series data
from various contexts such as hydrology, wind velocity, life time, etc. In industry the breakdown
times of dual generators in a power plant or failure time of twin engines in a two engine airplane
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are examples which could be modeled by bivariate survival variable.

In this paper, we shall derive explicit expressions for Bonferroni Curve and Bonferroni index for
Marshall-Olkin exponential distribution. We shall also establish several recurrence relations satis-
fied by single and the product moments of Progressive Type-II right censored order statistics from
Marshall-Olkin exponential distribution, which will enable one to compute the single and the prod-
uct moments of all order in a simple recursive way. It may be mentioned that Bonferroni Curve
and Bonferroni index are well-known measures of income inequality. These measures have some
relationship with Lorenz Curve, Gini index and certain concepts used in reliability, life testing and
renewal theory [cf. Pundir et al. (2005) and Giorgi and Nadarajah (2010)].

The cdf of Marshall-Olkin extended distribution is defined by

F(x) =
H(x)

α +(1−α)H(x)
, −∞ < x < ∞, α > 0, (1.1)

where H(x) is the cdf of an arbitrary family of distributions (see Marshall and Olkin(1997)).
Or, equivalently, if we have a survival function H̄(x), then the Marshall-Olkin extended survival
distribution is given by

F̄(x) =
αH̄(x)

1− (1−α)H̄(x)
, −∞ < x < ∞, α > 0. (1.2)

In particular, for exponential distribution with cdf

H(x) = 1− e−x, 0 ≤ x < ∞, (1.3)

if we substitute equation (1.3) into equation (1.1), we get the so called Marshall-Olkin exponential
(MOE) distribution (cf. Salah et al., 2009). This distribution has been used by Ghitany et al. (2005)
for analyzing censored samples. Thus the cdf of MOE distribution is given by

F(x) = 1− αe−x

1− (1−α)e−x , 0 ≤ x < ∞, α > 0 (1.4)

and the pdf is given by

f (x) =
αe−x

(1− (1−α)e−x)2 , 0 ≤ x < ∞, α > 0, (1.5)

(see Fig.1). From (1.4) and (1.5), one can observe that the characterizing differential equation
for MOE distribution is

f (x) = [1−F(x)]+
1−α

α
[1−F(x)]2. (1.6)

In particular, for α = 1, the MOE distribution reduces to the standard exponential distribution.

2. Bonferroni Curve and Bonferroni index for MOE distribution

Let X be a non-negative random variable with cumulative distribution function (c.d.f.) F(x) =∫ x
0 f (t)dt, which is absolutely continuous and at least twice differentiable.
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Fig. 1. pdf of Marshall-Olkin exponential distribution

The Bonferroni Curve of the random variable X is defined in the orthogonal plane [F(x),BF
(
F(x)

)
]

(Fig. 2) within a unit square (cf. Giorgi and Crescenzi, 2001).

Writing p = F(x), the parametric expression of the Bonferroni Curve is given as

BF(p) =
1

pµ

∫ p

0
F−1(t)dt, p ∈ (0,1], (2.1)

where F−1(t) = in f{x : F(x)≥ t}.
As p → 0,BF(p) takes the form 0/0, hence the Bonferroni Curve does not always start from the
origin of the orthogonal plane, and since ∂B

∂ p > 0, the graph of BF(p) is strictly increasing but
nothing can be said about the sign of its second derivative. Hence, Bonferroni Curve could be
convex in some parts and concave in some others (Giorgi and Crescenzi, 2001).
The Bonferroni index, B, is defined as the area enclosed by the ordinate axis, the Egalitarian Line
(a line connecting point (0,1) to (1,1)) and the Bonferroni Curve and is given by

B = 1−
∫ 1

0
BF(p)d p. (2.2)

The relation between the Bonferroni Curve BF(p) and mean residual life time εF(x) (a common
reliability measure) is given by

BF
(
F(x)

)
=

1
F(x)

− 1
µ

F̄(x)
F(x)

(εF(x)+ x), (2.3)
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Fig. 2. Bonferroni Curve

and

εF(x) =
µ[1−F(x)BF

(
F(x)

)
]

F̄(x)
− x (2.4)

(cf. Pundir et al., 2005, p. 142).
From (1.4), the quantile function of the Marshall-Olkin exponential distribution is given by

F−1(t) = log
{
(1−α)+

α
1− t

}
. (2.5)

Thus from (2.1), the Bonferroni Curve (BC) of the random variable X , following MOE distribution
(1.5), is defined by (Fig. 3)
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Fig. 3. Bonferroni Curve for MOE distribution
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BF(p) =
[
α log

(
− −p+1+α p

p−1

)
p− log

(
− −p+1+α p

p−1

)
p+ log

(
− −p+1+α p

p−1

)
−α log

(
− α

p−1

)
+α log(α)

]/
((−1+α)pµ), (2.6)

where µ = E(x) = α logα
α−1 , α > 0, α ̸= 1 (c f . Salah et al., 2009).

From the equation (2.2), the Bonferroni index (BI) for MOE distribution is given by

B = 1+
1
6

[
−3log

( α
−1+α

)2
−2π2 +6log(α) log

( α
−1+α

)
+απ2 −3log(α)2

−6α log(α)−6dilog
( α
−1+α

)]
((−1+α)µ). (2.7)

The Lorenz Curve (LC) for MOE distribution is given by (Fig. 4)

LF(p) =
1
µ

p∫
0

F−1(t)dt

=
[
α log

(
− −p+1+α p

p−1

)
p− log

(
− −p+1+α p

p−1

)
p+ log

(
− −p+1+α p

p−1

)
−α log

(
− α

p−1

)
+α log(α)

]/
((−1+α)µ). (2.8)
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Fig. 4. Lorenz Curve for MOE distribution
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And the Gini index (GI) for MOE distribution is given by

G = 1−2
1∫

0

LF(p)d p

= 1− α(α log(α)−α +1)
(−1+α)2µ

. (2.9)

3. Progressive Type-II Right Censored Order Statistics

Let X (R1,R2,...,Rm)
1:m:n < X (R1,R2,...,Rm)

2:m:n < .. . < X (R1,R2,...,Rm)
m:m:n be the m ordered observed fail-

ure times in a sample of size n from the Marshall-Olkin exponential distribution (1.4)
under progressive Type-II right censoring scheme (R1,R2, . . . ,Rm). Then the joint pdf of
X (R1,R2,...,Rm)

1:m:n ,X (R1,R2,...,Rm)
2:m:n , . . . ,X (R1,R2,...,Rm)

m:m:n is given by (Balakrishnan and Sandhu, 1995)

f1,2,...,m:m:n(x1,x2, . . . ,xm) = A(n,m−1)
m

∏
i=1

f (xi)[1−F(xi)]
Ri , 0 ≤ x1 < x2 < · · ·< xm < ∞, (3.1)

where A(n,m− 1) = ∏m−1
i=0 (n− Si − i) with S0 = 0 and Si = R1 +R2 + · · ·+Ri = ∑i

k=1 Rk for 1 ≤
i ≤ m−1.
Here all the factors in A(n,m− 1) are positive integers. Similarly, for convenience in notation, let
us define for q = 0,1, . . . , p−1 ,

A(p,q) = p(p−R1 −1)(p−R1 −R2 −2) . . .(p−R1 −R2 −·· ·−Rq −q)

with all the factors being positive integers. Thus

µ(R1,R2,...,Rm)
(k)

r:m:n = E
[
X (R1,R2,...,Rm)

r:m:n

]k

= A(n,m−1)
∫

0<x1<

∫
· · ·

∫
x2<...<xm<∞

xk
r

m

∏
i=1

f (xi)[1−F(xi)]
Ridxi. (3.2)

In Subsections 3.1 and 3.2, we will derive recurrence relations for the single and the product
moments of progressive Type-II right censored order statistics from Marshall-Olkin exponential
distribution, utilizing the characterizing differential equation (1.6).

3.1. Single Moments

Theorem 3.1. For 2 ≤ m ≤ n and k ≥ 0,

µ(R1,R2,...,Rm)
(k+1)

1:m:n =
1

(R1 +1)

[
(k+1)µ(R1,R2,...,Rm)

(k)

1:m:n − (n−R1 −1)µ(R1+R2+1,R3,...,Rm)
(k+1)

1:m−1:n

−1−α
α

{a1µ(R1+R2+2,R3,...,Rm)
(k+1)

1:m−1:n+1 +(R1 +2)a2µ(R1+1,R2,...,Rm)
(k+1)

1:m:n+1 }
]
, (3.3)

where a1 =
c

(n+1)(n−S2−2)∏m−1
i=3 [n−Si−i]

, a2 =
c

(n+1)(n−S1−1)∏m−1
i=2 [n−Si−i]

Published by Atlantis Press 
Copyright: the authors 

311



Bonferroni and Gini Indices ...

and c = n(n−S1 −1)(n−S2 −2) . . .(n−Sm−1 − (m−1)).

And, for m = 1,n = 1,2, . . . and k >−1,

µ(n−1)(k+1)

1:1:n =
1
n

[
(k+1)µ(n−1)(k)

1:1:n − 1−α
α

µ(n)(k+1)

1:1:n+1

]
. (3.4)

Proof. Relation (3.3) may be proved by following exactly the same steps as those in proving The-
orem 3.2, which is presented next to Remark 3.1.

Remark 3.1. Putting k = 0 in Eq. (3.4), we get

µ(n)
1:1:n+1 =

α
1−α

[
1−nµ(n−1)

1:1:n

]
. (3.5)

Changing n to (n−1) in Eq. (3.5) and then substituting the value of µ(n−1)
1:1:n in (3.5) itself, we get

µ(n)
1:1:n+1 =

α
1−α

[
1−n

α
1−α

+n(n−1)
( α

1−α

)
µ(n−2)

1:1:n−1

]
, (3.6)

following similar iterations n−1 times, we get

µ(n)
1:1:n+1 =

α
1−α

[
1−n

( α
1−α

)
+n(n−1)

( α
1−α

)2
−n(n−1)(n−2)

( α
1−α

)3
+ . . .

. . .+(−1)n−1n!
( α

1−α

)n−1
+(−1)nn!

( α
1−α

)n−1
µ(0)

1:1:1

]
,

where µ(0)
1:1:1 = µ1:1 =

α logα
α−1 (cf. Salah et al., 2009, p.82). Thus,

µ(n)
1:1:n+1 =

n

∑
i=1

(−1)i−1 n!
(n− i+1)!

( α
1−α

)i
+(−1)n−1n!

( α
1−α

)n+1
logα.

Changing n to n−1, the above equation becomes

µ(n−1)
1:1:n =

n−1

∑
i=1

(−1)i−1 (n−1)!
(n− i)!

( α
1−α

)i
+(−1)n−2(n−1)!

( α
1−α

)n
logα. (3.7)

Similarly, for k = 1 from (3.4), we get

µ(n)(2)

1:1:n+1 =
n

∑
i=1

(−1)i−12β
n!

(n− i+1)!

( α
1−α

)i
+(−1)n−1n!

( α
1−α

)n+1
logα,

where β = µ(n−1)
1:1:n .

Changing n to n−1, the above equation becomes

µ(n−1)
1:1:n

(2)
=

n−1

∑
i=1

(−1)i−12β ′ (n−1)!
(n− i)!

( α
1−α

)i
+(−1)n−2(n−1)!

( α
1−α

)n
logα, (3.8)

where β ′ = µ(n−2)
1:1:n−1 , which can be calculated from (3.7).
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Theorem 3.2. For 2 ≤ r ≤ m−1, m ≤ n and k ≥ 0,

µ(R1,R2,...,Rm)
(k+1)

r:m:n =
1

(Rr +1)

[
(k+1)µ(R1,R2,...,Rm)

(k)

r:m:n − (n−Sr − r)µ(R1,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
(k+1)

r:m−1:n

+[n−Sr−1 − (r−1)]µ(R1,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
(k+1)

r−1:m−1:n

−1−α
α

{b1µ(R1,...,Rr−1,Rr+Rr+1+2,Rr+2,...,Rm)
(k+1)

r:m−1:n+1

−b2µ(R1,...,Rr−2,Rr−1+Rr+2,Rr+1,...,Rm)
(k+1)

r−1:m−1:n+1

+(Rr +2)b3µ(R1,...,Rr−1,Rr+1,Rr+1,...,,Rm)
(k+1)

r:m:n+1 }
]
, (3.9)

where
b1 =

c
∏r−1

i=0 [(n+1)−Si−i]∏m−1
t=r+1[n−St−t]

, b2 =
c

∏r−2
i=0 [(n+1)−Si−i]∏m−1

t=r [n−St−t]
and b3 =

c
∏r−1

i=0 [(n+1)−Si−i]∏m−1
t=r [n−St−t]

.

Proof. From equation (3.2), we have

µ(R1,R2,...,Rm)
(k)

r:m:n = A(n,m−1)
∫

0<x1<

∫
· · ·

∫
x2<...<xm<∞

xk
r

m

∏
t=1

f (xt)[1−F(xt)]
Rt dxt

= A(n,m−1)
∫

0<x1<x2<···<xr−1

∫
· · ·

∫
<xr+1<...<xm<∞

I(xr−1,xr+1)
m

∏
t=1,t ̸=r

f (xt)[1−F(xt)]
Rt dxt , (3.10)

where

I(xr−1,xr+1) =

xr+1∫
xr−1

xk
r f (xr)[1−F(xr)]

Rr dxr.

Using equation (1.6), we get

I(xr−1,xr+1) =

xr+1∫
xr−1

xk
r [1−F(xr)]

Rr
{

1−F(xr)+
(1−α

α

)
[1−F(xr)]

2
}

dxr

=

xr+1∫
xr−1

xk
r [1−F(xr)]

Rr+1dxr +
(1−α

α

) xr+1∫
xr−1

xk
r [1−F(xr)]

Rr+2dxr

= I0(xr−1,xr+1)+
(1−α

α

)
I1(xr−1,xr+1), (3.11)

where

Ia(xr−1,xr+1) =

xr+1∫
xr−1

xk
r [1−F(xr)]

Rr+a+1dxr, a = 0,1.

Published by Atlantis Press 
Copyright: the authors 

313



Bonferroni and Gini Indices ...

Integrating by parts yields,

Ia(xr−1,xr+1) =
xk+1

r+1

k+1
[1−F(xr+1)]

Rr+a+1 −
xk+1

r−1

k+1
[1−F(xr−1)]

Rr+a+1

+(Rr +a+1)

xr+1∫
xr−1

xk+1
r

k+1
[1−F(xr)]

Rr+adxr. (3.12)

Upon substituting for I0(xr−1,xr+1) and I1(xr−1,xr+1) from (3.12) in (3.11) and then substituting
the resultant expression for I(xr−1,xr+1) in equation (3.10) and simplifying, it leads to (3.9).

Proceeding on similar lines, one can derive the following recurrence relation.

Theorem 3.3. For 2 ≤ r ≤ n and k >−1,

µ(R1,R2,...,Rm)
(k+1)

m:m:n =
1

Rm +1

[
(k+1)µ(R1,R2,...,Rm)

(k)

m:m:n +[n−Sm−1 −m+1]µ(R1,...,Rm−2,Rm−1+Rm+1)(k+1)

m−1:m−1:n

−1−α
α

{
− c1µ(R1,...,Rm−2,Rm−1+Rm+2)(k+1)

m−1:m−1:n+1

+c2(Rm +2)µ(R1,...,Rm−1,Rm+1)(k+1)

m:m:n+1

}]
,

(3.13)

where
c1 =

c
∏m−2

i=0 [(n+1)−Si−i][n−Sm−m+1]
, c2 =

c
∏m−2

i=0 [(n+1)−Si−i][n−Sm−m+2]
.

3.2. Product Moments

To obtain the recurrence relations for the product moments of progressive Type-II right censored
order statistics from Marshall-Olkin exponential distribution, we have from equation (3.1),

µ(R1,R2,...,Rm)
(i, j)

r,s:m:n = E
[{

X (R1,R2,...,Rm)
r:m:n

}i{
X (R1,R2,...,Rm)

s:m:n

} j]

= A(n,m−1)
∫

0<x1<

∫
· · ·

∫
x2<...<xm<∞

xi
rx

j
s

m

∏
t=1

f (xt)[1−F(xt)]
Rt dxt . (3.14)
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Theorem 3.4. For 1 ≤ r < m and m ≤ n−1,

µ(R1,R2,...,Rm)
(i, j+1)

r,r+1:m:n =
1

Rr+1 +1

[
( j+1)µ(R1,R2,...,Rm)

(i, j)

r,r+1:m:n

−[n−Sr+1 − (r+1)]µ(R1,...,Rr,Rr+1+Rr+2+1,Rr+3,...,Rm)
(i, j+1)

r,r+1:m−1:n

+(n−Sr − r)µ(R1,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
(i, j+1)

r:m−1:n

−1−α
α

{
d1µ(R1,...,Rr,Rr+1+Rr+2+2,Rr+3,...,Rm)

(i, j+1)

r,r+1:m−1:n+1

−d2µ(R1,...,Rr−1,Rr+Rr+1+2,Rr+2,...,Rm)
(i, j+1)

r:m−1:n+1

+d3(Rr+1 +2)µ(R1,...,Rr,Rr+1+1,Rr+2,...,Rm)
(i, j+1)

r,r+1:m:n+1

}]
,

(3.15)

where
d1 =

c
∏r

i=0[(n+1)−Si−i]∏m−1
t=r+2[n−St−t]

, d2 =
c

∏r−1
i=0 [(n+1)−Si−i]∏m−1

t=r+1[n−St−t]

and d3 =
c

∏r
i=0[(n+1)−Si−i]∏m−1

t=r+1[n−St−t]
.

Proof. Relation (3.15) may be proved by following exactly the same steps as those in proving
Theorem 3.5, which is presented below.

Theorem 3.5. For 1 ≤ r < s ≤ m and m ≤ n,

µ(R1,R2,...,Rm)
(i, j+1)

r,s:m:n =
1

Rs +1

[
( j+1)µ(R1,R2,...,Rm)

(i, j)

r,s:m:n − (n−Ss − s)µ(R1,...,Rs−1,Rs+Rs+1+1,Rs+2,...,Rm)
(i, j+1)

r,s:m−1:n

+[n−Ss−1 − (s−1)]µ(R1,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
(i, j+1)

r,s−1:m−1:n

−1−α
α

{
e1µ(R1,...,Rs−1,Rs+Rs+1+2,Rs+2,...,Rm)

(i, j+1)

r,s:m−1:n+1

−e2µ(R1,...,Rs−2,Rs−1+Rs+2,Rs+1,...,Rm)
(i, j+1)

r,s−1:m−1:n+1

+(Rs +2)e3µ(R1,...,Rs+1,...,Rm)
(i, j+1)

r,s:m:n+1

}]
, (3.16)

where
e1 =

c
∏s−1

i=0 [(n+1)−Si−i]∏m−1
t=s+1[n−St−t]

, e2 =
c

∏s−2
i=0 [(n+1)−Si−i]∏m−1

t=s [n−St−t]

and e3 =
c

∏s−1
i=0 [(n+1)−Si−i]∏m−1

t=s [n−St−t]
.

Proof. From equation (3.14), we have

µ(R1,R2,...,Rm)
(i, j)

r,s:m:n = A(n,m−1)
∫

0<x1<

∫
· · ·

∫
x2<...<xm<∞

xi
rI(xs−1,xs+1)

m

∏
t=1,t ̸=s

f (xt)[1−F(xt)]
Rt dxt , (3.17)

where I(xs−1,xs+1) =
∫ xs+1

xs−1
x j

s [1−F(xs)]
Rs f (xs)dxs.

Making use of characterizing differential equation (1.6), and splitting the integral accordingly into
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two, we get,

I(xs−1,xs+1) = I0(xs−1,xs+1)+
(1−α

α

)
I1(xs−1,xs+1), (3.18)

where

Ia(xs−1,xs+1) =

xs+1∫
xs−1

x j
s [1−F(xs)]

Rs+a+1dxs, a = 0,1.

Integrating by parts, we get

Ia(xs−1,xs+1) =
1

j+1

[
x j+1

s+1 [1−F(xs+1)]
Rs+a+1 − x j+1

s−1 [1−F(xs−1)]
Rs+a+1

+(Rs +a+1)

xs+1∫
xs−1

x j+1
s [1−F(xs)]

Rs+adxs

]
.

(3.19)

Upon substituting for I0(xs−1,xs+1) and I1(xs−1,xs+1) from (3.19) in (3.18) and then substituting the
resultant expression for I(xs−1,xs+1) in equation (3.17) and simplifying, it leads to (3.16).

Likewise, one can easily derive the recurrence relations given in the following theorems.

Theorem 3.6. For 1 ≤ r ≤ m−1, and m ≤ n,

µ(R1,R2,...,Rm)
(i, j+1)

r,m:m:n =
1

(Rm +1)

[
( j+1)µ(R1,R2,...,Rm)

(i, j)

r,m:m:n

+(n−Sm−1 − (m−1))µ(R1,...,Rm−2,Rm−1+Rm+1)(i, j+1)

r,m−1:m−1:n

−1−α
α

{
− t1µ(R1,...,Rm−2,Rm−1+Rm+2)(i, j+1)

r,m−1:m−1:n+1

+(Rm +2)t2µ(R1,...,Rm−1,Rm+1)(i, j+1)

r,m:m:n+1

}]
, (3.20)

where t1 = c
∏m−2

i=0 [(n+1)−Si−i][n−Sm−m+1]
, t2 = c

∏m−2
i=0 [(n+1)−Si−i][n−Sm−m+2]

.

Theorem 3.7. For 1 ≤ r < s ≤ m and m ≤ n,

µ(R1,R2,...,Rm)
(i+1, j)

1,s:m:n =
1

(R1 +1)

[
(i+1)µ(R1,R2,...,Rm)

(i, j)

1,s:m:n − (n−S1 −1)µ(R1+R2+1,R3,...,Rm)
(i+1, j)

1,s−1:m−1:n

−1−α
α

{
p1µ(R1+R2+2,R3,...,...,Rm)

(i+1, j)

1,s−1:m−1:n+1

+(R1 +2)p2µ(R1+1,R2,...,Rm)
(i+1, j)

1,s:m:n+1

}]
, (3.21)

where
p1 =

c
(n+1)[n−S2−2]∏m−1

i=3 [n−Si−i]
, p2 =

c
(n+1)[n−S1−1]∏m−1

i=2 [n−Si−i]
.
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Theorem 3.8. For 1 ≤ r < s ≤ m and m ≤ n,

µ(R1,R2,...,Rm)
(i+1, j)

r,s:m:n =
1

(Rr +1)

[
(i+1)µ(R1,R2,...,Rm)

(i, j)

r,s:m:n

−(n−Sr − r)µ(R1,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
(i+1, j)

r,s−1:m−1:n

+[n−Sr−1 − (r−1)]µ(R1,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
(i+1, j)

r−1,s−1:m−1:n

−1−α
α

{
q1µ(R1,...,Rr−1,Rr+Rr+1+2,Rr+2,...,Rm)

(i+1, j)

r,s−1:m−1:n+1

−q2µ(R1,...,Rr−2,Rr−1+Rr+2,Rr+1,...,Rm)
(i+1, j)

r−1,s−1:m−1:n+1

+(Rr +2)q3µ(R1,...,Rr−1,Rr+1,Rr+1...,Rm)
(i+1, j)

r,s:m:n+1

}]
, (3.22)

where
q1 =

c
∏r−1

i=0 [(n+1)−Si−i]∏m−1
t=r+1[n−St−t]

, q2 =
c

∏r−2
i=0 [(n+1)−Si−i]∏m−1

t=r [n−St−t]

and q3 =
c

∏r−1
i=0 [(n+1)−Si−i]∏m−1

t=r [n−St−t]
.

Remark 3.2. Substituting α = 1 in Theorems 3.1-3.8, we obtain recurrence relations for single and
product moments of progressive Type-II right censored order statistics from standard exponential
distribution, which are in agreement with the results established by Aggarwala and Balakrishnan
(1996), Balakrishnan and Aggarwala (2000, pp. 42-49).

Remark 3.3. For the special case R1 = . . . = Rm = 0 so that m = n in which case the progressive
censored order statistics become the usual order statistics X1:n,X2:n, . . . ,Xn:n, whose single moments
are denoted by µ(k)

r:n for 1 ≤ r ≤ n and product moments are denoted by µ(i, j)
r,s:n for 1 ≤ r < s ≤ n, the

relations established in Subsections 3.1 and 3.2 reduce to the following:
From (3.3): For k >−1,

µ(k+1)
1:n = (k+1)µ(k)

1:n − (n−1)µ(1,0,...,0)(k+1)

1:n−1:n − 1−α
α(n+1)

{
n(n−1)µ(2,0,...,0)(k+1)

1:n−1:n+1 +2µ(1,0,...,0)(k+1)

1:n:n+1

}
.

(3.23)

From (3.9): For 2 ≤ r ≤ n−1 and k >−1,

µ(k+1)
r:n = (k+1)µ(k)

r:n − (n− r)µ(0,...,0,1,0,...,0)(k+1)

r:n−1:n +(n− r+1)µ(0,...,0,1,0,...,0)(k+1)

r−1:n−1:n

−1−α
α

(n− r+1
n+1

){
(n− r)µ(0,...,0,2,0,...,0)(k+1)

r:n−1:n+1 − (n− r+2)µ(0,...,0,2,0,...,0)(k+1)

r−1:n−1:n+1

+2µ(0,...,0,1,0,...,0)(k+1)

r:n:n+1

}
, (3.24)

where, in the superscript of the second term of the right hand side , the 1 is in the rth position, in
the superscript of third term, the 1 is in the (r−1)th position, in the superscript of fourth term, the
2 is in the rth position, in the superscript of fifth term, the 2 is in the (r− 1)th position and in the
superscript of the sixth term of the right hand side, the 1 is in the rth position.
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From (3.13): For 2 ≤ r ≤ n and k >−1,

µ(k+1)
n:n = (k+1)µ(k)

n:n +µ(0,...,0,1)(k+1)

n−1,n−1:n − 1−α
α

( 2
n+1

){
−µ(0,...,0,2)(k+1)

n−1:n−1:n+1 +µ(0,...,0,1)(k+1)

n:n:n+1

}
. (3.25)

From (3.16): For 1 ≤ r < s ≤ n,

µ(i, j+1)
r,s:n = ( j+1)µ(i, j)

r,s:n − (n− s)µ(0,...,0,1,0,...,0)(i, j+1)

r,s:n−1:n +(n− s+1)µ(0,...,0,1,0...,0)(i, j+1)

r,s−1:n−1:n

−1−α
α

(n− s+1
n+1

){
(n− s)µ(0,...,0,2,0,...,0)(i, j+1)

r,s:n−1:n+1

−(n− s+2)µ(0,...,0,2,0,...,0)(i, j+1)

r,s−1:n−1:n+1 +2µ(0,...,0,1,0,...,0)(i, j+1)

r,s:n:n+1

}
, (3.26)

where, in the superscript of the second term of the right hand side , the 1 is in the sth position, in
the superscript of third term, the 1 is in the (s−1)th position, in the superscript of fourth term, the
2 is in the sth position, in the superscript of fifth term, the 2 is in the (s− 1)th position and in the
superscript of the sixth term of the right hand side, the 1 is in the sth position.

Now, if R1 = R2 = . . . = Rs−1 = 0 so that there is no censoring before the time of the s-th fail-
ure, then the first s progressive Type-II right censored order statistics are simply the first s usual
order statistics. Thus, the relations above reduce to:

From (3.4): For n ≥ 1, k ≥ 0, α > 0, α ̸= 1,

µ(k+1)
1:n+1 =

α
1−α

[(k+1)
n

µ(k)
1:n −µ(k+1)

1:n

]
, (3.27)

with µ(0)
1:n = 1 and µ1:1 =

αlogα
α−1 , α > 0, α ̸= 1.

From (3.9): For 2 ≤ r ≤ n, n ≥ 1, k ≥ 0 and α > 0,

(k+1)µ(k)
r:n = (n− r+1)

{
µ(k+1)

r:n −µ(k+1)
r−1:n

}
+

1−α
α

[(n− r+1)(n− r+2)
n+1

{
µ(k+1)

r:n+1 −µ(k+1)
r−1:n+1

}]
. (3.28)

From Relation 1 of David and Nagaraja (2003, p.44) for r = 1,2, . . . ,n−1 and for k ≥ 1, viz.

rµ(k)
r+1:n +(n− r)µ(k)

r:n = nµ(k)
r:n−1, (3.29)

we have

(n+1)µ(k+1)
r:n = rµ(k+1)

r+1:n+1 +(n− r+1)µ(k+1)
r:n+1 , (3.30)

and

(n+1)µ(k+1)
r−1:n = (r−1)µ(k+1)

r:n+1 +(n− r+2)µ(k+1)
r−1:n+1, (3.31)

which gives

µ(k+1)
r−1:n+1 =

1
n− r+2

[
(n+1)µ(k+1)

r−1:n − (r−1)µ(k+1)
r:n+1

]
. (3.32)
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Utilizing Eqs. (3.30) and (3.32) into Eq. (3.28), we obtain for 2 ≤ r ≤ n,n ≥ 1,k ≥ 0,α > 0,

µ(k+1)
r+1:n+1 =

1
r

[(n+1)(k+1)
n− r+1

µ(k)
r:n −

n−αr+1
α

µ(k+1)
r:n+1 +

n+1
α

µ(k+1)
r−1:n

]
. (3.33)

It is worth mentioning here that equations (3.27) and (3.33) are in agreement with the corresponding
results obtained by Salah et al. (2009) in their equations (17) and (20), respectively, for the single
moments of order statistics from MOE distribution.

From (3.13): For 2 ≤ r ≤ n and k >−1,

µ(k+1)
n:n = (k+1)µ(k)

n:n +µ(k+1)
n−1:n −

2(1−α)

α(n+1)

{
µ(k+1)

n:n+1 −µ(k+1)
n−1:n+1

}
. (3.34)

From (3.16): For 1 ≤ r < s ≤ n,

( j+1)µ(i, j)
r,s:n = (n− s+1)

{
µ(i, j+1)

r,s:n −µ(i, j+1)
r,s−1:n

}
+

(1−α)(n− s+1)(n− s+2)
α(n+1)

[
µ(i, j+1)

r,s:n+1 −µ(i, j+1)
r,s−1:n+1

]
. (3.35)

4. Recursive Algorithm

Using the recurrence relations established in Subsections 3.1 and 3.2, the means, variances and
covariances of all progressive Type-II right censored order statistics from the Marshall-Olkin expo-
nential distribution can be readily computed as follows.

Eq. (3.7) will give us the values µ(n−1)
1:1:n , n = 1,2, . . . and Eq. (3.8) will give us the values

µ(n−1)(2)
1:1:n , n = 1,2, . . . . Thus, all first and second moments with m = 1 for all sample sizes Ł will be

obtained. Next, using (3.3), applying the same method as we did to obtain µ(n−1)(2)
1:1:n in (3.8), we can

determine all moments of the form µ(R1,R2)
1:2:n for all R1,R2, n = 2,3, . . ., in a simple iterative manner,

which can in turn be used, with (3.3), to determine all moments of the form µ(R1,R2)
(2)

1:2:n , n = 2,3, . . .
. Similarly, Eq. (3.13) can then be used to obtain µ(R1,R2)

2:2:n for all R1,R2,and n ≥ 2 , and these values

can be used to obtain all moments of the form µ(R1,R2)
(2)

2:2:n for n ≥ 2 using (3.13) again. Eq. (3.3) can

now be used again to obtain µ(R1,R2,R3)
1:3:n and µ(R1,R2,R3)

(2)

1:3:n for all R1,R2 and R3, and n ≥ 3, and (3.9)

can be used next to obtain all moments of the form µ(R1,R2,R3)
2:3:n and µ(R1,R2,R3)

(2)

2:3:n . Finally, (3.13)

can be used to obtain all moments of the form µ(R1,R2,R3)
3:3:n and µ(R1,R2,R3)

(2)

3:3:n . This process can be
continued until all desired first and second order moments (and therefore all variances) are obtained
for all sample sizes and all censoring schemes. In a similar manner, by utilizing the results of Sub-
section 3.2, one can obtain in a recursive manner, all the product moments (and therefore all the
covariances) for all sample sizes and all censoring schemes.
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