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Abstract

The problem of studying the maximal Lie symmetry of some nonlinear generalization
of the vector subsystem of the Maxwell equations is completely solved.

Let us consider the following nonlinear system of vector equations:

Dt
~E = λ1 rot ~H, Dt

~H = λ2 rot ~E

Dt ≡
∂

∂t
+ σEi

∂

∂xi
+ ρHi

∂

∂xi
+ ωVi

∂

∂xi
, i = 1, 3

(1)

where σ, ρ, ω, λ1, λ2 ∈ R/{0} are arbitrary constants; t, xi ≡ (x0, x1, x2, x3) are indepen-
dent variables; ~E(x0, ~x); ~H(x0, ~x); ~V (x0, ~x) are arbitrary vector functions, which satisfy
system (1).

System (1) can be interpreted as a nonlinear generalization of the vector subsystem of
the Maxwell equations. This follows from (1) at λ1 = −λ2 = 1, σ = ρ = ω = 0.

The problem of investigation of the maximal symmetry of system (1), which has been
suggested in [1], is completely solved in the present paper.

The following statements are proved by means of the Lie method [2].

Theorem 1 A maximal invariance group of system (1) for ω 6= 0 is generated by the
operator

X = ξµ(x, u)
∂

∂xµ
+ ηn(x, u)

∂

∂un
, (2)

where x = (x0, x1, x2, x3), u = ( ~E, ~H, ~V ), µ = 0, 3, n = 1, 9,

ξ0 = ξ0(x0),

ξ1 = ξ0
0(x0)x1 + b3x2 − b2x3 + Q1(x0),

ξ2 = ξ0
0(x0)x2 − b3x1 + b1x3 + Q2(x0),

ξ3 = ξ0
0(x0)x3 + b2x1 − b1x2 + Q3(x0),
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η1 = cu1 + b3u2 − b2u3 + c1u4 + d1,

η2 = cu2 − b3u1 + b1u3 + c1u5 + d2,

η3 = cu3 + b2u1 − b1u2 + c1u6 + d3,

η4 = cu4 + b3u5 − b2u6 +
λ2

λ1
c1u1 + d4,

η5 = cu5 − b3u4 + b1u6 +
λ2

λ1
c1u2 + d5,

η6 = cu6 + b2u4 − b1u5 +
λ2

λ1
c1u3 + d6,

η7 = b3u8 − b2u9 −
1
ω

[(
σc + ρ

λ2

λ1
c1

)
u1 + (σc1 + ρc)u4

]
+

ξ0
00(x0)x1 + Q1

0(x0)− (σd1 + ρd4)
ω

,

η8 = −b3u7 + b1u9 −
1
ω

[(
σc + ρ

λ2

λ1
c1

)
u2 + (σc1 + ρc)u5

]
+

ξ0
00(x0)x2 + Q2

0(x0)− (σd2 + ρd5)
ω

,

η9 = b2u7 − b1u8 −
1
ω

[(
σc + ρ

λ2

λ1
c1

)
u3 + (σc1 + ρc)u6

]
+

ξ0
00(x0)x3 + Q3

0(x0)− (σd3 + ρd6)
ω

,

here c, c1, b1, b2, b3, d1, d2, d3, d4, d5, d6 are real parameters, ξ0(x0), Q1(x0), Q2(x0), Q3(x0)
are arbitrary twice differentiable functions of x0.

Theorem 2 For ω = 0, under the condition
λ2

λ1
=

σ2

ρ2
, system (1) admits a group of

transformations with the infinitesimal operator (2) which has the following coordinates:

ξ0 = cx0 + c0,

ξ1 = cx1 + b3x2 − b2x3 + c1x0 + a1,

ξ2 = cx2 − b3x1 + b1x3 + c2x0 + a2,

ξ3 = cx3 + b2x1 − b1x2 + c3x0 + a3,

(3)
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η1 = −
√

λ2

λ1
γu1 + b3u2 − b2u3 + γu4 + d1,

η2 = −
√

λ2

λ1
γu2 − b3u1 + b1u3 + γu5 + d2,

η3 = −
√

λ2

λ1
γu3 + b2u1 − b1u2 + γu6 + d3,

η4 = −
√

λ2

λ1
γu4 + b3u5 − b2u6 +

λ2

λ1
γu1 +

1
ρ
(c1 − σd1),

η5 = −
√

λ2

λ1
γu5 − b3u4 + b1u6 +

λ2

λ1
γu2 +

1
ρ
(c2 − σd2),

η6 = −
√

λ2

λ1
γu6 + b2u4 − b1u5 +

λ2

λ1
γu3 +

1
ρ
(c3 − σd3)

(4)

here c, c0, c1, c2, c3, a1, a2, a3, b1, b2, b3, d1, d2, d3, γ are real parameters.

Under the condition
λ2

λ1
6= σ2

ρ2
(for γ = 0), the symmetry operator of system (1) is

given by equations (2)–(4).

Note 1. The maximal invariance group of system (1) for ω = 0 is finite-parametric.

Note 2. For ρ = 1 algebras (2)–(4) contain the Lie algebra of the Galilei group AG(1, 3)
as a subalgebra with the following basis elements

P0 =
∂

∂x0
, Pa =

∂

∂xa
,

Jab = xa
∂

∂xb
− xb

∂

∂xa
+ Ea

∂

∂Eb
− Eb

∂

∂Ea
+ Ha

∂

∂Hb
−Hb

∂

∂Ha
,

Ga = x0
∂

∂xa
+

∂

∂Ha
.

Hence, the Galilei relativity principle is valid for system (1).
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