

Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-
scale Multithreaded BlueGene/Q Supercomputer

Xingfu Wu

Department of Computer Science & Engineering, Texas A&M University
College Station, Texas 77843, USA

E-mail: wuxf@cse.tamu.edu

Valerie Taylor

Department of Computer Science & Engineering, Texas A&M University
College Station, Texas 77843, USA

E-mail: taylor@cse.tamu.edu

Abstract

Many/multi-core supercomputers provide a natural programming paradigm for hybrid MPI/OpenMP
scientific applications. In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP
scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation
PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale
multithreaded BlueGene/Q supercomputer at Argonne National laboratory, and quantify the performance gap
resulting from using different number of threads per node. We use performance tools and MPI profile and trace
libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific
applications with increasing the number OpenMP threads per node, and find that increasing the number of threads
to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid
scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much
better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the
FPU percentage decreases, and the MPI percentage (except PMLB) and IPC per core (except BT-MZ) increase.
For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very
similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used.

Keywords: Performance analysis, hybrid MPI/OpenMP, multithreaded, BlueGene/Q.

1. Introduction

Many/multicore supercomputers provide a natural
programming paradigm for hybrid MPI/OpenMP
scientific applications. Current hybrid parallel
programming paradigms such as hybrid MPI/OpenMP
need to efficiently exploit the potential offered by such
many/multicore supercomputers. When using these
supercomputers to execute a given hybrid
MPI/OpenMP application, one issue to be addressed is
how many threads per node to use for efficient

execution (Assume 1 MPI process per node for hybrid
application execution). It is expected that the best
number of threads per node is dependent upon the
application characteristics and the system architectures.
In this paper, we investigate how a hybrid application is
sensitive to different memory access patterns, and
quantify the performance gap resulting from using
different number of threads per node for application
execution on a large scale multithreaded BlueGene/Q
supercomputer [1] at Argonne National Laboratory
using five different hybrid MPI/OpenMP scientific

International Journal of Networked and Distributed Computing, Vol. 1, No. 4 (November 2013), 213-225

Published by Atlantis Press
Copyright: the authors

213

willieb
Typewritten Text
Received 31 January 2013

willieb
Typewritten Text
Accepted 29 July 2013

willieb
Typewritten Text

willieb
Typewritten Text

willieb
Typewritten Text

X. Wu and V. Taylor

applications (two NAS Parallel benchmarks Multi-Zone
SP-MZ and BT-MZ [4], an earthquake simulation
PEQdyna [20], an aerospace application PMLB [19]
and a 3D particle-in-cell application GTC [2]).

There is a lot of research work in this area, which
mainly focused on multithreaded applications on a
single compute node [5, 11, 8]. They found that
increasing the number of threads may saturate or
worsen performance of multithread applications
because concurrently executing threads compete for
shared data (data-synchronization) and shared resources
(off-chip bus). Some techniques in choosing the best
number of threads for the applications are analyzed in
[11]. In this paper, we focus on large-scale hybrid
MPI/OpenMP applications on a large-scale
supercomputer which consists of many compute nodes,
and investigate their performance characteristics as
increasing number of threads per node on different large
number of compute nodes.

Levesque et al. [6] observed from the AMD
architectural discussion that when excluding messaging
performance, the primary source of contention when
moving from single core to dual core is memory
bandwidth. In our previous work [19, 18], we also
found that memory bandwidth contention is the primary
source of performance degradation for L2 shared
architectures such as CrayXT4 and IBM Power4 and
Power5 systems using NAS Parallel benchmarks and
large-scale scientific applications such as GTC as
increasing the number of cores per node.

Other work in this area has focused on using all
processor cores per node. Petrini et al. [10] found that
application execution times may vary significantly
between 3 processors per node and 4 processors per
node on a large scale supercomputer, ASCI Q. In our
previous work [17, 18, 19], we conduct an experimental
performance analysis to identify the application
characteristics that affect processor partitioning and to
quantify the performance difference among different
processor partitioning schemes.

As we found in [20], the hybrid MPI/OpenMP
earthquake application is memory bound, and using 12
OpenMP threads per MPI process on Cray XT5 (with
12 cores per node) at Oak Ridge National Laboratory
has more OpenMP overhead than using 4 OpenMP
threads per MPI process on Cray XT4 (with 4 cores per
node) at Oak Ridge National Laboratory for the hybrid
execution on the same number of nodes with 1 MPI
process per node although Cray XT5 is much faster
than Cray XT4. This motivates us for this work.

The experiments conducted for this work utilize a
multicore supercomputers BlueGene/Q [1] at Argonne

National Lab (ANL) has 16 compute cores per node.
We investigate the performance characteristics of the
five hybrid scientific applications, and quantify the
performance gap resulting from using different number
of threads per node. We use performance tools and MPI
profile and trace libraries available on the
supercomputer [15] to analyze and compare the
performance of the hybrid scientific applications as
increasing the number OpenMP threads per node. For
the strong-scaling hybrid scientific applications such as
SP-MZ, BT-MZ, PEQdyna and PLMB, using 32
threads per node results in much better application
efficiency than using 64 threads per node, and with
increasing the number of threads per node, the FPU
(Floating Point Unit) percentage decreases, and the MPI
percentage (except PMLB) and IPC (Instructions per
cycle) per core (except BT-MZ) increase. For the weak-
scaling hybrid scientific application such as GTC, the
performance trend (relative speedup) is very similar
with increasing number of threads per node no matter
how many nodes (32, 128, 512) are used. We also find
increasing the number of threads to some extent
saturates or worsens performance of these hybrid
applications.

The remainder of this paper is organized as follows.
Section 2 discusses the architecture and memory
hierarchy of the BlueGene/Q supercomputer. Section 3
describes hybrid MPI/OpenMP applications used.
Section 4 analyzes application performance
characteristics with different number of threads per
node in detail. Section 5 concludes this paper.

In the remainder of this paper, all experiments were
executed multiple times to ensure consistency of the
performance data. Prophesy system [12] and IBM
HPCT and MPI profiling and trace libraries [14] are
used to collect all application performance data. Notice
that, for a hybrid MPI/OpenMP application
execution, one MPI process per node is applied to all
our experiments.

2. Execution Platforms

In this section, we briefly describe a large-scale
multithreaded BlueGene/Q supercomputer Vesta [1]
used for our experiments. The supercomputer is one
same rack of world Top 4 supercomputer Mira at
Argonne Leadership Computing Facility [1, 13] at
Argonne National Laboratory for early access and use.
It has 1024 nodes with 16 compute cores per node (total
16,384 compute cores) and 16 GB memory per node.
Each node has a BlueGene/Q compute chip. Note that
the compiler option “-O3 -qsmp=omp” is applied to

Published by Atlantis Press
Copyright: the authors

214

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

compile all our hybrid scientific applications.
A die photograph of the BlueGene/Q compute chip

in Figure 1 shows 18 processor units (PU00 to PU17)
surrounding a large Level-2 (L2) cache that occupies
the center of the chip. The chip is a System-on-a-Chip
(SOC) ASIC with 18 4-way SMT (Symmetric
MultiThreading) PowerPC A2 cores clocked at 1.6
GHz. Of the 18 cores, 16 are exposed to user
applications, 1 is used for system software functionality,
and 1 is for yield purposes. A quad floating point unit is
associated with each core shown in Figure 2, and
instantiates four copies of a fused multiply-add data
flow (MAD), creating a four-way SIMD floating-point
microarchitecture. The first level (L1) data cache of the
A2 core is 16 KB, 8-way set associative, with 64 B
lines. The L1 instruction cache is 16 KB, 4-way set
associative.

Figure 1. A die photograph of BlueGene/Q Chip [3]

Figure 2. Quad FPU in each BlueGene/Q Core [3]

Figure 3. L2 cache of BlueGene/Q Compute Chip [9]

The crossbar switch is the central connection
structure among all the PUs, the L2 cache, the
networking logic, and various low-bandwidth units on
the chip. All processor cores share the L2 cache shown
in Figure 3. To provide sufficient bandwidth, the cache
is split into 16 slices. Each slice is 16-way set
associative, operates in write-back mode, and has 2MB
capacity. Physical addresses are scattered across the
slices via a programmable hash function to achieve
uniform slice utilization. The L2 cache provides
hardware assist capabilities to accelerate sequential
code as well as thread interactions. There is no L3
cache on BlueGene/Q chip.

The Blue Gene/Q network consists of a set of
compute nodes (BQC chip plus memory) arranged in a
five- dimensional (5D) torus configuration. On compute
nodes, 10 of the 11 chip-to-chip communication links
are used to build the 5D torus. A subset of the compute
nodes, called bridge nodes, use the 11th communication
link to connect with an I/O node.

3. Hybrid MPI/OpenMP Scientific Applications

In this section, we describe the scientific applications
that are used throughout this paper. These applications
include the two NAS Parallel Benchmarks Multi-Zone
(version 3.3) BT-MZ and SP-MZ [4], and three large-
scale scientific applications PMLB [19], PEQdyna [20]
and GTC [2]. Table 1 provides an overview of these
applications. The first four applications (BT-MZ, SP-
MZ, PMLB, PEQdyna) are strong scaling, and the last
one, GTC, is weak scaling. These hybrid MPI/OpenMP
applications are written in different languages such as
Fortran 77, Fortran 90 or C.

Published by Atlantis Press
Copyright: the authors

215

X. Wu and V. Taylor

Table 1. Overview of Hybrid HPC Applications

Application Discipline Problem
Size

Languages

BT-MZ CFD Class C

Class D

Fortran77,
MPI/OpenMP

SP-MZ CFD Class C

Class D

Fortran77,
MPI/OpenMP

PMLB CFD 256x256x256

512x512x512

C,
MPI/OpenMP

PEQdyna
Geophysic

s

100m

200m

Fortran90,
MPI/OpenMP

GTC Magnetic
Fusion

100 particles
per cell

Fortran90,
MPI/OpenMP

The BT-MZ benchmark [4] computes discrete
solutions of the unsteady, compressible Navier-Stokes
equations in three spatial dimensions using the Block
Tri-diagonal (BT) algorithm. The SP-MZ benchmark
[4] computes discrete solutions of the unsteady,
compressible Navier-Stokes equations in three spatial
dimensions using the Scalar Penta-diagonal (SP)
algorithm. Both are computational fluid dynamics
(CFD) applications. The problem sizes used for both are
Class C (480x320x28) and Class D (1632x1216x34).

The PMLB application [19] is a CFD aerospace
application using a Parallel Multiblock Lattice
Boltzmann (PMLB) method, and is written in C, MPI
and OpenMP. The problem sizes used in the
experiments are 256x256x256 and 512x512x512.

The PEQdyna [20] is a parallel finite element
earthquake rupture simulation using the Southern
California Earthquake Center (SCEC) TPV210
benchmark, which is the convergence test of the
benchmark problem TPV10. In TPV10, a normal fault
dipping at 60° (30 km long along strike and 15 km wide
along dip) is embedded in a homogeneous half space.
The application is written in Fortran 90, MPI and
OpenMP. The problem sizes used are 100m and 200m,
which are the resolution of the 3D mesh.

The Gyrokinetic Toroidal code (GTC) [2] is a 3D
particle-in-cell application developed at the Princeton
Plasma Physics Laboratory to study turbulent transport
in magnetic fusion. GTC is currently the flagship DOE
SciDAC fusion microturbulence code written in
Frotran90, MPI and OpenMP. The GTC application is
executed in weak scaling to keep a constant workload
per processor as the number of processors increase
using 100 particles per cell and 100 time steps.

4. Performance Analysis

In this section, we use these five hybrid applications to
investigate their performance characteristics on the
multithreaded BlueGene/Q supercomputer Vesta.

4.1. Performance Analysis of SP-MZ

As we described in Section 2, each node of the
BlueGene/Q supercomputer has 16 compute cores. Each
compute core supports four threads. Figures 4 and 5
show the performance comparison of SP-MZ with class
D and C on 32 and 128 nodes with different number of
threads per node. Both have similar performance trend.
The relative speedup increases using up to 32 OpenMP
threads per node, then significantly decreases using 64
threads per node.

For instance, Table 2 presents performance (per
node) comparison of SP-MZ with class D on 128 nodes.
These derived metrics are for the performance per node
by using HPCT and MPI profiling and trace libraries
[15]. IPC per core stands for the instructions per cycle
completed per core; GFlops stands for the total
weighted GFlops for the node. L1 D-cache, L1P Buffer
and L2 Cache stand for the hit rates for the loads that hit
in L1 D-cache, L1 prefetch (L1P) buffer, and L2 cache,
respectively. When a load misses in the L1 D-cache, the
next place to look is the L1P buffer; if there is a miss in
the L1P buffer, the request goes to L2 cache, and if
there is a L2 cache miss, the request goes to the DDR
memory. The total DDR traffic includes all load and
store activity, which is often dominated by stream
prefetching rather than demand loads [14]. %MPI
stands for the ratio of the median MPI communication
time to the total application execution time.

From Table 2, with increasing the number of
OpenMP threads per core from 1 to 4, the application
execution time for using 32 threads decreases from
37.39s to 30.07s, however, the application execution
time for using 64 threads increases from 30.07s to
41.58s. This results in the significant decrease in
speedup for using 64 threads shown in Figure 5. For the
instruction mix, the FPU percentage decreases a little
bit with increasing the number of threads per core
because of the overhead in the threading, for example,
instructions executed by threads are basically waiting
for synchronization and/or serialization.

As shown in Figure 2, each BG/Q compute core
supports 4 hardware threads, this results in the increase
in IPC per core shown in Table 2 with increasing the
number of threads per node. Because of the fixed total
float-point operations per node, the GFlops per node for

Published by Atlantis Press
Copyright: the authors

216

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

using 32 threads is the highest. It is interesting to see
that using 32 threads has a relatively low hit rate in the
L1 data cache, but benefits from the highest hit rates in
the L1P buffer and L2 cache, and the highest memory
bandwidth (DDR traffic).

Notice that the number of OpenMP threads per node
for the hybrid SP-MZ is limited by number of cores per
node in the underlying system and the loop sizes to
which OpenMP parallelization is applied. When
increasing the number of cores for a given problem size,
decreasing parallelized loop sizes may cause some idle
cores per node because the loop sizes are not larger than
the number of OpenMP threads per node.

For instance, after digging into source codes of SP-
MZ (version 3.3), we find that OpenMP parallelization
is applied to the Z dimension of the 3D mesh, however,

the problem size for Class D is 1632x1216x34 so that
the maximum number of threads is 34; the problem size
for Class C is 480x320x28 so that the maximum
number of threads is 28. This is the limitation, which
limits potential for OpenMP speed-up and causes more
idle threads when using 64 threads per node. The
threads that have no work to do are just spinning, that
results in increasing number of instructions processed
by the integer/load/store units. That can also affect MPI
performance because using the threaded MPI library
can affect scheduling of messaging threads. Overall,
this causes the big decrease in the FPU percentage and
the big increase in the MPI percentage for using 64
threads. So before running these hybrid benchmarks on
a large-scale multicore supercomputer, these limitations
should be examined.

Figure 4. Performance comparison of SP-MZ on 32 Nodes with different number of threads per node

Figure 5. Performance comparison of SP-MZ on 128 Nodes with different number of threads per node

Published by Atlantis Press
Copyright: the authors

217

X. Wu and V. Taylor

Table 2. Performance (per node) comparison of SP-MZ with Class D on 128 Nodes

#Threads 16 32 64

Runtime (s) 37.39 30.07 41.58
Instruction Mix FPU:40.50%

FXU:59.50%
FPU:36.03%
FXU:63.97%

FPU:22.54%
FXU:77.46%

IPC per core 0.3654 0.5149 0.6015
GFlops 6.260 7.847 5.687

L1 D-cache 90.42% 89.06% 92.34%
L1P Buffer 7.81% 8.56% 5.46%

L2 Cache 1.45% 1.79% 1.74%
DDR traffic (Bytes/cycle) 1.637 4.511 3.802

%MPI 1.89% 2.59% 7.60%

4.2. Performance Analysis of BT-MZ

Figures 6 and 7 show the performance comparison of
BT-MZ with class D and C on 32 and 128 nodes with
different number of threads per node. We find the
similar performance trend as SP-MZ has, that is, the
relative speedup increases using up to 32 OpenMP
threads per node, then significantly decreases using 64
threads per node.

Table 3 presents performance (per node) comparison
of BT-MZ with class D on 128 nodes. Note that using
64 threads causes the large performance degradation in
the total execution time and MPI communication time,
because OpenMP parallelization is applied to the Z

dimension of the 3D mesh in BT-MZ, however, the
problem size for Class D is 1632x1216x34 so that the
maximum number of threads is 34; the problem size for
Class C is 480x320x28 so that the maximum number of
threads is 28. Similarly, this limits potential for
OpenMP speed-up and causes more idle threads (30)
when using 64 threads per node. The threads that have
no work to do are just spinning, that results in
increasing number of instructions processed by the
integer/load/store units. That can also affect MPI
performance because using the threaded MPI library
can affect scheduling of messaging threads. Overall,
this causes the big increase in the MPI percentage for
using 64 threads.

Figure 6. Performance comparison of BT-MZ on 32 Nodes with different number of threads per node

Published by Atlantis Press
Copyright: the authors

218

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

Figure 7. Performance comparison of BT-MZ on 128 Nodes with different number of threads per node

Table 3. Performance (per node) comparison of BT-MZ with Class D on 128 Nodes

#Threads 16 32 64

Runtime (s) 57.28 42.16 127.44
Instruction Mix FPU:37.86%

FXU:62.14%
FPU:36.89%
FXU:63.11%

FPU:30.99%
FXU:69.01%

IPC per core 0.4234 0.5928 0.2341
GFlops 7.183 9.855 3.268

L1 D-cache 94.77% 94.50% 95.08%
L1P Buffer 3.89% 3.92% 3.22%

L2 Cache 1.26% 1.11% 1.28%
DDR traffic (Bytes/cycle) 0.448 3.093 1.064

%MPI 5.50% 8.03% 68.26%

4.3. Performance Analysis of PEQdyna

Figures 8 and 9 show the performance comparison of
the PEQdyna with the element sizes of 100m or 200m
on 32 and 128 nodes with different number of threads
per node. With increasing number of OpenMP threads
per node, the relative speedup increases for 32 nodes
shown in Figure 8, however, the efficiency (0.65 or
higher) for using 32 threads per node is much higher
than that (0.46 or less) using 64 threads. The relative

speedup reaches the maximum using 32 threads per
node for 128 nodes shown in Figure 9.

From Table 4, we see that the instruction mix is
more heavily weighted on the integer side (FXU), and
MPI communication time dominates the total execution
time on 128 nodes. For the strong scaling application,
with increasing the number of threads per node from 16
to 64, the MPI percentage increases from 73.6% to
85.7% because the pure application computation time
decreases and the threaded MPI library was used.

Published by Atlantis Press
Copyright: the authors

219

X. Wu and V. Taylor

Figure 8. Performance comparison of PEQdyna on 32 Nodes with different number of threads per node

Figure 9. Performance comparison of PEQdyna on 128 Nodes with different number of threads per node

Published by Atlantis Press
Copyright: the authors

220

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

Table 4. Performance (per node) comparison of PEQdyna with 200m on 128 Nodes

#Threads 16 32 64

Runtime (s) 110.29 97.81 105.48
Instruction Mix FPU: 10.57%

FXU:89.43%
FPU:10.36%
FXU:89.64%

FPU:9.45%
FXU:90.55%

IPC per core 0.0999 0.1149 0.1172
GFlops 0.375 0.423 0.392

L1 D-cache 98.00% 98.28% 95.93%
L1P Buffer 0.94% 0.66% 0.48%

L2 Cache 1.03% 1.04% 3.55%
DDR traffic (Bytes/cycle) 0.124 0.139 0.129

%MPI 73.6% 82.9% 85.7%

4.4. Performance Analysis of PMLB

Figures 10 and 11 show the performance comparison of
PMLB with the problem sizes of 256x256x256 and
512x512x512 on 32 and 128 nodes with different
number of threads per node. With increasing number of
OpenMP threads per node, the relative speedup
increases, however, the relative efficiency is very low

for using 16 threads or more because of the dominated
MPI communication times.

From Table 5, we see that the instruction mix is
more heavily weighted on the integer side, and MPI
communication time dominates the total execution time
on 128 nodes. The application performance (runtime)
has smaller improvement by using more threads. This
results in the very low efficiency.

Figure 10. Performance comparison of PMLB on 32 Nodes with different number of threads per node

Published by Atlantis Press
Copyright: the authors

221

X. Wu and V. Taylor

Figure 11. Performance comparison of PMLB on 128 Nodes with different number of threads per node

Table 5. Performance (per node) comparison of PMLB with the problem size of 256x256256 on 128 Nodes

#Threads 16 32 64

Runtime 8.68 7.59 6.82
Instruction Mix FPU:25.87%

FXU:74.13%
FPU:25.74%
FXU:74.26%

FPU:22.72%
FXU:77.28%

IPC per core 0.0523 0.0604 0.0683
GFlops 0.510 0.585 0.582

L1 D-cache 85.60% 85.91% 87.07%
L1P Buffer 6.81% 6.57% 5.73%

L2 Cache 7.55% 7.43% 7.11%
DDR traffic (Bytes/cycle) 0.017 0.038 0.049

%MPI 77.0% 86.50% 73.56%

4.5. Performance Analysis of GTC

Figure 12 shows the performance comparison of GTC
on 32, 128, and 512 nodes with different number of
threads per node. With increasing number of OpenMP
threads per node, the relative speedup increases.
Because the application is weak scaling (with number
of MPI processes), the performance trend (relative
speedup) is very similar with increasing number of
threads per node no matter how many nodes (32, 128,
512) are used. This is a very interesting. However, this
application could not be executed using 32 or more

threads per node because this causes the execution
crash.

From Table 6, because of the same amount of
workload per node, with increasing the number of
threads, the execution time decreases significantly, and
the GFlops per node, the memory bandwidth (DDR
traffic) and the MPI percentage increase a little bit.
However, it is interesting to see that IPC per core
decreases with increasing the number of threads, and
the hit rates in L1 data cache, L1P buffer and L2 cache
are very similar.

Published by Atlantis Press
Copyright: the authors

222

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

Figure 12. Performance comparison of GTC with different number of threads per node

Table 6. Performance (per node) comparison of GTC on 128 Nodes

#Thread 1 2 4 8 16

Runtime 2178.0 1110.0 575.8 309.5 176.9
Instruction Mix FPU: 38.15%

FXU:61.85%
FPU: 38.21%
FXU:61.79%

FPU: 38.17%
FXU:61.83%

FPU: 38.02%
FXU:61.98%

FPU: 37.56%
FXU:62.44%

IPC per core 0.3227 0.3162 0.305 0.2849 0.2525
GFlops 0.279 0.548 1.056 1.965 3.441

L1 D-cache 95.97% 95.97% 95.97% 95.99% 96.03%
L1P Buffer 0.79% 0.79% 0.79% 0.79% 0.78%

L2 Cache 2.80% 2.80% 2.80% 2.78% 2.75%
DDR traffic (Bytes/cycle) 0.133 0.262 0.505 0.940 1.663

%MPI 0.39% 0.59% 0.96% 1.68% 2.85%

5. Conclusions

In this paper, we analyzed and compared the
performance of five hybrid scientific applications with
increasing the number OpenMP threads per node on the
large-scale multithreaded BlueGene/Q supercomputer
Vesta, and quantified the performance gap resulting
from using different number of threads per node. We
also found that increasing the number of threads to
some extent saturated or worsened performance of these
hybrid applications. For the strong-scaling hybrid
scientific applications such as SP-MZ, BT-MZ,
PEQdyna and PLMB, using 32 threads per node results
in much better efficiency than using 64 threads per
node, and with increasing the number of threads per
node, the FPU percentage decreases, and the MPI

percentage (except PMLB) and IPC per core (except
BT-MZ) increase. For the weak-scaling hybrid
scientific application such as GTC, the performance
trend (relative speedup) is very similar with increasing
number of threads per node no matter how many nodes
(32, 128, 512) are used.

For these hybrid applications, how many OpenMP
threads per node is limited by number of cores per node
and number of hardware threads supported per core in
the underlying system and the loop sizes to which
OpenMP parallelization is applied. When increasing the
number of cores for a given problem size, decreasing
parallelized loop sizes may cause some idle cores per
node because the loop sizes are not larger than the
number of OpenMP threads per node. For instance, for
SP-MZ and BT-MZ (version 3.3), we find that OpenMP

Published by Atlantis Press
Copyright: the authors

223

X. Wu and V. Taylor

parallelization is applied to the Z dimension of the 3D
mesh, however, the problem size for Class D is
1632x1216x34. So the maximum number of threads is
34. This limits potential for OpenMP speed-up and
causes more idle threads when using 64 threads per
node. So before running these hybrid applications on a
large-scale multicore supercomputer, these limitations
should be examined.

This work identified the optimal number of OpenMP
threads per node used for efficient application
execution. This will aid in developing energy-efficient
applications and performance-power trade-off models
in our MuMMI project [7].

Acknowledgements

This work is supported by NSF grant CNS-0911023.
The authors would like to acknowledge Argonne
Leadership Computing Facility for the use of
BlueGene/Q under DOE INCITE project “Performance
Evaluation and Analysis Consortium End Station” and
BGQ Tools project. We would also like to thank
Stephane Ethier from Princeton Plasma Physics
Laboratory for providing the GTC code.

References

1. Argonne Leadership Computing Facility

BlueGene/Q (Vesta), http://www.alcf.anl.gov/
resources, https://wiki.alcf.anl.gov/parts
/index.php/ Blue_Gene/Q.

2. S. Ethier, First Experience on BlueGene/L,
BlueGene Applications Workshop, April 27-28,
2005. http://www.bgl.mcs.anl.gov/Papers/GTC_
BGL_20050520.pdf.

3. R. A. Haring, M. Ohmacht, et al., The IBM Blue
Gene/Q Compute chip. IEEE Micro 32(2): 48–60,
2012.

4. H. Jin, R. F. Van der Wijngaart, "Performance
characteristics of the Multi-Zone NAS Parallel
Benchmarks," J. Parallel Distributed Computing,
vol. 66, no. 5, pp. 674-685, May 2004.

5. H. Jin, M. Frumkin and J. Yan, The OpenMP
Implementation of NAS Parallel Benchmarks and
Its Performance, NAS Technical Report NAS-99-
011, 1999.

6. J. Levesque, J. Larkin, M. et al., Understanding
and Mitigating Multicore Performance Issues on
the AMD Opteron Architecture, LBNL-62500,
March 7, 2007.

7. Xi. Wu, V. Taylor, C. Lively, H. Chang, C. Su, K.
Cameron, S. Moore, D. Terpstra and C. Lee,
MuMMI: Multiple Metrics Modeling Infrastructure
for Exploring Performance and Power Modeling,
XSEDE 2013, July 22 - 25, 2013, San Diego, CA.
Also see Multiple Metrics Modeling Infrastructure
(MuMMI) project, http://www.mummi.org.

8. J. Nieplocha, A. Mrquez, J. Feo, D. Chavarra-
Miranda, G. Chin, C. Scherrer, and N. Beagley,
Evaluating the potential of multithreaded platforms
for irregular scientific computations, the 4th
International Conference on Computing Frontiers,
2007.

9. M. Ohmacht, Memory Speculation of the
BlueGene/Q Compute Chip, PACT2011 Workshop
on Wild and Sane Ideas in Speculation and
Transactions, 2011.

10. F. Petrini, D. J. Kerbyson, and S. Pakin, The Case
of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192
Processors of ASCI Q, SC03, 2003.

11. M. A. Suleman, M. K. Qureshi, and Y. N. Patt,
Feedback-Driven Threading: Power-Efficient and
High-Performance Execution of Multi-threaded
Workloads on CMPs, the 13th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
2008.

12. V. Taylor, X. Wu, and R. Stevens, Prophesy: An
Infrastructure for Performance Analysis and
Modeling System of Parallel and Grid
Applications, ACM SIGMETRICS Perf. Eva.
Review, Vol. 30, Issue 4, 2003.

13. Top 500 list, http://www.top500.org/list/2012/11/
14. Bob Walkup, Internal Use MPI Wrappers for

BGQ, Sep. 7, 2011.
15. Bob Walkup, Blue Gene/Q Power-Efficient Parallel

Computation, Blue Gene/Q Summit, Argonne
National Laboratory, Oct. 2, 2012.

16. X. Wu and V. Taylor, Performance Characteristics
of Hybrid MPI/OpenMP Implementations of NAS
Parallel Benchmarks SP and BT on Large-Scale
Multicore Clusters, The Computer Journal,
Volume 55 Issue 2, Feb. 2012, pp. 154-167.

17. X. Wu and V. Taylor, Processor Partitioning: An
Experimental Performance Analysis of Parallel
Applications on SMP Cluster Systems, the 19th
International Conference on Parallel and
Distributed Computing and Systems (PDCS 2007),
Nov. 2007.

18. X. Wu and V. Taylor, Using Processor Partitioning
to Evaluate the Performance of MPI, OpenMP and

Published by Atlantis Press
Copyright: the authors

224

 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer

Hybrid Parallel Applications on Dual- and Quad-
core Cray XT4 Systems, the 51st Cray User Group
Conference (CUG2009), May 2009.

19. X. Wu, V. Taylor, C. Lively, and S. Sharkawi,
Performance Analysis and Optimization of Parallel
Scientific Applications on CMP Cluster Systems,

Scalable Computing: Practice and Experience,
Vol.10, No.1, 2009.

20. X. Wu, B. Duan, and V. Taylor, Parallel Finite
Element Earthquake Rupture Simulations on Quad-
and Hex-core Cray XT Systems, the 53rd Cray
User Group Conference, May 23-26, 2011,
Fairbanks, Alaska.

Published by Atlantis Press
Copyright: the authors

225

