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Abstract

The nonlinear Lorentz-Dirac equation of motion for charged particle, if one takes into
account radiative friction can be written in dimensionless variables. Then, there is
a possibility of introducing the constant of fine structure and following approximate
solving it. This result may be used for more precise calculation of energy losses.

Existing methods of calculation of energy losses as yet are not available. We start from
the equation of motion for a charged particle in the constant external field Fµν with the
radiative damping force [1]

dUµ

ds
=

e

mc2
FµλUλ +

2e2

3mc2

[
d2Uµ

ds2
− Uµ

(
dUλ

ds

)2
]

. (1)

It is easy to find the energy which is emitted by the moving electric charge in the constant
magnetic field. We take the fourth component of Eq. (1) without the Lorentz force [2]

dU0

ds
=

2e2

3mc2

[
d2U0

ds2
− U0

(
dUλ

ds

)2
]

, (2)

where U0 = (1− β2)−1/2 =
E

mc2
, β =

v

c
. In zero approximation U0 = const because there

is no radiative friction and one should be suppose that for the value
d2Uµ

ds2
. As follows from

(2) we find

dE

ds
' − 2e2

3mc2
ε

(
dUλ

ds

)2

(3)

and one need to find the square of four-dimensional acceleration
(

dUµ

ds

)2

=
(

eH

mc2

)2

U2
⊥,

but taking into account that ~U2
⊥ =

β2

(1− β2)
, the Eq.(3) has a form

dE

dt
' −2e4H2

3m2c3

β

1− β2
. (4)
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Such a method of calculation is accepted but it does not contain knowledge about the
degree of accuracy. For this reason it is desirable to develop any general method of

the decomposition using the small constant α =
e2

h̄c
. This is the constant of the fine

structure. We transform Eq.(1) to new units introducing the dimensionless interval τ and
dimensionless field fµν so that s = s0τ, Fµν = F0fµν , by choosing the constants S0 and

F0 in the form s0 =
2h̄

3mc
,F0 =

3m2c3

2eh̄
, where H0 is a Schwinger field H0 =

m2c3

eh̄
. Then

the Eq. (1) in the dimensionless form is

dUµ

dτ
= fµνUλ + α

[
d2Uµ

dτ2
− Uµ

(
dUλ

dτ

)2
]

. (5)

It should be noted that the parameter of decomposition can be made less than α. For
example, it may be proportional to α2 but it is not convenient because the value F0 in
this case is decreasing and one can not ignore more high degrees of fµν .

So, we have the decomposition of W 2
µ =

(
dUµ

ds

)2

which is a nonlinear part of Eq.(1)

W 2
λ = −Z2 − α2(Z4 + Z2

2 ) + 0(α3), (6)

where the notations are used

Z2 = UffU, Z4 = UffffU, . . . (7)

In Eq. (7) the sunmmation indices are omitted for briefness. From the point of view of
Eq. (5) the values (7) are obeyed to the equations

dZ2

dτ
' 2α(Z4 + Z2

2 ), (8)

dZ4

dτ
' 2α(Z6 + Z2Z4), (9)

· · · · · · · · · · · · · · · · · · · · ·

We restrict ourselves by the first approximation in the parameter α. We need to find the
square of the acceleration in the same approximation and to solve the system of equations
(8), (9) neglecting by Z6 and Z2Z4. It is valid in a weak electromagnetic field. From Eq.
(9) it follows that Z4(τ) = Z4(0) = A = const and for Z = Z2(τ) we have

dZ

dτ
' 2αA + 2αZ2. (10)

This equation may be a transformed to a linear one by the Calley transformation on the
complex plane

V (τ) =
Z(τ) + iA

Z(τ)− iA
, Z(τ) = iA

1 + V (τ)
1− V (τ)

. (11)

We obtain the linear equation for the function V (τ)

dV

dτ
− 4iαAV = 0 (12)
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which has the solution V (τ) = V (0) exp(4iαAτ) so that

Z(τ) = iA
Z(0) + iA + (Z(0)− iA) exp(4iAτ)
Z(0) + iA− (Z(0)− iA) exp(4iAτ)

. (13)

All the quadratic forms of the type (7) are real, and the real solution for the function Z(τ)
obtained from (13) has the form in the limit A → 0

Z(τ) =
U(0)ffU(0)

f − 2αU(0)ffU(0)τ
' U(0)ffU(0), (14)

where in the general case of the constant field we have

U(0)ffU(0) =
β2

0
~H2 − ( ~β0, ~H)2 + ~E2 − ( ~β0, ~E)2 − 2 ~β0[ ~E, ~H]

(1− β2
0)F 2

0

, (15)

where β =
V (0)

c
. The approximate form of Eq.(5) is

dUµ

dτ
− α

d2Uµ

dτ2
' fµλUλ − αU(0)ffU(0)Uµ. (16)

Taking into account (16), one can obtain the more generally expression for energy losses
dE

ds
' 2e2

3mc2

(
e

mc2

)2

U(0)FFU(0) +
e

mc2
~E, ~U (17)

The Eq. (17) can be integrated but we are restricted by the constant magnetic field (that

is ~E = 0 ) to compare with the known results. Then taking into account q =

(
cβ
Ω

)
√

1− β2
,

Ω =
eH

mc
, we obtain

E(s) = E(0) exp

{
− 4πe2

3mc2

1
q

[(
E(0)
mc2

)2

− 1

]}
(18)

and supposing that Ω � 3mc3

2e2
the formula obtained in [3] by Picard method may be

found as

∆E =
4πe2

3q

E(0)
mc2

[(
E(0)
mc2

)2

− 1

] 3
2

. (19)

The formula (19) in the ultrarelativistic limit gives the Schwinger result [4]

∆E → 4πe2

3q

(
ε(0)
mc2

)4

. (20)

It is not difficult to obtain the exact solution of the linearized equation (16). The charac-
teristic equation has two roots for stable and self-accelerated solutions which is physically
meaningless and must be ignored.
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