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A Model of Control of an Equation

for Two-Electron Interaction
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Moscow, Russia
Abstract

Quantum Schrödinger equation, describing dynamical spin-interaction of two electrons
with external magnetic field, is considered as an object for cybernetic research. Indeed,
because of having a possibility to change external magnetic field, we can influence the
interaction of particles. The algorithm of investigation of the algebraic structure of
the spin-system is given. A specification of this algorithm is essentially connected
with a control aspect. The spin-system is decomposed into six subsystems by us-
ing the found algebraic structure. Five from them are one-dimensional noninteract
subsystems. Every from the latter has his own one-dimensional control.

1 Description of the system

Let us consider a Schrödinger equation for the spin-state X (t) of two spin-interacting
electrons in an external inhomogeneous magnetic field [1]

ih̄
d

dt
X (t) = ĤsX (t) (1)

with the Hamiltonian Ĥs = A~σ1 ·~σ2 +µ1~σ1 · ~B1(t)+µ2~σ2 · ~B2(t), where ~σ = (σx, σy, σz) are
Pauli operators, ~B1 = (B1x, B1y, B1z) and ~B2 = (B2x, B2y, B2z) are magnetic inductions
for the first and second particles, respectively.

For a matrix representation X = ‖Xkn‖k,n=1,2, dynamical equation (1) is transformed
to

Ẋ = iσlXσT
l + u1l(t)σlX + u2l(t)XσT

l , (2)

where σ1 = iσx, u11 = −µ1B11/4A and analogously for σ2, σ3, u12, u13, u21, u22, u23 and
x, y, respectively; Ẋ = dX/dτ, τ = 4At/h̄. The functions ukl(t) are considered as control
ones consisting of independent components.

System (2) has the first integral | X |2= tr XX ∗ = 1, because of the spin-wave-
function is normed on unit. It is verified by direct calculation. The last means that all
system trajectories are on a seven-dimensional sphere S7 which is the space of states.

2 Constructing a Lie algebra of the system

The Lie algebra L of system (2) is generated by vector fields iσlXσT
l , σjX , XσT

j (j =
1, 2, 3). It is verified by direct calculation that dim L = 15 and vector fields

σlXσT
l , σjX , XσT

j (l, j = 1, 2, 3) (3)
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form a basis of a linear space of the algebra L. Moreover, it is obvious that L ∼ su(4) and
consequently in accordance with [2] system (2) is completely controllable, because su(4)
is a compact algebra. Inasmuch as the algebra L = su(4) is simple, we consider the set
N = F(S7)L being a F(S7) modulus over the ring of real C∞ smooth functions defined
on the manifold S7. The transition L → N transforms the algebra L into a set V (S7)
of tangent smooth vector fields over the manifold S7. A first direct result of this step is
a discovering of such a fact as the possibility to control system (2) by five controllings
only instead of six ones, because ql(X )σlX + pl(X )XσT

l = 0 for vector field (3). But the
main advantage of this step is the possibility to study different distributions on the set
L = V (S7) of vector fields, which turn out to be potential containers of information about
the system structure.

3 Construction of decomposition structures
of a distribution

It is shown in [3, 4] that an approach of the algebra of distributions into differential-
geometrical context is a comfortable and practical language for describing any dynamical
system structures. Especially this approach is fruitful for control systems (a system may
be represented in this form, because of universality and fundamental nature of cybernetics
categories). It was usually to use specific parameters for analysis of symmetry structures
of differential equations [5, 6]. But they were not considered as controllings. Usefullness
of such a point of view is demonstrated in this work.

Analysis and synthesis of all possible structures of a dynamical control system and dis-
tribution structures L, connected with them in a one-to-one correspondence, are described
in [3, 4] and Appendix. The distribution structure is understood as a family of involutive
distributions L1,L2 . . . ,Lr ⊂ L being into certain relations among themselves and satisf-
ing the Wonham–Hirschorn conditions (see Appendix). Unfortunatly, these distrubutions
aren’t known initially. In the work we suggest a way for finding distributions of system
(2) from family (3). Of course, this way is dictated in general by concrete properties of
system (2). Nevertheless, a basic pecularity of the way, independet of the concrete system,
consists in forming the distributions from a finite or infinite family of vector fields set by
the system, similarly to (3).

The structure is recurrently sought in several steps. It is possible to formulate them
briefly in the following way.

Step 1. Let us choose any two vector-fields L1(X ), L2(X ) transversal to B(X ) =
Span {σlX ,XσT

l , l = 1, 2, 3} and [L1(X ), L2(X )] ∈ N1X = {L1(X )L2(X )}Lie. The
Wonham–Hirschorn conditions are held automatically, because N1(X ) + B(X ) = TXS

7

and dim L1(X )
⋃
B(X ) = 0.

Step 2. Let us choose the vector-field L3 ∈ B and L3(X 6∈ N1(X ), [L3(X ),N1(X )] ⊂
N2(X ) = {N1(X ), L3(X )}Lie, then the Wonham–Hirschorn conditions are held auto-
matically because N2(X ) + B(X ) ⊇ N1(X ) + B(X ), i.e., N2(X ) + B(X ) = TXS

7 and
dim N2(X ) ∩ B(X ) = 1, as N2(X ) ∩ B(X ) = Span; {L3(X )}.

Step 3–5. Analogously we can choose N3 = {N2, L4}Lie,N4 = {N3, L5}Lie,N5 =
{N4, L6}Lie with L4(X ) 6∈ N2(X ), L5(X ) 6∈ N3(X ), L6(X ) 6∈ N4(X ), L4, L5, L6 ∈ B. Their
existence is guaranteed by the condition dim B(X ) = 5. The Wonham–Hirschorn condi-
tions are held authomatically likely to the step 2.
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Finally we have a sequence N1 ⊂ . . . ⊂ N5 satisfying the Wonham–Hirschorn condi-
tions. This means (see Appendix) that we have a cascade-cascade decomposition of the
structure with six subsystems. Indeed, after transformation of the state-vector

y1 =
1
2
| ϕ− |2, y2 =

1
2
| ϕ+ |2, y3 =

1
2
| ϕ− |2,

y4 =
1
2
| ϕ+ |2, y5 + iy6 =

1
2
(ϕ2

+ + ψ2
−),

y7 + iy8 =
1
2
(ϕ2

− + ϕ2
+ − ϕ2

+ − ϕ2
−), ϕ± = X21 ±X12, ψ± = X11 ±X22

and the control vector

v1 = −Im(φ̄−ψ−)(u11 − u21) +Re(φ̄−ψ+)(u12 − u22)+

Im(φ̄−φ+)(u13 − u23),

v2 = −Im(φ̄−φ+)(u13 − u23)− Im(φ̄+ψ+)(u11 + u21)+

Re(φ̄+ψ−)(u12 − u22),

v3 = Im(φ̄−ψ−)(u11 − u21)−Re(φ̄+ψ−)(u12 + u22)−

Im(ψ̄−ψ+)(u13 − u23),

v4 = −Re(φ̄−ψ+)(u12 − u22) + Im(φ̄+ψ+)(u11 + u21)+

Im(ψ̄−ψ+)(u13 − u23),

v5 + iv6 = i[φ−ψ−(u11 − u21)− φ−φ+(u13 − u23)+

φ+ψ+(u11 + u21) + ψ−ψ+(u13 + u23)],

(4)

the system (2) can be written in the form{
ẏ1 = v1, ẏ2 = v2, ẏ3 = v3, ẏ4 = v4, ẏ5 = v5, ẏ6 = v6,
ẏ7 + iẏ8 = [∆ + i[| γ |2 +y2

1 − y2
4)]/γ,

(5)

where ∆ =
√
δ(δ − 2 | γ |)(δ − 2y1)(δ − 2y4), δ = y1 +y4+ | γ |, γ = y5 + iy6 +y7 + iy8

and ϕ2
− + ψ2

+ 6= 0. Directly from (4) one can verify the equality v1 + v2 + v3 + v4 = 0,
i.e., first, there are only five really independent controllings in system (5) and, secondly, in
this system there exists the first integral y1 + y2 + y3 + y4 = 1 (corresponding to | X |2= 1
in system (2)). Therefore, the dimension of the state space is in fact equal to seven. If
ϕ2
− + ψ2

+ = 0, then system (5) is degenerated to four-dimensional one: ẏ2 = v2, ẏ3 =
v3, ẏ5 = v5, ẏ6 = v6, because y1 = y4, y5 + iy6 + y7 + iy8 = 0 with control arguments
being dependent. However, on the surface it is possible to use another transformation.
For example, if ϕ2

− + ϕ2 6= 0, then as a possible variant, this transformation differs from
preceeding one by the equalities y5 + iy6 = (ϕ2

+ + ψ2
−)/2, v5 + iv6 = φ−ψ+(u12 − u22) −

iφ−φ+(u13 − u23) + φ+ψ−(u12 − u22) − iψ−ψ+(u13 + u23) and the equation ẏ7 + iẏ8 =
[∆ + i(| γ |2 +y2

1 − y2
3)]γ, ∆ =

√
δ(δ − 2 | γ |)(δ − 2y1)(δ − 2y3), δ = y1 + y3+ | γ |.

And so on under another possible degenerations.
Remark. As one can see from (5), the structure of system (2) is proved to be more
rich, than one of the Lie algebra L constructed above. It testifies in accodance with
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the general theoretic investigations [3, 4] to the existence of additional relations between
subdistributions N1, . . . ,N5 ⊂ F(S7)L, the finding of which goes out the frames of the
work.

The representation (5) facilitates a solution of some control problems. For example,
the problem of maximization of a singlet component for a singlet-triplet mixture is solved
more simple and this fact is important for researches of boson condensing in the super-
conductivity problem.

Conclusions
Within classical algebraic analysis, a resolving structure is found wich is based on a di-
rect sum of ideals [7, 8]. Therefore it is useful to analyze the modular structure of L.
Moreover, the modular approach allows us to analyze practically any structure, not only
decompositions but quasidecompositions, pseudodecompositions, and so on. Moreover,
classical algebraic analysis one allows to find a structure only but does not provide a
structure synthesis by using feedback control. The modular structure approach resolves
this problem.

Appendix
Let us consider a dynamical system with the control defined as a triplet of objects∑

(X, E , F ), for which the diagram

E - TX
F

�
�

�
�
��

A
A
A
A
AU

X

(6)π πX

is commuting. Here π : E → X is a fiber bundle with the total manifold E , dim E = n+m
and base X, dimX = n;πX : TX → X is a tangent bundle and F : E → X is X a
morphism [9]. All these maps and manifolds are supposed to be C∞-smooth. Then for
any system trajectories into a local chart {N , x, u} ∈ AE from the total manifold atlas,
the equation ẋ = F (x, u) is obtained. The control functions u(t) are supposed piecewise
differentiable with values from the set Nx = N ∩ Ex, dim Nx = m.

Definition 1 Let vectors F = col (F̄ 1, . . . , F̄K), x = col (x̄1, . . . , x̄K), u = col (u1, . . . ,
uK′

) are broken up onto blocks and let us consider the corresponding blocks of matrices
∂F/∂x, ∂F/∂u, in which nonzero blocks substitute by units. Obtained K×K- and K×K ′-
dimensional matrices (θ,Ξ) with zeroes and units we call the structure for system (6)
into the local chart {N , x, u} ∈ AE . If the local structure is the same for any chart
{N , x, u} ∈ AE , then we use the term ”structure” without ”local”. Matricis θ,Ξ are called
a state vector structure and a control vector structure (or U -structure), respectively.

Theorem 1 [4]. For system (6) the next statements are equivalent:
a) there exists a cascade-cascade decomposition structure (i.e., block-triangular decom-

position in both the state vector and control-vector simultaneously);
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b) there exist factor-systems
∑

(X, E , F ) =
∑

0(X0, E0, F0) ⊃
∑

1(X1, E1, F1) ⊃ . . . ⊃∑
(XK , EK , FK) defined by surjective submersies Φs, ϕs for which the commutative diagram

is held;

E0

@
@

@
@
@R

X0

- TX0

�
�

�
��

E1

Φ1

F0

�
�

�
��

X1

φ1?

··············R

- TX1
F1

?
�

�
��

���
φ2

q q q ���
φk

Xk
���

q q q ���

TXk

?
���

q q q ���

Φ2

Φk

Ek
-

Fk

················R

c) there exists a sequence of involutive distributious D1 ⊂ . . . ⊂ DK ⊂ V (E), for
which the Wonham–Hirschorn conditions [∆e(z),Ds(z)] ⊆ Ds(z) + ∆e

0(z), dim Ds(z) ∩
∆e

0(z) = ms = const, ∀{N , z} ∈ AE (s = 1, . . . ,K) are held, where ∆e(z) = {g(z) : g ∈
V (E), Tπ(g(z)) = F (z)},∆e

0(z) = ∆e(z)−∆e(z) = ker Tπ;
d) there exists a sequence of involutive distributions C1 ⊃ . . . ⊃ CK ⊃ V (X), for

which the Wonham–Hirschorn condition [F (x, u), Cs(x)] ⊆ Cs(x) + B(x, u), dim B(x, u)
∩ Cs(x) = ms = const, ∀{N , x, u} ∈ AE(s = 1, . . . ,K) are held, where B(x, u) =

Span
{∂F (x, u)

∂uν , ν = 1, . . . ,m
}
. Among distributions Cs,Ds, relations ker Tψs = Cs =

Tπ(Ds) = Tπ ker TΨs are held, where Tψs = Tϕs ◦ Tϕs−1 ◦ . . . ◦ Tϕ1, TΨs = TΦs ◦
TΦs−1 ◦ . . . ◦ TΦ1 (s = 1, . . . ,K).

Analogously it is possible to formulate statements for any dynamical control system
structure. Further, some of such cases are formulated.

Theorem 2 [4]. Let for system (6) the conditions of Theorem 1 be held. Then the next
statements are equivalent:

a) there exists parallel-parallel decomposition structure θ = Ξ = diag(1, . . . , 1) (i.e.,
block-diagonal decomposition for both state and control vectors simultaneously);

b) the relations [Ds(z),Ds+1(z)] ⊆ Ds(z)(s = 1, . . . ,K, DK+1 = V (E), ∀{N , x, u} ∈
AE) are true and for involutive F(E)-factor-distributions Ms(z) = Ds(z)/Ds−1(z) the
Wonham–Hirschorn conditions [∆e(z),Ms(z)] ⊆ Ms(z) + ∆e

0(z), dim Ms(z) ∩∆e
0(z) =

ms −ms−1 = const, ∀{N , z} ∈ AE (s = 1, . . . ,K + 1,D0 = 0) are held;
c) the relations [Cs(x), Cs+1(x)] ⊆ Cs(x)(s = 1, . . . ,K, CK+1 = V (X), ∀{N , x, u} ∈

AE) are true and for involutive F(X)-factor-distributions Ks(x) = Cs(x)/Cs−1(x) the
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conditions [F (x, u),Ks(x)] ⊆ Ks(x) + B(x, u), dim B(x, u) ∩ Ks(x) = ms − ms−1 =
const, ∀{N , x, u} ∈ AE(s = 1, . . . ,K + 1, C0 = 0) are satisfied.

Definition 2 The diagram of inclusions

C1 ⊂ . . . ⊂ CK

∩ . . . ∩
P1 ⊂ . . . ⊂ PK

(7)

is called cascadable if it can be represented in the form of a involutive distribution chain
R1 ⊂ . . . ⊂ Rq(q > K + 1) generated by different relations among {Cs,Ps, s = 1, . . . ,K}
with diagram inclusions among other ones). The constructing procedure of this chain is
called cascading, the chain is called cascade.

Theorem 3 [3]. For the system (6) the next statements are equivalent:
a) there exists a cascade–cascade quasidecomposition structure (i.e., block-triangular

partial decomposition for both state and control vectors simultaneously);
b) there exists a cascadable inclusion diagram (7) with the cascade of involutive dis-

tributions R1 ⊂ . . . ⊂ R2K ⊂ V (X), every of which is either Cs or Ps and for which
Wonham–Hirschorn conditions [F (x, u), Cs(x)] ⊆ Ps(x) + B(x, u), dim B(x, u) ∩ Ps(x) =
ms = const, ∀{N , x, u} ∈ AE (s = 1, . . . ,K) are held.

And so on for other structures.
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